This file is indexed.

/usr/share/octave/packages/signal-1.3.2/butter.m is in octave-signal 1.3.2-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
## Copyright (C) 1999 Paul Kienzle <pkienzle@users.sf.net>
## Copyright (C) 2003 Doug Stewart <dastew@sympatico.ca>
## Copyright (C) 2011 Alexander Klein <alexander.klein@math.uni-giessen.de>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{b}, @var{a}] =} butter (@var{n}, @var{w})
## @deftypefnx {Function File} {[@var{b}, @var{a}] =} butter (@var{n}, @var{w}, "high")
## @deftypefnx {Function File} {[@var{b}, @var{a}] =} butter (@var{n}, [@var{wl}, @var{wh}])
## @deftypefnx {Function File} {[@var{b}, @var{a}] =} butter (@var{n}, [@var{wl}, @var{wh}], "stop")
## @deftypefnx {Function File} {[@var{z}, @var{p}, @var{g}] =} butter (@dots{})
## @deftypefnx {Function File} {[@var{a}, @var{b}, @var{c}, @var{d}] =} butter (@dots{})
## @deftypefnx {Function File} {[@dots{}] =} butter (@dots{}, "s")
## Generate a Butterworth filter.
## Default is a discrete space (Z) filter.
##
## [b,a] = butter(n, Wc)
##    low pass filter with cutoff pi*Wc radians
##
## [b,a] = butter(n, Wc, 'high')
##    high pass filter with cutoff pi*Wc radians
##
## [b,a] = butter(n, [Wl, Wh])
##    band pass filter with edges pi*Wl and pi*Wh radians
##
## [b,a] = butter(n, [Wl, Wh], 'stop')
##    band reject filter with edges pi*Wl and pi*Wh radians
##
## [z,p,g] = butter(...)
##    return filter as zero-pole-gain rather than coefficients of the
##    numerator and denominator polynomials.
##
## [...] = butter(...,'s')
##     return a Laplace space filter, W can be larger than 1.
##
## [a,b,c,d] = butter(...)
##  return  state-space matrices
##
## References:
##
## Proakis & Manolakis (1992). Digital Signal Processing. New York:
## Macmillan Publishing Company.
## @end deftypefn

function [a, b, c, d] = butter (n, w, varargin)

  if (nargin > 4 || nargin < 2 || nargout > 4 || nargout < 2)
    print_usage ();
  endif

  ## interpret the input parameters
  if (! (isscalar (n) && (n == fix (n)) && (n > 0)))
    error ("butter: filter order N must be a positive integer");
  endif

  stop = false;
  digital = true;
  for i = 1:numel (varargin)
    switch (varargin{i})
      case "s"
        digital = false;
      case "z"
        digital = true;
      case {"high", "stop"}
        stop = true;
      case {"low", "pass"}
        stop = false;
      otherwise
        error ("butter: expected [high|stop] or [s|z]");
    endswitch
  endfor

  if (! ((numel (w) <= 2) && (rows (w) == 1 || columns (w) == 1)))
    error ("butter: frequency must be given as WC or [WL, WH]");
  elseif ((numel (w) == 2) && (w(2) <= w(1)))
    error ("butter: W(1) must be less than W(2)");
  endif

  if (digital && ! all ((w >= 0) & (w <= 1)))
    error ("butter: all elements of W must be in the range [0,1]");
  elseif (! digital && ! all (w >= 0))
    error ("butter: all elements of W must be in the range [0,inf]");
  endif

  ## Prewarp to the band edges to s plane
  if (digital)
    T = 2;       # sampling frequency of 2 Hz
    w = 2 / T * tan (pi * w / T);
  endif

  ## Generate splane poles for the prototype Butterworth filter
  ## source: Kuc
  C = 1;  ## default cutoff frequency
  pole = C * exp (1i * pi * (2 * [1:n] + n - 1) / (2 * n));
  if (mod (n, 2) == 1)
    pole((n + 1) / 2) = -1;  ## pure real value at exp(i*pi)
  endif
  zero = [];
  gain = C^n;

  ## splane frequency transform
  [zero, pole, gain] = sftrans (zero, pole, gain, w, stop);

  ## Use bilinear transform to convert poles to the z plane
  if (digital)
    [zero, pole, gain] = bilinear (zero, pole, gain, T);
  endif

  ## convert to the correct output form
  if (nargout == 2)
    a = real (gain * poly (zero));
    b = real (poly (pole));
  elseif (nargout == 3)
    a = zero;
    b = pole;
    c = gain;
  else
    ## output ss results
    [a, b, c, d] = zp2ss (zero, pole, gain);
  endif

endfunction

%!shared sf, sf2, off_db
%! off_db = 0.5;
%! ## Sampling frequency must be that high to make the low pass filters pass.
%! sf = 6000; sf2 = sf/2;
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];

%!test
%! ## Test low pass order 1 with 3dB @ 50Hz
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];
%! [b, a] = butter ( 1, 50 / sf2 );
%! filtered = filter ( b, a, data );
%! damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) );
%! assert ( [ damp_db( 4 ) - damp_db( 5 ), damp_db( 1 : 3 ) ], [ 6 0 0 -3 ], off_db )

%!test
%! ## Test low pass order 4 with 3dB @ 50Hz
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];
%! [b, a] = butter ( 4, 50 / sf2 );
%! filtered = filter ( b, a, data );
%! damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) );
%! assert ( [ damp_db( 4 ) - damp_db( 5 ), damp_db( 1 : 3 ) ], [ 24 0 0 -3 ], off_db )

%!test
%! ## Test high pass order 1 with 3dB @ 50Hz
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];
%! [b, a] = butter ( 1, 50 / sf2, "high" );
%! filtered = filter ( b, a, data );
%! damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) );
%! assert ( [ damp_db( 2 ) - damp_db( 1 ), damp_db( 3 : end ) ], [ 6 -3 0 0 ], off_db )

%!test
%! ## Test high pass order 4 with 3dB @ 50Hz
%! data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)];
%! [b, a] = butter ( 4, 50 / sf2, "high" );
%! filtered = filter ( b, a, data );
%! damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) );
%! assert ( [ damp_db( 2 ) - damp_db( 1 ), damp_db( 3 : end ) ], [ 24 -3 0 0 ], off_db )

%% Test input validation
%!error [a, b] = butter ()
%!error [a, b] = butter (1)
%!error [a, b] = butter (1, 2, 3, 4, 5)
%!error [a, b] = butter (.5, .2)
%!error [a, b] = butter (3, .2, "invalid")

%!demo
%! sf = 800; sf2 = sf/2;
%! data=[[1;zeros(sf-1,1)],sinetone(25,sf,1,1),sinetone(50,sf,1,1),sinetone(100,sf,1,1)];
%! [b,a]=butter ( 1, 50 / sf2 );
%! filtered = filter(b,a,data);
%!
%! clf
%! subplot ( columns ( filtered ), 1, 1)
%! plot(filtered(:,1),";Impulse response;")
%! subplot ( columns ( filtered ), 1, 2 )
%! plot(filtered(:,2),";25Hz response;")
%! subplot ( columns ( filtered ), 1, 3 )
%! plot(filtered(:,3),";50Hz response;")
%! subplot ( columns ( filtered ), 1, 4 )
%! plot(filtered(:,4),";100Hz response;")