This file is indexed.

/usr/share/octave/packages/signal-1.3.2/dct.m is in octave-signal 1.3.2-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
## Copyright (C) 2001 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} dct (@var{x})
## @deftypefnx {Function File} {} dct (@var{x}, @var{n})
## Compute the discrete cosine transform of @var{x}.  If @var{n} is given,
## then @var{x} is padded or trimmed to length @var{n} before computing the
## transform.  If @var{x} is a matrix, compute the transform along the columns
## of the the matrix.  The transform is faster if @var{x} is real-valued and
## has even length.
##
## The discrete cosine transform @var{x} can be defined as follows:
##
## @example
## @group
##               N-1
##   X[k] = w(k) sum x[n] cos (pi (2n+1) k / 2N ),  k = 0, ..., N-1
##               n=0
## @end group
## @end example
##
## with w(0) = sqrt(1/N) and w(k) = sqrt(2/N), k = 1, ..., N-1.  There
## are other definitions with different scaling of X[k], but this form
## is common in image processing.
##
## @seealso{idct, dct2, idct2, dctmtx}
## @end deftypefn

## From Discrete Cosine Transform notes by Brian Evans at UT Austin,
## http://www.ece.utexas.edu/~bevans/courses/ee381k/lectures/09_DCT/lecture9/
## the discrete cosine transform of x at k is as follows:
##
##          N-1
##   X[k] = sum 2 x[n] cos (pi (2n+1) k / 2N )
##          n=0
##
## which can be computed using:
##
##   y = [ x ; flipud (x) ]
##   Y = fft(y)
##   X = exp( -j pi [0:N-1] / 2N ) .* Y
##
## or for real, even length x
##
##   y = [ even(x) ; flipud(odd(x)) ]
##   Y = fft(y)
##   X = 2 real { exp( -j pi [0:N-1] / 2N ) .* Y }
##
## Scaling the result by w(k)/2 will give us the desired output.

function y = dct (x, n)

  if (nargin < 1 || nargin > 2)
    print_usage;
  endif

  realx = isreal(x);
  transpose = (rows (x) == 1);

  if transpose, x = x (:); endif
  [nr, nc] = size (x);
  if nargin == 1
    n = nr;
  elseif n > nr
    x = [ x ; zeros(n-nr,nc) ];
  elseif n < nr
    x (nr-n+1 : n, :) = [];
  endif

  if n == 1
    w = 1/2;
  else
    w = [ sqrt(1/4/n); sqrt(1/2/n)*exp((-1i*pi/2/n)*[1:n-1]') ] * ones (1, nc);
  endif
  if ( realx && rem (n, 2) == 0 )
    y = fft ([ x(1:2:n,:) ; x(n:-2:1,:) ]);
    y = 2 * real( w .* y );
  else
    y = fft ([ x ; flipud(x) ]);
    y = w .* y (1:n, :);
    if (realx) y = real (y); endif
  endif
  if transpose, y = y.'; endif

endfunction