This file is indexed.

/usr/share/octave/packages/signal-1.3.2/xcorr.m is in octave-signal 1.3.2-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
## Copyright (C) 1999-2001 Paul Kienzle <pkienzle@users.sf.net>
## Copyright (C) 2004 <asbjorn.sabo@broadpark.no>
## Copyright (C) 2008,2010 Peter Lanspeary <peter.lanspeary@.adelaide.edu.au>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{R}, @var{lag}] =} xcorr ( @var{X} )
## @deftypefnx {Function File} {@dots{} =} xcorr ( @var{X}, @var{Y} )
## @deftypefnx {Function File} {@dots{} =} xcorr ( @dots{}, @var{maxlag})
## @deftypefnx {Function File} {@dots{} =} xcorr ( @dots{}, @var{scale})
## Estimates the cross-correlation.
##
## Estimate the cross correlation R_xy(k) of vector arguments @var{X} and @var{Y}
## or, if @var{Y} is omitted, estimate autocorrelation R_xx(k) of vector @var{X},
## for a range of lags k specified by  argument "maxlag".  If @var{X} is a
## matrix, each column of @var{X} is correlated with itself and every other
## column.
##
## The cross-correlation estimate between vectors "x" and "y" (of
## length N) for lag "k" is given by
##
## @tex
## $$   R_{xy}(k) = \sum_{i=1}^{N} x_{i+k} \conj(y_i),
## @end tex
## @ifnottex
## @example
## @group
##            N
## R_xy(k) = sum x_@{i+k@} conj(y_i),
##           i=1
## @end group
## @end example
## @end ifnottex
##
## where data not provided (for example x(-1), y(N+1)) is zero. Note the
## definition of cross-correlation given above. To compute a
## cross-correlation consistent with the field of statistics, see @command{xcov}.
##
## @strong{ARGUMENTS}
## @table @var
## @item X
## [non-empty; real or complex; vector or matrix] data
##
## @item Y
## [real or complex vector] data
##
## If @var{X} is a matrix (not a vector), @var{Y} must be omitted.
## @var{Y} may be omitted if @var{X} is a vector; in this case xcorr
## estimates the autocorrelation of @var{X}.
##
## @item maxlag
## [integer scalar] maximum correlation lag
## If omitted, the default value is N-1, where N is the
## greater of the lengths of @var{X} and @var{Y} or, if @var{X} is a matrix,
## the number of rows in @var{X}.
##
## @item scale
## [character string] specifies the type of scaling applied
## to the correlation vector (or matrix). is one of:
## @table @samp
## @item none
## return the unscaled correlation, R,
## @item biased
## return the biased average, R/N,
## @item unbiased
## return the unbiased average, R(k)/(N-|k|),
## @item coeff
## return the correlation coefficient, R/(rms(x).rms(y)),
## where "k" is the lag, and "N" is the length of @var{X}.
## If omitted, the default value is "none".
## If @var{Y} is supplied but does not have the same length as @var{X},
## scale must be "none".
## @end table
## @end table
##
## @strong{RETURNED VARIABLES}
## @table @var
## @item R
## array of correlation estimates
## @item lag
## row vector of correlation lags [-maxlag:maxlag]
## @end table
##
## The array of correlation estimates has one of the following forms:
## (1) Cross-correlation estimate if @var{X} and @var{Y} are vectors.
##
## (2) Autocorrelation estimate if is a vector and @var{Y} is omitted.
##
## (3) If @var{X} is a matrix, R is an matrix containing the cross-correlation
## estimate of each column with every other column. Lag varies with the first
## index so that R has 2*maxlag+1 rows and P^2 columns where P is the number of
## columns in @var{X}.
##
## If Rij(k) is the correlation between columns i and j of @var{X}
##
## @code{R(k+maxlag+1,P*(i-1)+j) == Rij(k)}
##
## for lag k in [-maxlag:maxlag], or
##
## @code{R(:,P*(i-1)+j) == xcorr(X(:,i),X(:,j))}.
##
## @code{reshape(R(k,:),P,P)} is the cross-correlation matrix for @code{X(k,:)}.
##
## @seealso{xcov}
## @end deftypefn

## The cross-correlation estimate is calculated by a "spectral" method
## in which the FFT of the first vector is multiplied element-by-element
## with the FFT of second vector.  The computational effort depends on
## the length N of the vectors and is independent of the number of lags
## requested.  If you only need a few lags, the "direct sum" method may
## be faster:
##
## Ref: Stearns, SD and David, RA (1988). Signal Processing Algorithms.
##      New Jersey: Prentice-Hall.

## unbiased:
##  ( hankel(x(1:k),[x(k:N); zeros(k-1,1)]) * y ) ./ [N:-1:N-k+1](:)
## biased:
##  ( hankel(x(1:k),[x(k:N); zeros(k-1,1)]) * y ) ./ N
##
## If length(x) == length(y) + k, then you can use the simpler
##    ( hankel(x(1:k),x(k:N-k)) * y ) ./ N

function [R, lags] = xcorr (X, Y, maxlag, scale)

  if (nargin < 1 || nargin > 4)
    print_usage;
  endif

  ## assign arguments that are missing from the list
  ## or reassign (right shift) them according to data type
  if nargin==1
    Y=[]; maxlag=[]; scale=[];
  elseif nargin==2
    maxlag=[]; scale=[];
    if ischar(Y), scale=Y; Y=[];
    elseif isscalar(Y), maxlag=Y; Y=[];
    endif
  elseif nargin==3
    scale=[];
    if ischar(maxlag), scale=maxlag; maxlag=[]; endif
    if isscalar(Y), maxlag=Y; Y=[]; endif
  endif

  ## assign defaults to missing arguments
  if isvector(X)
    ## if isempty(Y), Y=X; endif  ## this line disables code for autocorr'n
    N = max(length(X),length(Y));
  else
    N = rows(X);
  endif
  if isempty(maxlag), maxlag=N-1; endif
  if isempty(scale), scale='none'; endif

  ## check argument values
  if isempty(X) || isscalar(X) || ischar(Y) || ! ismatrix(X)
    error("xcorr: X must be a vector or matrix");
  endif
  if isscalar(Y) || ischar(Y) || (!isempty(Y) && !isvector(Y))
    error("xcorr: Y must be a vector");
  endif
  if !isempty(Y) && !isvector(X)
    error("xcorr: X must be a vector if Y is specified");
  endif
  if !isscalar(maxlag) || !isreal(maxlag) || maxlag<0 || fix(maxlag)!=maxlag
    error("xcorr: maxlag must be a single non-negative integer");
  endif
  ##
  ## sanity check on number of requested lags
  ##   Correlations for lags in excess of +/-(N-1)
  ##    (a) are not calculated by the FFT algorithm,
  ##    (b) are all zero; so provide them by padding
  ##        the results (with zeros) before returning.
  if (maxlag > N-1)
    pad_result = maxlag - (N - 1);
    maxlag = N - 1;
    %error("xcorr: maxlag must be less than length(X)");
  else
    pad_result = 0;
  endif
  if isvector(X) && isvector(Y) && length(X) != length(Y) && ...
        !strcmp(scale,'none')
    error("xcorr: scale must be 'none' if length(X) != length(Y)")
  endif

  P = columns(X);
  M = 2^nextpow2(N + maxlag);
  if !isvector(X)
    ## For matrix X, correlate each column "i" with all other "j" columns
    R = zeros(2*maxlag+1,P^2);

    ## do FFTs of padded column vectors
    pre = fft (postpad (prepad (X, N+maxlag), M) );
    post = conj (fft (postpad (X, M)));

    ## do autocorrelations (each column with itself)
    ##  -- if result R is reshaped to 3D matrix (i.e. R=reshape(R,M,P,P))
    ##     the autocorrelations are on leading diagonal columns of R,
    ##     where i==j in R(:,i,j)
    cor = ifft (post .* pre);
    R(:, 1:P+1:P^2) = cor (1:2*maxlag+1,:);

    ## do the cross correlations
    ##   -- these are the off-diagonal column of the reshaped 3D result
    ##      matrix -- i!=j in R(:,i,j)
    for i=1:P-1
      j = i+1:P;
      cor = ifft( pre(:,i*ones(length(j),1)) .* post(:,j) );
      R(:,(i-1)*P+j) = cor(1:2*maxlag+1,:);
      R(:,(j-1)*P+i) = conj( flipud( cor(1:2*maxlag+1,:) ) );
    endfor
  elseif isempty(Y)
    ## compute autocorrelation of a single vector
    post = fft( postpad(X(:),M) );
    cor = ifft( post .* conj(post) );
    R = [ conj(cor(maxlag+1:-1:2)) ; cor(1:maxlag+1) ];
  else
    ## compute cross-correlation of X and Y
    ##  If one of X & Y is a row vector, the other can be a column vector.
    pre  = fft( postpad( prepad( X(:), length(X)+maxlag ), M) );
    post = fft( postpad( Y(:), M ) );
    cor = ifft( pre .* conj(post) );
    R = cor(1:2*maxlag+1);
  endif

  ## if inputs are real, outputs should be real, so ignore the
  ## insignificant complex portion left over from the FFT
  if isreal(X) && (isempty(Y) || isreal(Y))
    R=real(R);
  endif

  ## correct for bias
  if strcmp(scale, 'biased')
    R = R ./ N;
  elseif strcmp(scale, 'unbiased')
    R = R ./ ( [ N-maxlag:N-1, N, N-1:-1:N-maxlag ]' * ones(1,columns(R)) );
  elseif strcmp(scale, 'coeff')
    ## R = R ./ R(maxlag+1) works only for autocorrelation
    ## For cross correlation coeff, divide by rms(X)*rms(Y).
    if !isvector(X)
      ## for matrix (more than 1 column) X
      rms = sqrt( sumsq(X) );
      R = R ./ ( ones(rows(R),1) * reshape(rms.'*rms,1,[]) );
    elseif isempty(Y)
      ##  for autocorrelation, R(zero-lag) is the mean square.
      R = R / R(maxlag+1);
    else
      ##  for vectors X and Y
      R = R / sqrt( sumsq(X)*sumsq(Y) );
    endif
  elseif !strcmp(scale, 'none')
    error("xcorr: scale must be 'biased', 'unbiased', 'coeff' or 'none'");
  endif

  ## Pad result if necessary
  ##  (most likely is not required, use "if" to avoid unnecessary code)
  ## At this point, lag varies with the first index in R;
  ##  so pad **before** the transpose.
  if pad_result
    R_pad = zeros(pad_result,columns(R));
    R = [R_pad; R; R_pad];
  endif
  ## Correct the shape (transpose) so it is the same as the first input vector
  if isvector(X) && P > 1
    R = R.';
  endif

  ## return the lag indices if desired
  if nargout == 2
    maxlag += pad_result;
    lags = [-maxlag:maxlag];
  endif

endfunction

##------------ Use brute force to compute the correlation -------
##if !isvector(X)
##  ## For matrix X, compute cross-correlation of all columns
##  R = zeros(2*maxlag+1,P^2);
##  for i=1:P
##    for j=i:P
##      idx = (i-1)*P+j;
##      R(maxlag+1,idx) = X(:,i)' * X(:,j);
##      for k = 1:maxlag
##        R(maxlag+1-k,idx) = X(k+1:N,i)' * X(1:N-k,j);
##        R(maxlag+1+k,idx) = X(1:N-k,i)' * X(k+1:N,j);
##      endfor
##      if (i!=j), R(:,(j-1)*P+i) = conj(flipud(R(:,idx))); endif
##    endfor
##  endfor
##elseif isempty(Y)
##  ## reshape X so that dot product comes out right
##  X = reshape(X, 1, N);
##
##  ## compute autocorrelation for 0:maxlag
##  R = zeros (2*maxlag + 1, 1);
##  for k=0:maxlag
##    R(maxlag+1+k) = X(1:N-k) * X(k+1:N)';
##  endfor
##
##  ## use symmetry for -maxlag:-1
##  R(1:maxlag) = conj(R(2*maxlag+1:-1:maxlag+2));
##else
##  ## reshape and pad so X and Y are the same length
##  X = reshape(postpad(X,N), 1, N);
##  Y = reshape(postpad(Y,N), 1, N)';
##
##  ## compute cross-correlation
##  R = zeros (2*maxlag + 1, 1);
##  R(maxlag+1) = X*Y;
##  for k=1:maxlag
##    R(maxlag+1-k) = X(k+1:N) * Y(1:N-k);
##    R(maxlag+1+k) = X(1:N-k) * Y(k+1:N);
##  endfor
##endif
##--------------------------------------------------------------