This file is indexed.

/usr/share/octave/packages/interval-2.1.0/@infsup/fma.m is in octave-interval 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
## Copyright 2014-2016 Oliver Heimlich
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @defmethod {@@infsup} fma (@var{X}, @var{Y}, @var{Z})
## 
## Fused multiply and add @code{@var{X} * @var{Y} + @var{Z}}.
##
## This function is semantically equivalent to evaluating multiplication and
## addition separately, but in addition guarantees a tight enclosure of the
## result.
##
## Accuracy: The result is a tight enclosure.
##
## @example
## @group
## output_precision (16, 'local')
## fma (infsup (1+eps), infsup (7), infsup ("0.1"))
##   @result{} ans ⊂ [7.100000000000001, 7.100000000000003]
## infsup (1+eps) * infsup (7) + infsup ("0.1")
##   @result{} ans ⊂ [7.1, 7.100000000000003]
## @end group
## @end example
## @seealso{@@infsup/plus, @@infsup/times}
## @end defmethod

## Author: Oliver Heimlich
## Keywords: interval
## Created: 2014-10-03

function x = fma (x, y, z)

if (nargin ~= 3)
    print_usage ();
    return
endif
if (not (isa (x, "infsup")))
    x = infsup (x);
endif
if (not (isa (y, "infsup")))
    y = infsup (y);
endif
if (not (isa (z, "infsup")))
    z = infsup (z);
endif

## Resize, if scalar × matrix
if (not (size_equal (x.inf, y.inf)))
    x.inf = ones (size (y.inf)) .* x.inf;
    x.sup = ones (size (y.inf)) .* x.sup;
    y.inf = ones (size (x.inf)) .* y.inf;
    y.sup = ones (size (x.inf)) .* y.sup;
endif
if (not (size_equal (y.inf, z.inf)))
    y.inf = ones (size (z.inf)) .* y.inf;
    y.sup = ones (size (z.inf)) .* y.sup;
    z.inf = ones (size (y.inf)) .* z.inf;
    z.sup = ones (size (y.inf)) .* z.sup;
endif
if (not (size_equal (x.inf, z.inf)))
    x.inf = ones (size (z.inf)) .* x.inf;
    x.sup = ones (size (z.inf)) .* x.sup;
    z.inf = ones (size (x.inf)) .* z.inf;
    z.sup = ones (size (x.inf)) .* z.sup;
endif

## [Empty] × anything = [Empty]
## [0] × anything = [0] × [0]
## [Entire] × anything but [0] = [Entire] × [Entire]
## This prevents the cases where 0 × inf would produce NaNs.
entireproduct = isentire (x) | isentire (y);
zeroproduct = (x.inf == 0 & x.sup == 0) | (y.inf == 0 & y.sup == 0);
emptyresult = isempty (x) | isempty (y) | isempty (z);
x.inf(entireproduct) = y.inf(entireproduct) = -inf;
x.sup(entireproduct) = y.sup(entireproduct) = inf;
x.inf(zeroproduct) = x.sup(zeroproduct) = ...
    y.inf(zeroproduct) = y.sup(zeroproduct) = 0;

## It is hard to determine, which boundaries of x and y take part in the
## multiplication of fma.  Therefore, we simply compute the fma for each triple
## of boundaries where the min/max could be located.
##
## How to construct complicated cases: a = rand, b = rand, c = rand,
## d = a * b / c (with round towards -infinity for multiplication and towards
## +infinity for division).  Then, it is not possible to decide in 50% of all
## cases whether a * b would be greater or less than c * d by computing the
## products in double-precision.

l = min (min (min (...
         mpfr_function_d ('fma', -inf, x.inf, y.inf, z.inf), ...
         mpfr_function_d ('fma', -inf, x.inf, y.sup, z.inf)), ...
         mpfr_function_d ('fma', -inf, x.sup, y.inf, z.inf)), ...
         mpfr_function_d ('fma', -inf, x.sup, y.sup, z.inf));
u = max (max (max (...
         mpfr_function_d ('fma', +inf, x.inf, y.inf, z.sup), ...
         mpfr_function_d ('fma', +inf, x.inf, y.sup, z.sup)), ...
         mpfr_function_d ('fma', +inf, x.sup, y.inf, z.sup)), ...
         mpfr_function_d ('fma', +inf, x.sup, y.sup, z.sup));

l(emptyresult) = +inf;
u(emptyresult) = -inf;

l(l == 0) = -0;

x.inf = l;
x.sup = u;

endfunction

%!# from the documentation string
%!assert (fma (infsup (1+eps), infsup (7), infsup ("0.1")) == "[0x1.C666666666668p2, 0x1.C666666666669p2]");

%!# correct use of signed zeros
%!test
%! x = fma (infsup (0), 0, 0);
%! assert (signbit (inf (x)));
%! assert (not (signbit (sup (x))));
%!test
%! x = fma (infsup (1), 0, 0);
%! assert (signbit (inf (x)));
%! assert (not (signbit (sup (x))));
%!test
%! x = fma (infsup (1), 1, -1);
%! assert (signbit (inf (x)));
%! assert (not (signbit (sup (x))));