This file is indexed.

/usr/share/octave/packages/interval-2.1.0/@infsup/polyval.m is in octave-interval 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
## Copyright 1995      Rolf Hammer, Matthias Hocks, Dietmar Ratz
## Copyright 1990-2000 Institut für Angewandte Mathematik,
##                     Universität Karlsruhe, Germany
## Copyright 2000-2014 Wissenschaftliches Rechnen/Softwaretechnologie,
##                     Universität Wuppertal, Germany
## Copyright 2015-2016 Oliver Heimlich
##
## This program is derived from RPolyEval in CXSC, C++ library for eXtended
## Scientific Computing (V 2.5.4), which is distributed under the terms of
## LGPLv2+.  Migration to Octave code has been performed by Oliver Heimlich.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @defmethod {@@infsup} polyval (@var{P}, @var{X})
##
## Evaluate polynomial @var{P} with argument @var{X}.
##
## Horner's scheme is used to evaluate a first approximation.  The result is
## improved with iterative refinement.
##
## Accuracy: The result is a tight enclosure for polynomials of degree 1 or
## less.  For polynomials of higher degree the result is a valid enclosure.
## For @var{X} being no singleton interval, the algorithm suffers from the
## dependency problem.
##
## @example
## @group
## output_precision (16, 'local')
## polyval (infsup ([3 4 2 1]), 42) # 3x^3 + 4x^2 + 2x^1 + 1 | x = 42
##   @result{} [229405]
## polyval (infsup ([3 4 2 1]), "42?") # ... | x = 41.5 .. 42.5
##   @result{} [221393.125, 237607.875]
## @end group
## @end example
## @seealso{@@infsup/fzero}
## @end defmethod

## Author: Oliver Heimlich
## Keywords: interval
## Created: 2015-05-29

function result = polyval (p, x)

if (nargin ~= 2)
    print_usage ();
    return
endif

if (not (isa (x, "infsup")))
    x = infsup (x);
endif
if (not (isa (p, "infsup")))
    p = infsup (p);
endif

if (not (isscalar (x)))
    error ('point of evaluation X must be a scalar')
endif

if (not (isvector (p)))
    error ('polynomial P must be a vector of coefficients')
endif

if (isempty (x))
    result = x;
endif;

n = numel (p);
switch (n)
    case 0 # empty sum
        result = infsup (0);
        return
    case 1 # p .* x.^0
        result = p;
        return
    case 2 # p(1) .* x.^1 + p(2) .* x.^0
        result = fma (x, subsref (p, substruct ("()", {1})), ...
                         subsref (p, substruct ("()", {2})));
        return
endswitch

if (x == 0)
    result = subsref (p, substruct ("()", {n}));
    return
elseif (x == 1)
    result = sum (p);
    return
elseif (x == -1)
    result = dot (p, (-1) .^ ((n : -1 : 1) - 1));
    return
endif

kMax = 20;

idxNext.type = '()';
idxLast.type = '()';

## Compute first approximation using Horner's scheme
yy = infsup (zeros (n, 1));
idxNext.subs = {1};
result = subsref (p, idxNext);
yy = subsasgn (yy, idxNext, result);
for i = 2 : n
    idxNext.subs = {i};
    result = fma (result, x, subsref (p, idxNext));
    yy = subsasgn (yy, idxNext, result);
endfor

y = zeros (n, kMax);
for k = 1 : kMax
    lastresult = result;

    if (isempty (result))
        break
    endif

    ## Iterative refinement
    ## Store middle of residual as the next correction of y
    y(:, k) = mid (yy);

    ## Computation of the residual [r] and
    ## evaluation of the interval system A*[y] = [r]
    yy = infsup (zeros (n, 1));
    for i = 2 : n
        idxNext.subs = {i};
        idxLast.subs = {i-1};
        
        coef = subsref (p, idxNext);
        yy = subsasgn (yy, idxNext, dot (...
            [subsref(yy, idxLast), coef, y(i, 1 : k), y(i - 1, 1 : k)], ...
            [x,                    1,    -ones(1, k), x.*ones(1, k)]));
    endfor
    
    ## Determination of a new enclosure of p (x)
    idxLast.subs = {n};
    result = intersect (result, sum ([subsref(yy, idxLast), y(n, 1 : k)]));
    if (eq (result, lastresult))
        ## No improvement
        break
    endif
    if (mpfr_function_d ('plus', +inf, inf (result), pow2 (-1074)) >= ...
        sup (result))
        ## 1 ULP accuracy reached
        break
    endif
endfor

endfunction

%!assert (polyval (infsup (42), 0) == 42);
%!assert (polyval (infsup ([42 42]), 0) == 42);
%!assert (polyval (infsup ([42 42]), 1) == 84);
%!assert (polyval (infsup ([42 42]), -1) == 0);
%!assert (polyval (infsup ([-42 42 42]), .5) == -42*0.5^2 + 42*0.5 + 42);
%!assert (polyval (infsup (vec (pascal (3))), 0.1) == "[0X6.502E9A7231A08P+0, 0X6.502E9A7231A0CP+0]");