This file is indexed.

/usr/share/octave/packages/signal-1.3.2/pyulear.m is in octave-signal 1.3.2-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
## Copyright (C) 2006 Peter V. Lanspeary <pvl@mecheng.adelaide.edu.au>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## usage:
##    [psd,f_out] = pyulear(x,poles,freq,Fs,range,method,plot_type)
##
## Calculates a Yule-Walker autoregressive (all-pole) model of the data "x"
## and computes the power spectrum of the model.  This is a wrapper for
## functions "aryule" and "ar_psd" which perform the argument checking.
## See "help aryule" and "help ar_psd" for further details.
##
## ARGUMENTS:
##     All but the first two arguments are optional and may be empty.
##   x       %% [vector] sampled data
##
##   poles   %% [integer scalar] required number of poles of the AR model
##
##   freq    %% [real vector] frequencies at which power spectral density
##           %%               is calculated
##           %% [integer scalar] number of uniformly distributed frequency
##           %%          values at which spectral density is calculated.
##           %%          [default=256]
##
##   Fs      %% [real scalar] sampling frequency (Hertz) [default=1]
##
##
## CONTROL-STRING ARGUMENTS -- each of these arguments is a character string.
##   Control-string arguments can be in any order after the other arguments.
##
##
##   range   %% 'half',  'onesided' : frequency range of the spectrum is
##           %%       from zero up to but not including sample_f/2.  Power
##           %%       from negative frequencies is added to the positive
##           %%       side of the spectrum.
##           %% 'whole', 'twosided' : frequency range of the spectrum is
##           %%       -sample_f/2 to sample_f/2, with negative frequencies
##           %%       stored in "wrap around" order after the positive
##           %%       frequencies; e.g. frequencies for a 10-point 'twosided'
##           %%       spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1
##           %% 'shift', 'centerdc' : same as 'whole' but with the first half
##           %%       of the spectrum swapped with second half to put the
##           %%       zero-frequency value in the middle. (See "help
##           %%       fftshift". If "freq" is vector, 'shift' is ignored.
##           %% If model coefficients "ar_coeffs" are real, the default
##           %% range is 'half', otherwise default range is 'whole'.
##
##   method  %% 'fft':  use FFT to calculate power spectrum.
##           %% 'poly': calculate power spectrum as a polynomial of 1/z
##           %% N.B. this argument is ignored if the "freq" argument is a
##           %%      vector.  The default is 'poly' unless the "freq"
##           %%      argument is an integer power of 2.
##
## plot_type %% 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db':
##           %% specifies the type of plot.  The default is 'plot', which
##           %% means linear-linear axes. 'squared' is the same as 'plot'.
##           %% 'dB' plots "10*log10(psd)".  This argument is ignored and a
##           %% spectrum is not plotted if the caller requires a returned
##           %% value.
##
## RETURNED VALUES:
##     If return values are not required by the caller, the spectrum
##     is plotted and nothing is returned.
##   psd     %% [real vector] power-spectrum estimate
##   f_out   %% [real vector] frequency values
##
## HINTS
##   This function is a wrapper for aryule and ar_psd.
##   See "help aryule", "help ar_psd".

function [psd,f_out]=pyulear(x,poles,varargin)

  ##
  if ( nargin<2 )
    error( 'pburg: need at least 2 args. Use "help pburg"' );
  endif
  ##
  [ar_coeffs,residual,k]=aryule(x,poles);
  if ( nargout==0 )
    ar_psd(ar_coeffs,residual,varargin{:});
  elseif ( nargout==1 )
    psd = ar_psd(ar_coeffs,residual,varargin{:});
  elseif ( nargout>=2 )
    [psd,f_out] = ar_psd(ar_coeffs,residual,varargin{:});
  endif

endfunction

%!demo
%! rand ("seed", 2038014164);
%! a = [1.0 -1.6216505 1.1102795 -0.4621741 0.2075552 -0.018756746];
%! Fs = 25;
%! n = 16384;
%! signal = detrend (filter (0.70181, a, rand (1, n)));
%! % frequency shift by modulating with exp(j.omega.t)
%! skewed = signal .* exp (2*pi*i*2/Fs*[1:n]);
%! hold on
%! pyulear (signal, 3, [], Fs);
%! pyulear (signal, 4, [], Fs, "whole");
%! pyulear (signal, 5, 128, Fs, "shift", "semilogy");
%! pyulear (skewed, 7, 128, Fs, "shift", "semilogy");
%! user_freq = [-0.2:0.02:0.2]*Fs;
%! pyulear (skewed, 7, user_freq, Fs, "semilogy");
%! hold off