This file is indexed.

/usr/share/octave/packages/interval-2.1.0/@infsup/fzero.m is in octave-interval 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
## Copyright 2015-2016 Oliver Heimlich
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @deftypemethod  {@@infsup} {@var{X} =} fzero (@var{F}, @var{X0})
## @deftypemethodx {@@infsup} {@var{X} =} fzero (@var{F}, @var{X0}, @var{DF})
## @deftypemethodx {@@infsup} {@var{X} =} fzero (@var{F}, @var{X0}, @var{OPTIONS})
## @deftypemethodx {@@infsup} {@var{X} =} fzero (@var{F}, @var{X0}, @var{DF}, @var{OPTIONS})
## 
## Compute the enclosure of all roots of function @var{F} in interval @var{X0}.
##
## Parameters @var{F} and (possibly) @var{DF} may either be a function handle,
## inline function, or string containing the name of the function to evaluate.
##
## The function must be an interval arithmetic function.
##
## Optional parameters are the function's derivative @var{DF} and the maximum
## recursion steps @var{OPTIONS}.MaxIter (default: 200) to use.  If @var{DF} is
## given, the algorithm tries to apply the interval newton method for finding
## the roots; otherwise pure bisection is used (which is slower).
##
## The result is a column vector with one element for each root enclosure that
## has been be found.  Each root enclosure may contain more than one root and
## each root enclosure must not contain any root.  However, all numbers in
## @var{X0} that are not covered by the result are guaranteed to be no roots of
## the function.
##
## Best results can be achieved when (a) the function @var{F} does not suffer
## from the dependency problem of interval arithmetic, (b) the derivative
## @var{DF} is given, (c) the derivative is non-zero at the function's roots,
## and (d) the derivative is continuous.
##
## It is possible to use the following optimization @var{options}:
## @option{Display}, @option{MaxFunEvals}, @option{MaxIter},
## @option{OutputFcn}, @option{TolFun}, @option{TolX}.
##
## Accuracy: The result is a valid enclosure.
##
## @example
## @group
## f = @@(x) cos (x);
## df = @@(x) -sin (x);
## fzero (f, infsup ("[-10, 10]"), df)
##   @result{} ans ⊂ 6×1 interval vector
##    
##        [-7.854, -7.8539]
##       [-4.7124, -4.7123]
##       [-1.5708, -1.5707]
##         [1.5707, 1.5708]
##         [4.7123, 4.7124]
##          [7.8539, 7.854]
## sqr = @@(x) x .^ 2;
## fzero (sqr, infsup ("[Entire]"))
##   @result{} ans ⊂ [-3.2968e-161, +3.2968e-161]
## @end group
## @end example
##
## @seealso{@@infsup/fsolve, optimset}
## @end deftypemethod

## Author: Oliver Heimlich
## Keywords: interval
## Created: 2015-02-01

function x = fzero (f, x0, df, options)

if (nargin > 4 || nargin < 2)
    print_usage ();
    return
endif

## Set default parameters
defaultoptions = optimset (optimset, 'MaxIter', 200);
if (nargin == 2)
    df = [];
    options = defaultoptions;
elseif (nargin == 3)
    if (isstruct (df))
        options = optimset (defaultoptions, options);
        df = [];
    else
        options = defaultoptions;
    endif
else
    options = optimset (defaultoptions, options);
endif

## Check parameters
if (not (isa (x0, "infsup")))
    error ("interval:InvalidOperand", "fzero: Parameter X0 is no interval")
elseif (not (isscalar (x0)))
    error ("interval:InvalidOperand", ...
           "fzero: Parameter X0 must be a scalar / F must be univariate")
elseif (isempty (x0))
    error ("interval:InvalidOperand", ...
           "fzero: Initial interval is empty, nothing to do")
elseif (not (is_function_handle (f)) && not (ischar (f)))
    error ("interval:InvalidOperand", ...
           "fzero: Parameter F is no function handle")
elseif (not (isempty (df)) && ...
        not (is_function_handle (df)) && ...
        not (ischar (df)))
    error ("interval:InvalidOperand", ...
           "fzero: Parameter DF is not function handle")
endif

## Does not work on decorated intervals, strip decoration part
if (isa (x0, "infsupdec"))
    if (isnai (x0))
        result = x0;
        return
    endif
    x0 = intervalpart (x0);
endif

[l, u] = findroots (f, df, x0, 0, options);

x = infsup ();
x.inf = l;
x.sup = u;

endfunction

## This function will perform the recursive newton / bisection steps
function [l, u] = findroots (f, df, x0, stepcount, options)

l = u = zeros (0, 1);

## Try the newton step, if derivative is known
if (not (isempty (df)))
    m = infsup (mid (x0));
    [a, b] = mulrev (feval (df, x0), feval (f, m));
    if (isempty (a) && isempty (b))
        ## Function evaluated outside of its domain
        a = x0;
    else
        a = intersect (x0, m - a);
        b = intersect (x0, m - b);
        if (isempty (a))
            [a, b] = deal (b, a);
        endif
    endif
else
    a = x0;
    b = infsup ();
endif

## Switch to bisection if the newton step did not produce two intervals
if ((eq (x0, a) || isempty (b)) && not (issingleton (a)) && not (isempty (a)))
    ## When the interval is very large, bisection at the midpoint would
    ## take “forever” to converge, because floating point numbers are not
    ## distributed evenly on the real number lane.
    ##
    ## We enumerate all floating point numbers within a with
    ## 1, 2, ... 2n and split the interval at n.
    ##
    ## When the interval is small, this algorithm will choose
    ## approximately mid (a).
    [a, b] = bisect (a);
elseif (b < a)
    ## Sort the roots in ascending order
    [a, b] = deal (b, a);
endif

for x1 = {a, b}
    x1 = x1 {1};
    
    if (strcmp (options.Display, "iter"))
        display (x1);
    endif
    
    f_x1 = feval (f, x1);
    if  (not (ismember (0, f_x1)))
        ## The interval evaluation of f over x1 proves that there are no roots
        ## or x1 is empty
        continue
    endif
    if (isentire (f_x1) || ...
        wid (f_x1) / max (realmin (), wid (x1)) < pow2 (-20))
        ## Slow convergence detected, cancel iteration soon
        options.MaxIter = options.MaxIter / 1.5;
    endif
    
    if (eq (x1, x0) || stepcount >= options.MaxIter
        || wid (x1) <= options.TolX || wid (f_x1) <= options.TolFun)
        ## Stop recursion if result is accurate enough or if no improvement
        [newl, newu] = deal (x1.inf, x1.sup);
    else
        [newl, newu] = findroots (f, df, x1, stepcount + 1, options);
    endif
    if (not (isempty (newl)))
        if (isempty (l))
            l = newl;
            u = newu;
        elseif (u (end) == newl (1))
            ## Merge intersecting intervals
            u (end) = newu (1);
            l = [l; newl(2 : end, 1)];
            u = [u; newu(2 : end, 1)];
        else
            l = [l; newl];
            u = [u; newu];
        endif
    endif
endfor

endfunction

%!test "from the documentation string";
%! f = @(x) cos (x);
%! df = @(x) -sin (x);
%! zeros = fzero (f, infsup ("[-10, 10]"), df);
%! assert (all (subset (pi * (-2.5:1:2.5)', zeros)));
%! assert (max (rad (zeros)) < 8 * eps);
%! sqr = @(x) x .^ 2;
%! zeros = fzero (sqr, infsup ("[Entire]"));
%! assert (all (subset (0, zeros)));
%! assert (max (rad (zeros)) < eps);