This file is indexed.

/usr/share/octave/packages/interval-2.1.0/@infsup/fsolve.m is in octave-interval 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
## Copyright 2015-2016 Oliver Heimlich
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @deftypemethod  {@@infsup} {@var{X} =} fsolve (@var{F})
## @deftypemethodx {@@infsup} {@var{X} =} fsolve (@var{F}, @var{X0})
## @deftypemethodx {@@infsup} {@var{X} =} fsolve (@var{F}, @var{X0}, @var{Y})
## @deftypemethodx {@@infsup} {@var{X} =} fsolve (@dots{}, @var{OPTIONS})
## @deftypemethodx {@@infsup} {[@var{X}, @var{X_PAVING}, @var{X_INNER_IDX}] =} fsolve (@dots{})
## 
## Compute the preimage of the set @var{Y} under function @var{F}.
##
## Parameter @var{Y} is optional and without it solve
## @code{@var{F}(@var{x}) = 0} for @var{x} ∈ @var{X0}.  Without a starting box
## @var{X0} the function is assumed to be univariate and the solution is
## searched among all real numbers.
##
## The function must be an interval arithmetic function and may be
## multivariate, that is, @var{X0} and @var{Y} may be vectors or matrices of
## intervals.  The computational complexity largely depends on the dimension of
## @var{X0}.
##
## Return value @var{X} is an interval enclosure of
## @code{@{@var{x} ∈ @var{X0} | @var{F}(@var{x}) ∈ @var{Y}@}}.  The optional
## return value @var{X_PAVING} is a matrix of non-overlapping interval values
## for @var{x} in each column, which form a more detailed enclosure for the
## preimage of @var{Y}.  An index vector @var{X_INNER_IDX} indicates the
## columns of @var{X_PAVING}, which are guaranteed to be subsets of the
## preimage of @var{Y}.
##
## This function uses the set inversion via interval arithmetic (SIVIA)
## algorithm.  That is, @var{X} is bisected until @var{F}(@var{X}) is either
## a subset of @var{Y} or until they are disjoint.
##
## @example
## @group
## fsolve (@@cos, infsup(0, "pi"))
##   @result{} ans ⊂ [1.5646, 1.5708]
## @end group
## @end example
##
## It is possible to use the following optimization @var{options}:
## @option{MaxFunEvals}, @option{MaxIter}, @option{TolFun}, @option{TolX},
## @option{Vectorize}, @option{Contract}.
##
## If @option{Vectorize} is @code{true}, the function @var{F} will be called
## with input arguments @code{@var{x}(1)}, @code{@var{x}(2)}, @dots{},
## @code{@var{x}(numel (@var{X0}))} and each input argument will carry a vector
## of different values which shall be computed simultaneously.  If @var{Y} is a
## scalar or vector, @option{Vectorize} defaults to @code{true}.  If
## @option{Vectorize} is @code{false}, the function @var{F} will receive only
## one input argument @var{x} at a time, which has the size of @var{X0}.
##
## @example
## @group
## # Solve x1 ^ 2 + x2 ^ 2 = 1 for -3 ≤ x1, x2 ≤ 3,
## # the exact solution is a unit circle
## x = fsolve (@@hypot, infsup ([-3; -3], [3; 3]), 1)
##   @result{} x ⊂ 2×1 interval vector
##
##         [-1.002, +1.002]
##       [-1.0079, +1.0079]
##
## @end group
## @end example
##
## If @option{Contract} is @code{true}, the function @var{F} will be called
## with @var{Y} as an additional leading input argument and, in addition to the
## function value, must return a @dfn{contraction} of its input argument(s).
## A contraction for input argument @var{x} is a subset of @var{x} which
## contains all possible solutions for the equation
## @code{@var{F} (@var{x}) = @var{Y}}.  Contractions can be computed using
## interval reverse operations, for example with @code{@@infsup/absrev} which
## contracts the input argument for the absolute value function.
##
## @example
## @group
## # Solve x1 ^ 2 + x2 ^ 2 = 1 for -3 ≤ x1, x2 ≤ 3 again,
## # but now contractions speed up the algorithm.
## function [fval, cx1, cx2] = f (y, x1, x2)
##   # Forward evaluation
##   x1_sqr = x1 .^ 2;
##   x2_sqr = x2 .^ 2;
##   fval = hypot (x1, x2);
##
##   # Reverse evaluation and contraction
##   y = intersect (y, fval);
##   # Contract the squares
##   x1_sqr = intersect (x1_sqr, y - x2_sqr);
##   x2_sqr = intersect (x2_sqr, y - x1_sqr);
##   # Contract the parameters
##   cx1 = sqrrev (x1_sqr, x1);
##   cx2 = sqrrev (x2_sqr, x2);
## endfunction
##
## x = fsolve (@@f, infsup ([-3; -3], [3; 3]), 1, ...
##             struct ('Contract', true))
##   @result{} x = 2×1 interval vector
##
##       [-1, +1]
##       [-1, +1]
##
## @end group
## @end example
##
## It is possible to combine options @option{Vectorize} and @option{Contract}.
## Depending on the combination, function @var{F} should have one of the
## following signatures.
##
## @table @code
## @item function fval = f (x)
## @option{Vectorize} = @code{false} and @option{Contract} = @code{false}.
## @item function fval = f (x1, x2, @dots{}, xN)
## @option{Vectorize} = @code{true} and @option{Contract} = @code{false}.
## @item function [fval, cx] = f (y, x)
## @option{Vectorize} = @code{false} and @option{Contract} = @code{true}.
## @code{cx} is a contraction of @code{x}.
## @item function [fval, cx1, cx2, @dots{}, cxN] = f (y, x1, x2, @dots{}, xN)
## @option{Vectorize} = @code{true} and @option{Contract} = @code{true}.
## @code{cx1} is a contraction of @code{x1}, @code{cx2} is a contraction of
## @code{x2}, and so on.
## @end table
##
## Note on performance: The bisection method is a brute-force approach to
## exhaust the function's domain and requires a lot of function evaluations.
## It is highly recommended to use a function @var{F} which allows
## vectorization.  For higher dimensions of @var{X0} it is also necessary to
## use a contraction function.
##
## Accuracy: The result is a valid enclosure.
##
## @seealso{@@infsup/fzero, ctc_union, ctc_intersect, optimset}
## @end deftypemethod

## Author: Oliver Heimlich
## Keywords: interval
## Created: 2015-11-28

function [x, x_paving, x_inner_idx] = fsolve (f, x0, y, options)

## Set default parameters
warning ("off", "", "local") # disable optimset warning
defaultoptions = optimset (optimset, ...
                           'MaxIter',    20, ...
                           'MaxFunEval', 3000, ...
                           'TolX',       1e-2, ...
                           'TolFun',     1e-2, ...
                           'Vectorize',  [], ...
                           'Contract',   false);

switch (nargin)
    case 1
        x0 = infsup (-inf, inf);
        y = infsup (0);
        options = defaultoptions;
    case 2
        y = infsup (0);
        if (isstruct (x0))
            options = optimset (defaultoptions, x0);
            x0 = infsup (-inf, inf);
        else
            options = defaultoptions;
        endif
    case 3
        if (isstruct (y))
            options = optimset (defaultoptions, y);
            y = infsup (0);
        else
            options = defaultoptions;
        endif
    case 4
        options = optimset (defaultoptions, options);
    otherwise
        print_usage ();
        return
endswitch

## Convert x0 and y to intervals
if (not (isa (x0, "infsup")))
    if (isa (y, "infsupdec"))
        x0 = infsupdec (x0);
    else
        x0 = infsup (x0);
    endif
endif
if (not (isa (y, "infsup")))
    if (isa (x0, "infsupdec"))
        y = infsupdec (y);
    else
        y = infsup (y);
    endif
endif

## Check parameters
if (isempty (x0) || isempty (y) || numel (x0) == 0 || numel (y) == 0)
    error ("interval:InvalidOperand", ...
           "fsolve: Initial interval is empty, nothing to do")
elseif (not (is_function_handle (f)) && not (ischar (f)))
    error ("interval:InvalidOperand", ...
           "fsolve: Parameter F is no function handle")
endif

## Strip decoration part
if (isa (x0, "infsupdec"))
    if (isnai (x0))
        x = x0;
        x_paving = {x0};
        x_inner_idx = false;
        return
    endif
    x0 = intervalpart (x0);
endif
if (isa (y, "infsupdec"))
    if (isnai (y))
        x = y;
        x_paving = {y};
        x_inner_idx = false;
        return
    endif
    y = intervalpart (y);
endif

## Try to vectorize function evaluation
if (isempty (options.Vectorize) && isvector (y))
    try
        f_argn = nargin (f);
        if (options.Contract)
            options.Vectorize = (f_argn > 2 || f_argn < 0 || numel (x0) == 1);
        else
            options.Vectorize = (f_argn > 1 || f_argn < 0 || numel (x0) == 1);
        endif
    catch
        ## nargin doesn't work for built-in functions, which happen to agree
        ## with infsup methods.  Try to vectorize these.
        options.Vectorize = true;
    end_try_catch
endif
if (options.Vectorize)
    if (nargout >= 2)
        [x, x_paving, x_inner_idx] = vectorized (f, x0, y, options);
    else
        x = vectorized (f, x0, y, options);
    endif
    return
endif

warning ("off", "interval:ImplicitPromote", "local");
x = empty (size (x0));
x_paving = {};
x_inner_idx = false (0);
queue = {x0};
x_scalar = isscalar (x0);

## Test functions
verify_subset = @(fval) all (all (subset (fval, y)));
verify_disjoint = @(fval) any (any (disjoint (fval, y)));
check_contradiction = @(x) any (any (isempty (x)));
max_wid = @(interval) max (max (wid (interval)));

## Utility functions for bisection
if (x_scalar)
    bisect_coord = {1};
    exchange_coordinate = @(interval, coord, l, u) infsup (l, u);
else
    largest_coordinate = @(interval, max_wid) ...
                         find (wid (interval) == max_wid, 1);
    exchange_coordinate = @replace_coordinate;
endif

while (not (isempty (queue)))
    ## Evaluate f(x)
    options.MaxFunEvals -= numel (queue);
    options.MaxIter --;
    if (options.Contract)
        [fval, contractions] = cellfun (f, {y}, queue, ...
                                        "UniformOutput", false);
        ## Sanitize the contractions returned by the function
        queue = cellfun (@intersect, queue, contractions, ...
                         "UniformOutput", false);
        ## Utilize contradictions to discard candidates
        contradiction = cellfun (check_contradiction, queue);
        queue = queue(not (contradiction));
        if (isempty (queue))
            break
        endif
        fval = fval(not (contradiction));
    else
        fval = cellfun (f, queue, "UniformOutput", false);
    endif
    ## Check whether x is outside of the preimage of y
    ## or x is inside the preimage of y
    is_outside = cellfun (verify_disjoint, fval);
    is_inside = cellfun (verify_subset, fval) & not (is_outside);
    ## Store the verified subsets of the preimage of y and continue only on
    ## elements that are not verified
    x = hull (x, queue(is_inside){:});
    x_paving = vertcat (x_paving, queue(is_inside));
    x_inner_idx = vertcat (x_inner_idx, true (sum (is_inside), 1));
    queue = queue(not (is_inside | is_outside));
    ## Stop after MaxIter or MaxFunEvals
    if (options.MaxIter <= 0 || options.MaxFunEvals <= 0)
        x = hull (x, queue{:});
        x_paving = vertcat (x_paving, queue);
        x_inner_idx = vertcat (x_inner_idx, false (numel (queue), 1));
        break
    endif
    ## Stop iteration for small intervals
    if (not (isempty (options.TolFun)))
        fval = fval(not (is_inside | is_outside));
        widths = cellfun (max_wid, fval);
        is_small = widths < options.TolFun;
    else
        is_small = false (size (queue));
    endif
    widths = cellfun (max_wid, queue);
    is_small = is_small | (widths < options.TolX);
    x = hull (x, queue(is_small){:});
    x_paving = vertcat (x_paving, queue(is_small));
    x_inner_idx = vertcat (x_inner_idx, false (sum (is_small), 1));
    queue = queue(not (is_small));
    widths = widths(not (is_small));
    ## Bisect remaining intervals at the largest coordinate.
    ##
    ## Since the bisect function is the most costly, we want to call it only
    ## once. Thus, we extract the largest coordinate from each interval matrix
    ## inside queue and combine them into an interval vector [l_coord, u_coord]
    ## with the length of queue. We call the bisect function on this vector,
    ## which bisects each interval component and produces vectors
    ## [l_coord, m_coord] and [m_coord, u_coord]. These are used to replace the
    ## largest coordinate from each original interval matrix.
    if (x_scalar)
        [l_coord, u_coord] = ...
            cellfun (@(interval) ...
                     deal (interval.inf, interval.sup), ...
                     queue);
    else
        bisect_coord = cellfun (largest_coordinate, ...
                                queue, num2cell (widths), ...
                                "UniformOutput", false);
        [l_coord, u_coord] = ...
            cellfun (@(interval, coord) ...
                     deal (interval.inf(coord), interval.sup(coord)), ...
                     queue, bisect_coord);
    endif
    m_coord = mid (infsup (l_coord, u_coord));
    l_coord = num2cell (l_coord);
    m_coord = num2cell (m_coord);
    u_coord = num2cell (u_coord);
    queue = vertcat (...
        cellfun (exchange_coordinate, ...
                 queue, bisect_coord, l_coord, m_coord, ...
                 "UniformOutput", false), ...
        cellfun (exchange_coordinate, ...
                 queue, bisect_coord, m_coord, u_coord, ...
                 "UniformOutput", false));
    ## Short-circuit if no paving must be computed and remaining intervals
    ## are subsets of the already computed interval enclosure.
    if (isempty (queue))
        break
    endif
    if (nargout < 2)
        x_bare = intervalpart (x);
        queue = queue(not (cellfun (@(q) all (all (subset (q, x_bare))), ...
                                    queue)));
    endif
endwhile

x = intervalpart (x);
if (nargout >= 2)
    x_paving = cellfun (@vec, x_paving, "UniformOutput", false);
    x_paving = horzcat (x_paving{:});
endif

endfunction

function interval = replace_coordinate (interval, coord, l, u)
interval.inf(coord) = l;
interval.sup(coord) = u;
endfunction

## Variant of above algorithm, which utilized vectorized evaluation of f
function [x, x_paving, x_inner_idx] = vectorized (f, x0, y, options)

warning ("off", "Octave:broadcast", "local");

## Make vectorization dimension cat_dim orthogonal to the dimension of the data
## in y to allow simple function definitions.
if (iscolumn (y))
    x0 = vec (x0);
    data_dim = 1;
    cat_dim = 2;
else
    assert (isrow (y));
    x0 = transpose (vec (x0));
    data_dim = 2;
    cat_dim = 1;
endif

x = intervalpart (empty (size (x0)));
s = size (x0);
s(cat_dim) = 0;
x_paving = infsup (zeros (s));
x_inner_idx = false (0);
queue = x0;
x_scalar = isscalar (x0);

## Test functions
verify_subset = @(fval) all (subset (fval, y), data_dim);
verify_disjoint = @(fval) any (disjoint (fval, y), data_dim);

## Utility functions for indexing the queue
idx.type = '()';
idx.subs = {:, :};

while (not (isempty (queue.inf)))
    ## Evaluate f(x)
    l_args = num2cell (queue.inf, cat_dim);
    u_args = num2cell (queue.sup, cat_dim);
    f_args = cellfun (@(l, u) infsup (l, u), ...
                      l_args, u_args, ...
                      "UniformOutput", false);
    options.MaxFunEvals --;
    options.MaxIter --;
    if (options.Contract)
        fval_and_contractions = nthargout (1 : (1 + length (x0)), ...
                                           @feval, f, y, f_args{:});
        fval = fval_and_contractions{1};
        contractions = cat (data_dim, fval_and_contractions{2 : end});
        ## Sanitize the contractions returned by the function
        queue = intersect (queue, contractions);
        ## Utilize contradictions to discard candidates
        contradiction = any (isempty (queue), data_dim);
        idx.subs{cat_dim} = not (contradiction);
        queue = subsref (queue, idx);
        if (isempty (queue.inf))
            break
        endif
        fval = subsref (fval, idx);
    else
        fval = feval (f, f_args{:});
    endif
    ## Check whether x is outside of the preimage of y
    ## or x is inside the preimage of y
    is_outside = verify_disjoint (fval);
    is_inside = verify_subset (fval) & not (is_outside);
    ## Store the verified subsets of the preimage of y and continue only on
    ## elements that are not verified
    idx.subs{cat_dim} = is_inside;
    queue_inside = subsref (queue, idx);
    x = union (cat (cat_dim, x, queue_inside), [], cat_dim);
    x_paving = cat (cat_dim, x_paving, queue_inside);
    x_inner_idx = cat (cat_dim, x_inner_idx, is_inside(is_inside));
    idx.subs{cat_dim} = not (is_inside | is_outside);
    queue = subsref (queue, idx);
    ## Stop after MaxIter or MaxFunEvals
    if (options.MaxIter <= 0 || options.MaxFunEvals <= 0)
        x = union (cat (cat_dim, x, queue), [], cat_dim);
        x_paving = cat (cat_dim, x_paving, queue);
        s = size (queue);
        s(data_dim) = 1;
        x_inner_idx = cat (cat_dim, x_inner_idx, false (s));
        break
    endif
    ## Stop iteration for small intervals
    if (not (isempty (options.TolFun)))
        idx.subs{cat_dim} = not (is_inside | is_outside);
        fval = subsref (fval, idx);
        widths = max (wid (fval), [], data_dim);
        is_small = widths < options.TolFun;
    else
        s = size (queue);
        s(data_dim) = 1;
        is_small = false (s);
    endif
    [widths, bisect_coord] = max (wid (queue), [], data_dim);
    is_small = is_small | (widths < options.TolX);
    idx.subs{cat_dim} = is_small;
    queue_is_small = subsref (queue, idx);
    x = union (cat (cat_dim, x, queue_is_small), [], cat_dim);
    x_paving = cat (cat_dim, x_paving, queue_is_small);
    x_inner_idx = cat (cat_dim, x_inner_idx, not (is_small(is_small)));
    idx.subs{cat_dim} = not (is_small);
    queue = subsref (queue, idx);
    widths = widths(not (is_small));
    bisect_coord = bisect_coord(not (is_small));
    ## Bisect remaining intervals at the largest coordinate.
    x1 = x2 = queue;
    if (x_scalar)
        coord = queue;
    else
        coord_idx.type = "()";
        if (data_dim == 1)
            coord_idx.subs = {bisect_coord - 1 + ...
                (1 : rows (queue.inf) : numel (queue.inf))};
        else
            coord_idx.subs = {bisect_coord - 1 + ...
                (1 : columns (queue.inf) : numel (queue.inf)).'};
        endif
        coord = subsref (queue, coord_idx);
    endif
    m_coord = mid (coord);
    if (x_scalar)
        x1.sup = x2.inf = m_coord;
    else
        x1.sup = subsasgn (x1.sup, coord_idx, m_coord);
        x2.inf = subsasgn (x2.inf, coord_idx, m_coord);
    endif
    queue = cat (cat_dim, x1, x2);
    if (isempty (queue.inf))
        break
    endif
    ## Short-circuit if no paving must be computed and remaining intervals
    ## are subsets of the already computed interval enclosure.
    if (nargout < 2)
        idx.subs{cat_dim} = not (all (subset (queue, x), data_dim));
        queue = subsref (queue, idx);
    endif
endwhile

if (nargout >= 2 && data_dim != 1)
    x_paving = transpose (x_paving);
endif

endfunction

%!test
%!  sqr = @(x) x .^ 2;
%!  assert (subset (sqrt (infsup (2)), fsolve (sqr, infsup (0, 3), 2)));
%!test
%!  sqr = @(x) x .^ 2;
%!  assert (subset (sqrt (infsup (2)), fsolve (sqr, infsup (0, 3), 2, struct ("Vectorize", false))));

%!function [fval, x] = contractor (y, x)
%!  fval = x .^ 2;
%!  y = intersect (y, fval);
%!  x = sqrrev (y, x);
%!endfunction
%!assert (subset (sqrt (infsup (2)), fsolve (@contractor, infsup (0, 3), 2, struct ("Contract", true))));
%!assert (subset (sqrt (infsup (2)), fsolve (@contractor, infsup (0, 3), 2, struct ("Contract", true, "Vectorize", false))));

%!demo
%! clf
%! hold on
%! grid on
%! axis equal
%! shade = [238 232 213] / 255;
%! blue = [38 139 210] / 255;
%! cyan = [42 161 152] / 255;
%! red = [220 50 47] / 255;
%! # 2D ring
%! f = @(x, y) hypot (x, y);
%! [outer, paving, inner] = fsolve (f, infsup ([-3; -3], [3; 3]), ...
%!                                  infsup (0.5, 2), ...
%!                                  optimset ('TolX', 0.1));
%! # Plot the outer interval enclosure
%! plot (outer(1), outer(2), shade)
%! # Plot the guaranteed inner interval enclosures of the preimage
%! plot (paving(1, inner), paving(2, inner), blue, cyan);
%! # Plot the boundary of the preimage
%! plot (paving(1, not (inner)), paving(2, not (inner)), red);

%!demo
%! clf
%! hold on
%! grid on
%! shade = [238 232 213] / 255;
%! blue = [38 139 210] / 255;
%! # This 3D ring is difficult to approximate with interval boxes
%! f = @(x, y, z) hypot (hypot (x, y) - 2, z);
%! [~, paving, inner] = fsolve (f, infsup ([-4; -4; -2], [4; 4; 2]), ...
%!                                 infsup (0, 0.5), ...
%!                                 optimset ('TolX', 0.2));
%! plot3 (paving(1, not (inner)), ...
%!        paving(2, not (inner)), ...
%!        paving(3, not (inner)), shade, blue);
%! view (50, 60)