This file is indexed.

/usr/lib/python3/dist-packages/Onboard/KeyCommon.py is in onboard 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
# -*- coding: UTF-8 -*-

# Copyright © 2007 Martin Böhme <martin.bohm@kubuntu.org>
# Copyright © 2008-2009 Chris Jones <tortoise@tortuga>
# Copyright © 2010 Francesco Fumanti <francesco.fumanti@gmx.net>
# Copyright © 2009, 2011-2016 marmuta <marmvta@gmail.com>
#
# This file is part of Onboard.
#
# Onboard is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Onboard is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
KeyCommon hosts the abstract classes for the various types of Keys.
UI-specific keys should be defined in KeyGtk or KeyKDE files.
"""

from __future__ import division, print_function, unicode_literals

from math import pi
import re

from Onboard.utils import Rect, LABEL_MODIFIERS, Modifiers, \
                          polygon_to_rounded_path

from Onboard.Layout import LayoutItem

### Logging ###
import logging
_logger = logging.getLogger("KeyCommon")
###############

### Config Singleton ###
from Onboard.Config import Config
config = Config()
########################

(
    CHAR_TYPE,
    KEYSYM_TYPE,
    KEYCODE_TYPE,
    MACRO_TYPE,
    SCRIPT_TYPE,
    KEYPRESS_NAME_TYPE,
    BUTTON_TYPE,
    LEGACY_MODIFIER_TYPE,
    WORD_TYPE,
    CORRECTION_TYPE,
) = tuple(range(1, 11))

(
    SINGLE_STROKE_ACTION,  # press on button down, release on up (default)
    DELAYED_STROKE_ACTION, # press+release on button up (MENU)
    DOUBLE_STROKE_ACTION,  # press+release on button down and up, (CAPS, NMLK)
) = tuple(range(3))

actions = {
           "single-stroke"  : SINGLE_STROKE_ACTION,
           "delayed-stroke" : DELAYED_STROKE_ACTION,
           "double-stroke"  : DOUBLE_STROKE_ACTION,
          }

class StickyBehavior:
    """ enum for sticky key behaviors """
    (
        CYCLE,
        DOUBLE_CLICK,
        LATCH_ONLY,
        LOCK_ONLY,
        LATCH_LOCK_NOCYCLE,
        DOUBLE_CLICK_NOCYCLE,
        LATCH_NOCYCLE,
        LOCK_NOCYCLE,
        PUSH_BUTTON,
    ) = tuple(range(9))

    values = {"cycle"              : CYCLE,
              "dblclick"           : DOUBLE_CLICK,
              "latch"              : LATCH_ONLY,
              "lock"               : LOCK_ONLY,
              "latch-lock-nocycle" : LATCH_LOCK_NOCYCLE,
              "dblclick-nocycle"   : DOUBLE_CLICK_NOCYCLE,
              "latch-nocycle"      : LATCH_NOCYCLE,
              "lock-nocycle"       : LOCK_NOCYCLE,
              "push"               : PUSH_BUTTON,
             }

    @staticmethod
    def from_string(str_value):
        """ Raises KeyError """
        return StickyBehavior.values[str_value]

    @staticmethod
    def is_valid(behavior):
        return behavior in StickyBehavior.values.values()

    @staticmethod
    def can_latch(behavior):
        """
        Can sticky key enter latched state?
        Latched keys are automatically released when a
        non-sticky key is pressed.
        """
        return behavior in (StickyBehavior.CYCLE,
                            StickyBehavior.DOUBLE_CLICK,
                            StickyBehavior.LATCH_ONLY,
                            StickyBehavior.LATCH_LOCK_NOCYCLE,
                            StickyBehavior.DOUBLE_CLICK_NOCYCLE,
                            StickyBehavior.LATCH_NOCYCLE)

    @staticmethod
    def can_lock(behavior):
        return StickyBehavior.can_lock_on_single_click(behavior) or \
               StickyBehavior.can_lock_on_double_click(behavior)

    @staticmethod
    def can_lock_on_single_click(behavior):
        """
        Can sticky key enter locked state?
        Locked keys stay active until they are pressed again.
        """
        return behavior in (StickyBehavior.CYCLE,
                            StickyBehavior.LOCK_ONLY,
                            StickyBehavior.LATCH_LOCK_NOCYCLE,
                            StickyBehavior.LOCK_NOCYCLE)

    @staticmethod
    def can_lock_on_double_click(behavior):
        """
        Can sticky key enter locked state on double click?
        Locked keys stay active until they are pressed again.
        """
        return behavior == StickyBehavior.DOUBLE_CLICK or \
               behavior == StickyBehavior.DOUBLE_CLICK_NOCYCLE

    @staticmethod
    def can_cycle(behavior):
        """
        Can sticky key return to normal state?
        Latched keys are still automatically released when a
        non-sticky key is pressed.
        """
        return behavior in (StickyBehavior.CYCLE,
                            StickyBehavior.DOUBLE_CLICK,
                            StickyBehavior.LATCH_ONLY,
                            StickyBehavior.LOCK_ONLY)


class LOD:
    """ enum for level of detail """
    (
        MINIMAL,    # clearly visible reduced detail, fastest
        REDUCED,    # slightly reduced detail
        FULL,       # full detail
    ) = tuple(range(3))

class ImageSlot:
    NORMAL = 0
    ACTIVE = 1

class KeyCommon(LayoutItem):
    """
    library-independent key class. Specific rendering options
    are stored elsewhere.
    """

    # extended id for key specific theme tweaks
    # e.g. theme_id=DELE.numpad (with id=DELE)
    theme_id = None

    # extended id for layout specific tweaks
    # e.g. "hide.wordlist", for hide button in wordlist mode
    svg_id = None

    # optional id of a sublayout used as long-press popup
    popup_id = None

    # Type of action to do when key is pressed.
    action = None

    # Type of key stroke to send
    type = None

    # Data used in sending key strokes.
    code = None

    # Keys that stay stuck when pressed like modifiers.
    sticky = False

    # Behavior if sticky is enabled, see StickyBehavior.
    sticky_behavior = None

    # modifier bit
    modifier = None

    # True when key is being hovered over (not implemented yet)
    prelight = False

    # True when key is being pressed.
    pressed = False

    # True when key stays 'on'
    active = False

    # True when key is sticky and pressed twice.
    locked = False

    # True when Onboard is in scanning mode and key is highlighted
    scanned = False

    # True when action was triggered e.g. key-strokes were sent on press
    activated = False

    # Size to draw the label text in Pango units
    font_size = 1

    # Labels which are displayed by this key
    labels = None  # {modifier_mask : label, ...}

    # label that is currently displayed by this key
    label = ""

    # mod_mask for the currently configured label
    mod_mask = 0

    # smaller label of a currently invisible modifier level
    secondary_label = ""

    # Images displayed by this key (optional)
    image_filenames = None

    # horizontal label alignment
    label_x_align = config.DEFAULT_LABEL_X_ALIGN

    # vertical label alignment
    label_y_align = config.DEFAULT_LABEL_Y_ALIGN

    # label margin (x, y)
    label_margin = config.LABEL_MARGIN

    # tooltip text
    tooltip = None

    # can show label popup
    label_popup = True

###################

    def __init__(self):
        LayoutItem.__init__(self)

    def configure_label(self, mod_mask):
        SHIFT = Modifiers.SHIFT
        labels = self.labels

        if labels is None:
            self.label = self.secondary_label = ""
            return

        # primary label
        label = labels.get(mod_mask)
        if label is None:
            mask = mod_mask & LABEL_MODIFIERS
            label = labels.get(mask)

        # secondary label, usually the label of the shift state
        secondary_label = None
        if not label is None:
            if mod_mask & SHIFT:
                mask = mod_mask & ~SHIFT
            else:
                mask = mod_mask | SHIFT

            secondary_label = labels.get(mask)
            if secondary_label is None:
                mask = mask & LABEL_MODIFIERS
                secondary_label = labels.get(mask)

            # Only keep secondary labels that show different characters
            if not secondary_label is None and \
               secondary_label.upper() == label.upper():
                secondary_label = None

        if label is None:
            # legacy fallback for 0.98 behavior and virtkey until 0.61.0
            if mod_mask & Modifiers.SHIFT:
                if mod_mask & Modifiers.ALTGR and 129 in labels:
                    label = labels[129]
                elif 1 in labels:
                    label = labels[1]
                elif 2 in labels:
                    label = labels[2]

            elif mod_mask & Modifiers.ALTGR and 128 in labels:
                label = labels[128]

            elif mod_mask & Modifiers.CAPS:  # CAPS lock
                if 2 in labels:
                    label = labels[2]
                elif 1 in labels:
                    label = labels[1]

        if label is None:
            label = labels.get(0)

        if label is None:
            label = ""

        self.mod_mask = mod_mask
        self.label = label
        self.secondary_label = secondary_label

        # Don't let erroneous labels shrink their whole size group.
        self.ignore_group = label.startswith("0x")

    def draw_label(self, context = None):
        raise NotImplementedError()

    def set_labels(self, labels):
        self.labels = labels
        self.configure_label(0)

    def get_label(self):
        return self.label

    def get_secondary_label(self):
        return self.secondary_label

    def is_active(self):
        return not self.type is None

    def get_id(self):
        return ""

    def get_svg_id(self):
        return ""

    def set_id(self, id, theme_id = None, svg_id = None):
        self.theme_id, self.id = self.parse_id(id)
        if theme_id:
            self.theme_id = theme_id
        self.svg_id = self.id if not svg_id else svg_id

    @staticmethod
    def parse_id(value):
        """
        The theme id has the form <id>.<arbitrary identifier>, where
        the identifier should be a description of the location of
        the key relative to its surroundings, e.g. 'DELE.next-to-backspace'.
        Don't use layout names or layer ids for the theme id, they lose
        their meaning when layouts are copied or renamed by users.
        """
        theme_id = value
        id = value.split(".")[0]
        return theme_id, id

    @staticmethod
    def split_theme_id(theme_id):
        """
        Simple split in prefix (id) before the dot and suffix after the dot.
        """
        components = theme_id.split(".")
        if len(components) == 1:
            return components[0], ""
        return components[0], components[1]

    @staticmethod
    def build_theme_id(prefix, postfix):
        if postfix:
            return prefix + "." + postfix
        return prefix

    def get_similar_theme_id(self, prefix = None):
        if prefix is None:
            prefix = self.id
        theme_id = prefix
        comps = self.theme_id.split(".")[1:]
        if comps:
            theme_id += "." + comps[0]
        return theme_id

    def is_layer_button(self):
        return self.id.startswith("layer")

    def is_prediction_key(self):
        return self.id.startswith("prediction")

    def is_correction_key(self):
        return self.id.startswith("correction") or \
               self.id in ["expand-corrections"]

    def is_word_suggestion(self):
        return self.is_prediction_key() or self.is_correction_key()

    def is_modifier(self):
        """
        Modifiers are all latchable/lockable non-button keys:
        "LWIN", "RTSH", "LFSH", "RALT", "LALT",
        "RCTL", "LCTL", "CAPS", "NMLK"
        """
        return bool(self.modifier)

    def is_click_type_key(self):
        return self.id in ["singleclick",
                           "secondaryclick",
                           "middleclick",
                           "doubleclick",
                           "dragclick"]
    def is_button(self):
        return self.type == BUTTON_TYPE

    def is_pressed_only(self):
        return self.pressed and not (self.active or \
                                     self.locked or \
                                     self.scanned)

    def is_text_changing(self):
        if not self.is_modifier() and \
               self.type in [KEYCODE_TYPE,
                             KEYSYM_TYPE,
                             CHAR_TYPE,
                             KEYPRESS_NAME_TYPE,
                             MACRO_TYPE,
                             WORD_TYPE,
                             CORRECTION_TYPE]:
            id = self.id
            if not (id.startswith("F") and id[1:].isdigit()) and \
               not id in set(["LEFT", "RGHT", "UP", "DOWN",
                              "HOME", "END", "PGUP", "PGDN",
                              "INS", "ESC", "MENU",
                              "Prnt", "Pause", "Scroll"]):
                return True
        return False

    def is_return(self):
        id = self.id
        return (id == "RTRN" or
                id == "KPEN")

    def is_separator_cancelling(self):
        """ Should this key cancel pending word separators? """
        return (self.is_correction_key() or
                self.is_return() or
                self.id in set(["SPCE", "TAB",
                                # Don't cancel for Backspace. We want to have
                                # it appear to delete the pending separator.
                                # This way it inserts a space, then immediately
                                # deletes it.
                                # "BKSP",
                                "DELE",
                                "LEFT", "RGHT", "UP", "DOWN",
                                "HOME", "END", "PGUP", "PGDN",
                                "INS", "ESC", "MENU",
                                "Prnt", "Pause", "Scroll"]))

    def get_layer_index(self):
        assert(self.is_layer_button())
        return int(self.id[5:])

    def get_popup_layout(self):
        if self.popup_id:
            return self.find_sublayout(self.popup_id)
        return None

    def can_show_label_popup(self):
        return not self.is_modifier() and \
               not self.is_layer_button() and \
               not self.type is None and \
               bool(self.label_popup)


class RectKeyCommon(KeyCommon):
    """ An abstract class for rectangular keyboard buttons """

    # optional path data for keys with arbitrary shapes
    geometry = None

    # size of rounded corners at 100% round_rect_radius
    chamfer_size = None

    # Optional key_style to override the default theme's style.
    style = None

    # Toggles for what gets drawn.
    show_face = True
    show_border = True
    show_label = True
    show_image = True

    # Allow to display active state, i.e. either latched or locked state.
    # Depending on sticky_behavior the button will still become logically
    # active, it just isn't shown. Used for layer0 buttons, mainly. They don't
    # need to stick out, it's usually obvious when the first layer is active.
    show_active = True

    def __init__(self, id, border_rect):
        KeyCommon.__init__(self)
        self.id = id
        self.colors = {}
        self.context.log_rect = border_rect \
                                if not border_rect is None else Rect()

    def get_id(self):
        return self.id

    def get_svg_id(self):
        return self.svg_id

    def get_state(self):
        state = {}
        state["prelight"]  = self.prelight
        state["pressed"]   = self.pressed
        state["active"]    = self.active
        state["locked"]    = self.locked
        state["scanned"]   = self.scanned
        state["sensitive"] = self.sensitive
        return state

    def draw(self, context = None):
        pass

    def align_label(self, label_size, key_size, ltr = True):
        """ returns x- and yoffset of the aligned label """
        label_x_align = self.label_x_align
        label_y_align = self.label_y_align
        if not ltr:  # right to left script?
            label_x_align = 1.0 - label_x_align
        xoffset = label_x_align * (key_size[0] - label_size[0])
        yoffset = label_y_align * (key_size[1] - label_size[1])
        return xoffset, yoffset

    def align_secondary_label(self, label_size, key_size, ltr = True):
        """ returns x- and yoffset of the aligned label """
        label_x_align = 0.97
        label_y_align = 0.0
        if not ltr:  # right to left script?
            label_x_align = 1.0 - label_x_align
        xoffset = label_x_align * (key_size[0] - label_size[0])
        yoffset = label_y_align * (key_size[1] - label_size[1])
        return xoffset, yoffset

    def align_popup_indicator(self, label_size, key_size, ltr = True):
        """ returns x- and yoffset of the aligned label """
        label_x_align = 1.0
        label_y_align = self.label_y_align
        if not ltr:  # right to left script?
            label_x_align = 1.0 - label_x_align
        xoffset = label_x_align * (key_size[0] - label_size[0])
        yoffset = label_y_align * (key_size[1] - label_size[1])
        return xoffset, yoffset

    def get_style(self):
        if not self.style is None:
            return self.style
        return config.theme_settings.key_style

    def get_stroke_width(self):
        return config.theme_settings.key_stroke_width / 100.0

    def get_stroke_gradient(self):
        return config.theme_settings.key_stroke_gradient / 100.0

    def get_light_direction(self):
        return config.theme_settings.key_gradient_direction * pi / 180.0

    def get_fill_color(self):
        return self._get_color("fill")

    def get_stroke_color(self):
        return self._get_color("stroke")

    def get_label_color(self):
        return self._get_color("label")

    def get_secondary_label_color(self):
        return self._get_color("secondary-label")

    def get_dwell_progress_color(self):
        return self._get_color("dwell-progress")

    def get_dwell_progress_canvas_rect(self):
        rect = self.get_label_rect().inflate(0.5)
        return self.context.log_to_canvas_rect(rect)

    def _get_color(self, element):
        color_key = (element, self.prelight, self.pressed,
                              self.active, self.locked,
                              self.sensitive, self.scanned)
        rgba = self.colors.get(color_key)
        if not rgba:
            if self.color_scheme:
                rgba = self.color_scheme.get_key_rgba(self, element)
            elif element == "label":
                rgba = [0.0, 0.0, 0.0, 1.0]
            else:
                rgba = [1.0, 1.0, 1.0, 1.0]
            self.colors[color_key] = rgba
        return rgba

    def get_fullsize_rect(self):
        """ Get bounding box of the key at 100% size in logical coordinates """
        return LayoutItem.get_rect(self)

    def get_canvas_fullsize_rect(self):
        """ Get bounding box of the key at 100% size in canvas coordinates """
        return self.context.log_to_canvas_rect(self.get_fullsize_rect())

    def get_unpressed_rect(self):
        """
        Get bounding box in logical coordinates.
        Just the relatively static unpressed rect withough fake key action.
        """
        rect = self.get_fullsize_rect()
        return self._apply_key_size(rect)

    def get_rect(self):
        """ Get bounding box in logical coordinates """
        return self.get_sized_rect()

    def get_sized_rect(self, horizontal = None):
        rect = self.get_fullsize_rect()

        # fake physical key action
        if self.pressed:
            dx, dy, dw, dh = self.get_pressed_deltas()
            rect.x += dx
            rect.y += dy
            rect.w += dw
            rect.h += dh

        return self._apply_key_size(rect, horizontal)

    @staticmethod
    def _apply_key_size(rect, horizontal = None):
        """ shrink keys to key_size """
        scale = (1.0 - config.theme_settings.key_size / 100.0) * 0.5
        bx = rect.w * scale
        by = rect.h * scale

        if horizontal is None:
            horizontal = rect.h < rect.w

        if horizontal:
            # keys with aspect > 1.0, e.g. space, shift
            bx = by
        else:
            # keys with aspect < 1.0, e.g. click, move, number block + and enter
            by = bx

        return rect.deflate(bx, by)

    def get_pressed_deltas(self):
        """
        dx, dy, dw, dh for fake physical key action of pressed keys.
        Logical coordinate system.
        """
        key_style = self.get_style()
        if key_style == "gradient":
            k = 0.2
        elif key_style == "dish":
            k = 0.45
        else:
            k = 0.0
        return k, 2*k, 0.0, 0.0

    def get_label_rect(self, rect = None):
        """ Label area in logical coordinates """
        if rect is None:
            rect = self.get_rect()
        style = self.get_style()
        if style == "dish":
            stroke_width  = self.get_stroke_width()
            border_x, border_y = config.DISH_KEY_BORDER
            border_x *= stroke_width
            border_y *= stroke_width
            rect = rect.deflate(border_x, border_y)
            rect.y -= config.DISH_KEY_Y_OFFSET * stroke_width
            return rect
        else:
            return rect.deflate(*self.label_margin)

    def get_canvas_label_rect(self):
        log_rect = self.get_label_rect()
        return self.context.log_to_canvas_rect(log_rect)

    def get_border_path(self):
        """ Original path including border in logical coordinates. """
        return self.geometry.get_full_size_path()

    def get_path(self):
        """
        Path of the key geometry in logical coordinates.
        Key size and fake press movement are applied.
        """
        offset_x, offset_y, size_x, size_y = self.get_key_offset_size()
        return self.geometry.get_transformed_path(offset_x, offset_y,
                                                  size_x, size_y)

    def get_canvas_border_path(self):
        path = self.get_border_path()
        return self.context.log_to_canvas_path(path)

    def get_canvas_path(self):
        path = self.get_path()
        return self.context.log_to_canvas_path(path)

    def get_hit_path(self):
        return self.get_canvas_border_path()

    def get_chamfer_size(self, rect = None):
        """ Max size of the rounded corner areas in logical coordinates. """
        if not self.chamfer_size is None:
            return self.chamfer_size
        if not rect:
            if self.geometry:
                rect = self.get_border_path().get_bounds()
            else:
                rect = self.get_rect()
        return min(rect.w, rect.h) * 0.5

    def get_key_offset_size(self, geometry = None):
        size_x = size_y = config.theme_settings.key_size / 100.0
        offset_x = offset_y = 0.0

        if self.pressed:
            offset_x, offset_y, dw, dh = self.get_pressed_deltas()
            if dw != 0.0 or dh != 0.0:
                if geometry is None:
                    geometry = self.geometry
                dw, dh = geometry.scale_log_to_size((dw, dh))
                size_x += dw * 0.5
                size_y += dh * 0.5

        return offset_x, offset_y, size_x, size_y

    def get_canvas_polygons(self, geometry,
                          offset_x, offset_y, size_x, size_y,
                          radius_pct, chamfer_size):
        path = geometry.get_transformed_path(offset_x, offset_y, size_x, size_y)
        canvas_path = self.context.log_to_canvas_path(path)
        polygons = list(canvas_path.iter_polygons())
        polygon_paths = \
            [polygon_to_rounded_path(p, radius_pct, chamfer_size) \
            for p in polygons]
        return polygons, polygon_paths


class InputlineKeyCommon(RectKeyCommon):
    """ An abstract class for InputLine keyboard buttons """

    line = ""
    word_infos = None
    cursor = 0

    def __init__(self, name, border_rect):
        RectKeyCommon.__init__(self, name, border_rect)

    def get_label(self):
        return ""


class KeyGeometry:
    """
    Full description of a key's shape.

    This class generates path variants for a given key_size by path
    interpolation. This allows for key_size dependent shape changes,
    controlled solely by a SVG layout file. See 'Return' key in
    'Full Keyboard' layout for an example.
    """

    path0 = None          # KeyPath at 100% size
    path1 = None          # KepPath at 50% size, optional

    @staticmethod
    def from_paths(paths):
        assert(len(paths) >= 1)

        path0 = paths[0]
        path1 = None
        if len(paths) >= 2:
            path1 = paths[1]

            # Equal number of path segments?
            if len(path0.segments) != len(path1.segments):
                raise ValueError(
                    "paths to interpolate differ in number of segments "
                    "({} vs. {})" \
                        .format(len(path0.segments), len(path1.segments)))

            # Same operations in all path segments?
            for i in range(len(path0.segments)):
                op0, coords0 = path0.segments[i]
                op1, coords1 = path1.segments[i]
                if op0 != op1:
                    raise ValueError(
                        "paths to interpolate have different operations "
                        "at segment {} (op. {} vs. op. {})" \
                            .format(i, op0, op1))

        geometry = KeyGeometry()
        geometry.path0 = path0
        geometry.path1 = path1
        return geometry

    @staticmethod
    def from_rect(rect):
        geometry = KeyGeometry()
        geometry.path0 = KeyPath.from_rect(rect)
        return geometry

    def get_transformed_path(self, offset_x = 0.0, offset_y = 0.0,
                             size_x = 1.0, size_y = 1.0):
        """
        Everything in the logical coordinate system.
        size: 1.0 => path0, 0.5 => path1
        """
        path0 = self.path0
        path1 = self.path1
        if path1:
            pos_x = (1 - size_x) * 2.0
            pos_y = (1 - size_y) * 2.0
            return path0.linint(path1, pos_x, pos_y, offset_x, offset_y)
        else:
            r0 = self.get_full_size_bounds()
            r1 = self.get_half_size_bounds()
            rect = r1.inflate((size_x - 0.5) * (r0.w - r1.w),
                              (size_y - 0.5) * (r0.h - r1.h))
            rect.x += offset_x
            rect.y += offset_y
            return path0.fit_in_rect(rect)

    def get_full_size_path(self):
        return self.path0

    def get_full_size_bounds(self):
        """
        Bounding box at size 1.0.
        """
        return self.path0.get_bounds()

    def get_half_size_bounds(self):
        """
        Bounding box at size 0.5.
        """
        path1 = self.path1
        if path1:
            rect = path1.get_bounds()
        else:
            rect = self.path0.get_bounds()
            if rect.h < rect.w:
                dx = dy = rect.h * 0.25
            else:
                dy = dx = rect.w * 0.25
            rect = rect.deflate(dx, dy)
        return rect

    def scale_log_to_size(self, v):
        """ Scale from logical distances to key size. """
        r0 = self.get_full_size_bounds()
        r1 = self.get_half_size_bounds()
        log_h = (r0.h - r1.h) * 2.0
        log_w = (r0.w - r1.w) * 2.0
        return (v[0] / log_h,
                v[1] / log_w)

    def scale_size_to_log(self, v):
        """ Scale from logical distances to key size. """
        r0 = self.get_full_size_bounds()
        r1 = self.get_half_size_bounds()
        log_h = (r0.h - r1.h) * 2.0
        log_w = (r0.w - r1.w) * 2.0
        return (v[0] * log_h,
                v[1] * log_w)


class KeyPath:
    """
    Cairo-friendly path description for non-rectangular keys.
    Can handle straight line-loops/polygons, but not arcs and splines.
    """
    (
        MOVE_TO,
        LINE_TO,
        CLOSE_PATH,
    ) = range(3)

    _last_abs_pos = (0.0, 0.0)
    _bounds = None           # cached bounding box

    def __init__(self):
        self.segments = []   # normalized list of path segments (all absolute)

    @staticmethod
    def from_svg_path(path_str):
        path = KeyPath()
        path.append_svg_path(path_str)
        return path

    @staticmethod
    def from_rect(rect):
        x0 = rect.x
        y0 = rect.y
        x1 = rect.right()
        y1 = rect.bottom()
        path = KeyPath()
        path.segments = [[KeyPath.MOVE_TO, [x0, y0]],
                         [KeyPath.LINE_TO, [x1, y0, x1, y1, x0, y1]],
                         [KeyPath.CLOSE_PATH, []]]
        path._bounds = rect.copy()
        return path

    _svg_path_pattern = re.compile("([+-]?[0-9.]+)")

    def copy(self):
        result = KeyPath()
        for op, coords in self.segments:
            result.segments.append([op, coords[:]])
        return result

    def append_svg_path(self, path_str):
        """
        Append a SVG path data string to the path.

        Doctests:
        # absolute move_to command
        >>> p = KeyPath.from_svg_path("M 100 200 120 -220")
        >>> print(p.segments)
        [[0, [100.0, 200.0]], [1, [120.0, -220.0]]]

        # relative move_to command
        >>> p = KeyPath.from_svg_path("m 100 200 10 -10")
        >>> print(p.segments)
        [[0, [100.0, 200.0]], [1, [110.0, 190.0]]]

        # relative move_to and close_path segments
        >>> p = KeyPath.from_svg_path("m 100 200 10 -10 z")
        >>> print(p.segments)
        [[0, [100.0, 200.0]], [1, [110.0, 190.0]], [2, []]]

        # spaces and commas and are optional where possible
        >>> p = KeyPath.from_svg_path("m100,200 10-10z")
        >>> print(p.segments)
        [[0, [100.0, 200.0]], [1, [110.0, 190.0]], [2, []]]
        """

        cmd_str = ""
        coords = []
        tokens = self._tokenize_svg_path(path_str)
        for token in tokens:
            try:
                val = float(token)   # raises value error
                coords.append(val)
            except ValueError:
                if token.isalpha():
                    if cmd_str:
                        self.append_command(cmd_str, coords)
                    cmd_str = token
                    coords = []

                elif token == ",":
                    pass

                else:
                    raise ValueError(
                          "unexpected token '{}' in svg path data" \
                          .format(token))

        if cmd_str:
            self.append_command(cmd_str, coords)

    def append_command(self, cmd_str, coords):
        """
        Append a single command and it's coordinate data to the path.

        Doctests:
        # first lowercase move_to position is absolute
        >>> p = KeyPath()
        >>> p.append_command("m", [100, 200])
        >>> print(p.segments)
        [[0, [100, 200]]]

        # move_to segments become line_to segments after the first position
        >>> p = KeyPath()
        >>> p.append_command("M", [100, 200, 110, 190])
        >>> print(p.segments)
        [[0, [100, 200]], [1, [110, 190]]]

        # further lowercase move_to positions are relative, must become absolute
        >>> p = KeyPath()
        >>> p.append_command("m", [100, 200, 10, -10, 10, -10])
        >>> print(p.segments)
        [[0, [100, 200]], [1, [110, 190, 120, 180]]]

        # further lowercase segments must still be become absolute
        >>> p = KeyPath()
        >>> p.append_command("m", [100, 200, 10, -10, 10, -10])
        >>> p.append_command("l", [1, -1, 1, -1])
        >>> print(p.segments)
        [[0, [100, 200]], [1, [110, 190, 120, 180]], [1, [121, 179, 122, 178]]]
        """

        # Convert lowercase segments from relative to absolute coordinates.
        if cmd_str in ("m", "l"):

            # Don't convert the very first coordinate, it is already absolute.
            if self.segments:
                start = 0
                x, y = self._last_abs_pos
            else:
                start = 2
                x, y = coords[0], coords[1]

            for i in range(start, len(coords), 2):
                x += coords[i]
                y += coords[i+1]
                coords[i]   = x
                coords[i+1] = y

        cmd = cmd_str.lower()
        if cmd == "m":
            self.segments.append([self.MOVE_TO, coords[:2]])
            if len(coords) > 2:
                self.segments.append([self.LINE_TO, coords[2:]])

        elif cmd == "l":
            self.segments.append([self.LINE_TO, coords])

        elif cmd == "z":
            self.segments.append([self.CLOSE_PATH, []])

        # remember last absolute position
        if len(coords) >= 2:
            self._last_abs_pos = coords[-2:]

    @staticmethod
    def _tokenize_svg_path(path_str):
        """
        Split SVG path date into command and coordinate tokens.

        Doctests:
        >>> KeyPath._tokenize_svg_path("m 10,20")
        ['m', '10', ',', '20']
        >>> KeyPath._tokenize_svg_path("   m   10  , \\n  20 ")
        ['m', '10', ',', '20']
        >>> KeyPath._tokenize_svg_path("m 10,20 30,40 z")
        ['m', '10', ',', '20', '30', ',', '40', 'z']
        >>> KeyPath._tokenize_svg_path("m10,20 30,40z")
        ['m', '10', ',', '20', '30', ',', '40', 'z']
        >>> KeyPath._tokenize_svg_path("M100.32 100.09 100. -100.")
        ['M', '100.32', '100.09', '100.', '-100.']
        >>> KeyPath._tokenize_svg_path("m123+23 20,-14L200,200")
        ['m', '123', '+23', '20', ',', '-14', 'L', '200', ',', '200']
        >>> KeyPath._tokenize_svg_path("m123+23 20,-14L200,200")
        ['m', '123', '+23', '20', ',', '-14', 'L', '200', ',', '200']
        """
        tokens = [token.strip() \
                  for token in KeyPath._svg_path_pattern.split(path_str)]
        return [token for token in tokens if token]

    def get_bounds(self):
        bounds = self._bounds
        if bounds is None:
            bounds = self._calc_bounds()
            self._bounds = bounds
        return bounds

    def _calc_bounds(self):
        """
        Compute the bounding box of the path.

        Doctests:
        # Simple move_to path, something inkscape would create.
        >>> p = KeyPath.from_svg_path("m 100,200 10,-10 z")
        >>> print(p.get_bounds())
        Rect(x=100.0 y=190.0 w=10.0 h=10.0)
        """

        try:
            xmin = xmax = self.segments[0][1][0]
            ymin = ymax = self.segments[0][1][1]
        except IndexError:
            return Rect()

        for command in self.segments:
            coords = command[1]
            for i in range(0, len(coords), 2):
                x = coords[i]
                y = coords[i+1]
                if xmin > x:
                    xmin = x
                if xmax < x:
                    xmax = x
                if ymin > y:
                    ymin = y
                if ymax < y:
                    ymax = y

        return Rect(xmin, ymin, xmax - xmin, ymax - ymin)

    def inflate(self, dx, dy = None):
        """
        Returns a new path which is larger by dx and dy on all sides.
        """
        rect = self.get_bounds().inflate(dx, dy)
        return self.fit_in_rect(rect)

    def fit_in_rect(self, rect):
        """
        Scales and translates the path so that rect
        becomes its new bounding box.
        """
        result = self.copy()
        bounds = self.get_bounds()
        scalex = rect.w / bounds.w
        scaley = rect.h / bounds.h
        dorgx, dorgy = bounds.get_center()
        dx = rect.x - (dorgx + (bounds.x - dorgx) * scalex)
        dy = rect.y - (dorgy + (bounds.y - dorgy) * scaley)

        for op, coords in result.segments:
            for i in range(0, len(coords), 2):
                coords[i] = dx + dorgx + (coords[i] - dorgx) * scalex
                coords[i+1] = dy + dorgy + (coords[i+1] - dorgy) * scaley

        return result

    def linint(self, path1, pos_x = 1.0, pos_y = 1.0,
               offset_x = 0.0, offset_y = 0.0):
        """
        Interpolate between self and path1.
        Paths must have the same structure (length and operations).
        pos: 0.0 = self, 1.0 = path1.
        """
        result = self.copy()
        segments = result.segments
        segments1 = path1.segments
        for i in range(len(segments)):
            op, coords = segments[i]
            op1, coords1 = segments1[i]
            for j in range(0, len(coords), 2):
                x = coords[j]
                y = coords[j+1]
                x1 = coords1[j]
                y1 = coords1[j+1]
                dx = x1 - x
                dy = y1 - y
                coords[j] = x + pos_x * dx + offset_x
                coords[j+1] = y + pos_y * dy + offset_y

        return result

    def iter_polygons(self):
        """
        Loop through all independent polygons in the path.
        Can't handle splines and arcs, everything has to
        be polygons from here.
        """
        polygon = []

        for op, coords in self.segments:

            if op == self.LINE_TO:
                polygon.extend(coords)

            elif op == self.MOVE_TO:
                polygon = []
                polygon.extend(coords)

            elif op == self.CLOSE_PATH:
                yield polygon

    def is_point_within(self, point):
        for polygon in self.iter_polygons():
            if self.is_point_in_polygon(polygon, point[0], point[1]):
                return True

    @staticmethod
    def is_point_in_polygon(vertices, x, y):
        c = False
        n = len(vertices)

        try:
            x0 = vertices[n - 2]
            y0 = vertices[n - 1]
        except IndexError:
            return False

        for i in range(0, n, 2):
            x1 = vertices[i]
            y1 = vertices[i+1]
            if (y1 <= y and y < y0 or y0 <= y and y < y1) and \
               (x < (x0 - x1) * (y - y1) / (y0 - y1) + x1):
                c = not c
            x0 = x1
            y0 = y1

        return c