This file is indexed.

/usr/share/octave/packages/optim-1.5.2/private/__dfdp__.m is in octave-optim 1.5.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
## Copyright (C) 1992-1994 Richard Shrager
## Copyright (C) 1992-1994 Arthur Jutan
## Copyright (C) 1992-1994 Ray Muzic
## Copyright (C) 2010-2016 Olaf Till <i7tiol@t-online.de>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

function prt = __dfdp__ (p, func, hook)

  persistent first_call = true;

  ## functions setting hook.__check_first_call__ must do this call
  if (nargin == 1 && ischar (p) && strcmp (p, "reset"))
    first_call = true;
    return;
  endif    

  if (nargin > 2 && isfield (hook, "f"))
    f = hook.f;
  else
    f = func (p)(:);
  endif

  m = length (f);
  n = length (p);

  persistent fixed;
  persistent diff_onesided;
  persistent diffp;
  persistent TypicalX;
  persistent lbound;
  persistent ubound;
  persistent plabels;

  persistent parallel;
  persistent parfun;

  diffp_default = .001;
  ## Not 1 for TypicalX, to change previous courses of optimization
  ## less. The previous way was to set delta to diffp for parameters
  ## exactly zero and otherwise multiply diffp with the parameter value.
  TypicalX_default = .0001;

  if (nargin > 2)

    ## spare the whole option checking if the frontend does a reset
    ## before starting the algorithm (obligatory if it sets the field
    ## '__check_first_call__'), so we can determine if this is the first
    ## call, and it is indeed the first call
    if (! isfield (hook, "__check_first_call__") || first_call)

      first_call = false; # for the next call

      if (isfield (hook, "fixed"))
        fixed = hook.fixed;
      else
        fixed = false (n, 1);
      endif

      if (isfield (hook, "diffp"))
        diffp = hook.diffp;
        diffp(isna (diffp)) = diffp_default;
      else
        diffp = diffp_default * ones (n, 1);
      endif

      if (isfield (hook, "diff_onesided"))
        diff_onesided = hook.diff_onesided;
      else
        diff_onesided = false (n, 1);
      endif

      if (isfield (hook, "TypicalX"))
        TypicalX = abs (hook.TypicalX);
        TypicalX(isna (TypicalX)) = TypicalX_default;
      else
        TypicalX = TypicalX_default * ones (n, 1);
      endif

      if (isfield (hook, "lbound"))
        lbound = hook.lbound;
      else
        lbound = - Inf (n, 1);
      endif

      if (isfield (hook, "ubound"))
        ubound = hook.ubound;
      else
        ubound = Inf (n, 1);
      endif

      if (isfield (hook, "plabels"))
        plabels = hook.plabels;
      else
        plabels = num2cell (num2cell ((1:n).'));
      endif

      if (isfield (hook, "parallel_local"))
        parallel_local = hook.parallel_local;
      else
        parallel_local = false;
      endif

      if (isfield (hook, "parallel_net"))
        parallel_net = hook.parallel_net;
      else
        parallel_net = [];
      endif

      if (parallel_local || ! isempty (parallel_net))

        parallel = true;
        plabels = plabels(! fixed, :);
        ## error handler
        errh = @ (s, id, side) {[], true, s}{:};

        if (parallel_local && ! isempty (parallel_net))
          error ("If option 'parallel_net' is not empty, option 'parallel_local' must not be true.");
        endif

        if (parallel_local)

          if (parallel_local > 1)
            npr = parallel_local;
          else
            npr = nproc ("current");
          endif

          parfun = @ (func, ids, sides) pararrayfun (npr,
                                                     func, ids, sides,
                                                     "UniformOutput", false,
                                                     "VerboseLevel", 0,
                                                     "ErrorHandler", errh);

        else # ! isempty (parallel_net)
          parfun = @ (func, ids, sides) netarrayfun (parallel_net,
                                                     func, ids, sides,
                                                     "UniformOutput", false,
                                                     "ErrorHandler", errh);
        endif

      else
        parallel = false;
      endif

    endif

  else
    fixed = false (n, 1);
    diff_onesided = fixed;
    diffp = .001 * ones (n, 1);
    TypicalX = .0001 * ones (n, 1);
    lbound = - Inf (n, 1);
    ubound = Inf (n, 1);
    plabels = num2cell (num2cell ((1:n).'));
    parallel = false;
  endif    

  prt = zeros (m, n); # initialise Jacobian to Zero
  del = diffp .* max (abs (p), TypicalX);
  tpidx = p < 0;
  del(tpidx) = - del(tpidx);
  del(diff_onesided) = - del(diff_onesided); # keep course of
                                # optimization of previous versions
  absdel = abs (del);
  idxd = ~(diff_onesided | fixed); # double sided interval
  p1 = zeros (n, 1);
  p2 = p1;
  idxvs = false (n, 1);
  idx1g2w = idxvs;
  idx1le2w = idxvs;

  ## p may be slightly out of bounds due to inaccuracy, or exactly at
  ## the bound -> single sided interval
  idxvl = p <= lbound;
  idxvg = p >= ubound;
  p1(idxvl) = min (p(idxvl, 1) + absdel(idxvl, 1), ubound(idxvl, 1));
  idxd(idxvl) = false;
  p1(idxvg) = max (p(idxvg, 1) - absdel(idxvg, 1), lbound(idxvg, 1));
  idxd(idxvg) = false;
  idxs = ~(fixed | idxd); # single sided interval

  idxnv = ~(idxvl | idxvg); # current paramters within bounds
  idxnvs = idxs & idxnv; # within bounds, single sided interval
  idxnvd = idxd & idxnv; # within bounds, double sided interval
  ## remaining single sided intervals
  p1(idxnvs) = p(idxnvs) + del(idxnvs); # don't take absdel, this could
                                # change course of optimization without
                                # bounds with respect to previous
                                # versions
  ## remaining single sided intervals, violating a bound -> take largest
  ## possible direction of single sided interval
  idxvs(idxnvs) = p1(idxnvs, 1) < lbound(idxnvs, 1) | ...
      p1(idxnvs, 1) > ubound(idxnvs, 1);
  del1 = p(idxvs, 1) - lbound(idxvs, 1);
  del2 = ubound(idxvs, 1) - p(idxvs, 1);
  idx1g2 = del1 > del2;
  idx1g2w(idxvs) = idx1g2;
  idx1le2w(idxvs) = ~idx1g2;
  p1(idx1g2w) = max (p(idx1g2w, 1) - absdel(idx1g2w, 1), ...
                     lbound(idx1g2w, 1));
  p1(idx1le2w) = min (p(idx1le2w, 1) + absdel(idx1le2w, 1), ...
                      ubound(idx1le2w, 1));
  ## double sided interval
  p1(idxnvd) = min (p(idxnvd, 1) + absdel(idxnvd, 1), ...
                    ubound(idxnvd, 1));
  p2(idxnvd) = max (p(idxnvd, 1) - absdel(idxnvd, 1), ...
                    lbound(idxnvd, 1));

  del(idxs) = p1(idxs) - p(idxs);
  del(idxd) = p1(idxd) - p2(idxd);

  info.f = f;
  info.parallel = parallel;

  if (parallel)

    ## remove all entries corresponding to fixed parameters from some
    ## information used
    idx_non_fixed = ! fixed;
    p_non_fixed = p(idx_non_fixed, :);
    p1 = p1(idx_non_fixed, :);
    p2 = p2(idx_non_fixed, :);
    idxs_nf = idxs(idx_non_fixed, :);
    idxd_nf = ! idxs_nf;

    ## to choose between p1 and p2 by index (side 1 or 2)
    pdel = horzcat (p1, p2);

    ## set remaining fields of 'info' according to id of current
    ## parameter
    setinfo = @ (id, side) setfields (info, "side", side,
                                      "plabels", plabels(id, :));
    ## make current parameter set according to current id; if side is
    ## 0, it's set to 1
    cpset = @ (id, side) ...
              subsasgn (p_non_fixed,
                        struct ("type", "()", "subs",
                                {{id}}), pdel(id, max (side, 1)));
    ## supplement fixed parameters
    all_p = @ (cp) subsasgn (p, struct ("type", "()", "subs",
                                        {{idx_non_fixed}}), cp);
    ## func(), cpset(), all_p(), and setinfo() combined
    func_c = @ (id, side) ...
               {func(all_p(cpset(id, side)), setinfo (id, side))(:), ...
                false, []}{:};

    ## make up inputs
    n_non_fixed = numel (p_non_fixed);
    n_single = sum (idxs_nf);
    n_centered = n_non_fixed - n_single;
    sides_c = ids_c = cell (n_non_fixed, 1);
    sides_c(idxs_nf) = {0};
    sides_c(idxd_nf) = {[1; 2]};
    sides = vertcat (sides_c{:});
    [ids_c{idxs_nf}] = num2cell (1:n_non_fixed){idxs_nf};
    [ids_c{idxd_nf}] = num2cell (repmat (1:n_non_fixed, 2, 1), 1){idxd_nf};
    ids = vertcat (ids_c{:});

    ## parallel execution
    [fdel, err, info] = parfun (func_c, ids, sides);

    ## check for errors
    if (any ((err = [err{:}])))
      id = find (err, 1);
      error ("Some subprocesses, calling model function for finite differencing, returned and error. Message of first of these (with id %i): %s%s",
             id, info{id}.message, print_stack (info{id}));
    endif

    ## process output
    dummy = zeros (m, 0); # at least one argument for concatenation,
                          # so the result has correct dimmensions
    prt(:, idxs) = (horzcat (dummy, fdel{sides == 0}) - ...
                    f(:, ones (1, n_single))) ./ ...
                   del(idxs).'(ones (1, m), :);
    prt(:, idxd) = (horzcat (dummy, fdel{sides == 1}) - ...
                    horzcat (dummy, fdel{sides == 2})) ./ ...
                   del(idxd).'(ones (1, m), :);

  else # not parallel

    for j = 1:n
      if (~fixed(j))
        info.plabels = plabels(j, :);
        ps = p;
        ps(j) = p1(j);
        if (idxs(j))
          info.side = 0; # onesided interval
          tp1 = func (ps, info);
          prt(:, j) = (tp1(:) - f) / del(j);
        else
          info.side = 1; # centered interval, side 1
          tp1 = func (ps, info);
          ps(j) = p2(j);
          info.side = 2; # centered interval, side 2
          tp2 = func (ps, info);
          prt(:, j) = (tp1(:) - tp2(:)) / del(j);
        endif
      endif
    endfor

  endif

endfunction

function ret = print_stack (info)

  ret = "";

  if (isfield (info, "stack"))
    for id = 1 : numel (info.stack)
      ret = cstrcat (ret, sprintf ("\n    %s at line %i comumn %i",
                                   info.stack(id).name,
                                   info.stack(id).line,
                                   info.stack(id).column));
    endfor
  endif

endfunction