This file is indexed.

/usr/share/octave/packages/optim-1.5.2/lsqlin.m is in octave-optim 1.5.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
## Copyright (C) 2015 Asma Afzal
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} lsqlin (@var{C}, @var{d}, @var{A}, @var{b})
## @deftypefnx {Function File} {} lsqlin (@var{C}, @var{d}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{lb}, @var{ub})
## @deftypefnx {Function File} {} lsqlin (@var{C}, @var{d}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{lb}, @var{ub}, @var{x0})
## @deftypefnx {Function File} {} lsqlin (@var{C}, @var{d}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{lb}, @var{ub}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{resnorm}, @var{residual}, @var{exitflag}, @var{output}, @var{lambda}] =} lsqlin (@dots{})
## Solve the linear least squares program
## @example
## @group
## min 0.5 sumsq(C*x - d)
## x
## @end group
## @end example
## subject to
## @example
## @group
## @var{A}*@var{x} <= @var{b},
## @var{Aeq}*@var{x} = @var{beq},
## @var{lb} <= @var{x} <= @var{ub}.
## @end group
## @end example
##
## The initial guess @var{x0} and the constraint arguments (@var{A} and
## @var{b}, @var{Aeq} and @var{beq}, @var{lb} and @var{ub}) can be set to
## the empty matrix (@code{[]}) if not given. If the initial guess
## @var{x0} is feasible the algorithm is faster.
##
## @var{options} can be set with @code{optimset}, currently the only
## option is @code{MaxIter}, the maximum number of iterations (default:
## 200).
##
## Returned values:
##
## @table @var
## @item x
## Position of minimum.
##
## @item resnorm
## Scalar value of objective as sumsq(C*x - d).
##
## @item residual
## Vector of solution residuals C*x - d.
##
## @item exitflag
## Status of solution:
##
## @table @code
## @item 0
## Maximum number of iterations reached.
##
## @item -2
## The problem is infeasible.
##
## @item 1
## Global solution found.
##
## @end table
##
## @item output
## Structure with additional information, currently the only field is
## @code{iterations}, the number of used iterations.
##
## @item lambda
## Structure containing Lagrange multipliers corresponding to the
## constraints.
##
## @end table
##
## This function calls the more general function @code{quadprog}
## internally.
##
## @seealso{quadprog}
## @end deftypefn

## PKG_ADD: [~] = __all_opts__ ("lsqlin");

function varargout = lsqlin (C, d, A, b, varargin)

  nargs = nargin ();

  n_out = nargout ();

  if (nargs == 1 && ischar (C) && ...
    strcmp (C, "defaults"))
    varargout{1} = optimset ("MaxIter", 200);
    return;
  endif

  maxnargs = 10;

  if (nargs < 4 || nargs > 4 && nargs < 8 || nargs > maxnargs)
    print_usage();
  endif
  
  ## do the argument mapping
  Ch = C';
  in_args = horzcat (Ch * C, real (- Ch * d), A, b, varargin);

  varargout = cell (1, n_out);

  if (n_out > 2)
    ## We don't need to know if original n_out was 3 or 2.
    n_out --;
  endif

  quadprog_out = cell (1, max (n_out, 1));

  [quadprog_out{:}] = quadprog (in_args{:});

  varargout{1} = quadprog_out{1};

  if (n_out >= 2)
    ## The residuals have to be calculated as intermediate values
    ## anyway, so compute varargout{3} even if not requested.
    varargout{3} = C * quadprog_out{1} - d;
    varargout{2} = sumsq (varargout{3});
  endif

  varargout(4:end) = quadprog_out(3:end);
endfunction

%!test
%!shared C,d,A,b
%! C = [0.9501,0.7620,0.6153,0.4057;...
%!     0.2311,0.4564,0.7919,0.9354;...
%!     0.6068,0.0185,0.9218,0.9169;...
%!     0.4859,0.8214,0.7382,0.4102;...
%!     0.8912,0.4447,0.1762,0.8936];
%! d = [0.0578;    0.3528;    0.8131;    0.0098;    0.1388];
%! A =[0.2027,    0.2721,    0.7467,   0.4659;...
%!    0.1987,    0.1988,    0.4450,   0.4186;...
%!    0.6037 , 0.0152,    0.9318,    0.8462];
%! b =[0.5251;0.2026;0.6721];
%! Aeq = [3, 5, 7, 9];
%! beq = 4;
%! lb = -0.1*ones(4,1);
%! ub = 2*ones(4,1);
%! [x,resnorm,residual,exitflag] = lsqlin(C,d,A,b,Aeq,beq,lb,ub);
%! assert(x,[-0.10000;  -0.10000;   0.15991;   0.40896],10e-5)
%! assert(resnorm,0.16951,10e-5)
%! assert(residual, [0.035297; 0.087623;  -0.353251;   0.145270;   0.121232],10e-5)
%! assert(exitflag,1)

%!test
%! Aeq = [];
%! beq = [];
%! lb = [];
%! ub = [];
%! x0 = 0.1*ones(4,1);
%! x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0);
%! [x,resnorm,residual,exitflag] = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0);
%! assert(x,[ 0.12986;  -0.57569 ;  0.42510;   0.24384],10e-5)
%! assert(resnorm,0.017585,10e-5)
%! assert(residual, [-0.0126033;  -0.0208040;  -0.1295084;  -0.0057389;   0.01372462],10e-5)
%! assert(exitflag,1)

%!demo
%!  C = [0.9501    0.7620    0.6153    0.4057
%!      0.2311    0.4564    0.7919    0.9354
%!      0.6068    0.0185    0.9218    0.9169
%!      0.4859    0.8214    0.7382    0.4102
%!      0.8912    0.4447    0.1762    0.8936];
%!  d = [0.0578; 0.3528; 0.8131; 0.0098; 0.1388];
%!  %% Linear Inequality Constraints
%!  A =[0.2027    0.2721    0.7467    0.4659
%!      0.1987    0.1988    0.4450    0.4186
%!      0.6037    0.0152    0.9318    0.8462];
%!  b =[0.5251; 0.2026; 0.6721];
%!  %% Linear Equality Constraints
%!  Aeq = [3 5 7 9];
%!  beq = 4;
%!  %% Bound constraints
%!  lb = -0.1*ones(4,1);
%!  ub = ones(4,1);
%!  [x, resnorm, residual, flag, output, lambda] = lsqlin (C, d, A, b, Aeq, beq, lb, ub)