This file is indexed.

/usr/share/octave/packages/image-2.6.1/imfilter.m is in octave-image 2.6.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
## Copyright (C) 2007 Søren Hauberg <soren@hauberg.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} @var{J} = imfilter(@var{I}, @var{f})
## @deftypefnx{Function File} @var{J} = imfilter(@var{I}, @var{f}, @var{options}, @dots{})
## Computes the linear filtering of the image @var{I} and the filter @var{f}.
## The computation is performed using double precision floating point numbers,
## but the class of the input image is preserved as the following example shows.
## @example
## I = 255*ones(100, 100, "uint8");
## f = fspecial("average", 3);
## J = imfilter(I, f);
## class(J)
## @result{} ans = uint8
## @end example
##
## The function also accepts a number of optional arguments that control the
## details of the filtering. The following options is currently accepted
## @table @samp
## @item S
## If a scalar input argument is given, the image is padded with this scalar
## as part of the filtering. The default value is 0.
## @item "symmetric"
## The image is padded symmetrically. 
## @item "replicate"
## The image is padded using the border of the image.
## @item "circular"
## The image is padded by circular repeating of the image elements.
## @item "same"
## The size of the output image is the same as the input image. This is the default
## behaviour.
## @item "full"
## Returns the full filtering result.
## @item "corr"
## The filtering is performed using correlation. This is the default behaviour.
## @item "conv"
## The filtering is performed using convolution.
## @end table
## @seealso{conv2, filter2, fspecial, padarray}
## @end deftypefn

function retval = imfilter(im, f, varargin)

  if (nargin < 2)
    print_usage ();
  endif

  ## Check image
  if (! isimage (im))
    error("imfilter: IM must be an image");
  endif
  [imrows, imcols, imchannels, tmp] = size(im);
  if (tmp != 1 || (imchannels != 1 && imchannels != 3))
    error("imfilter: first input argument must be an image");
  endif
  C = class(im);

  ## Check filter (XXX: matlab support 3D filter, but I have no idea what they do with them)
  if (! isnumeric (f))
    error("imfilter: F must be a numeric array");
  endif
  [frows, fcols, tmp] = size(f);
  if (tmp != 1)
    error("imfilter: second argument must be a 2-dimensional matrix");
  endif

  ## Parse options
  res_size = "same";
  res_size_options = {"same", "full"};
  pad = 0;
  pad_options = {"symmetric", "replicate", "circular"};
  ftype = "corr";
  ftype_options = {"corr", "conv"};
  for i = 1:length(varargin)
    v = varargin{i};
    if (any(strcmpi(v, pad_options)) || isscalar(v))
      pad = v;
    elseif (any(strcmpi(v, res_size_options)))
      res_size = v;
    elseif (any(strcmpi(v, ftype_options)))
      ftype = v;
    else
      warning("imfilter: cannot handle input argument number %d", i+2);
    endif
  endfor

  ## Pad the image
  im = padarray(im, floor([frows/2, fcols/2]), pad);
  if (mod(frows,2) == 0)
    im = im(2:end, :, :);
  endif
  if (mod(fcols,2) == 0)
    im = im(:, 2:end, :);
  endif

  ## Do the filtering
  if (strcmpi(res_size, "same"))
    res_size = "valid";
  else # res_size == "full"
    res_size = "same";
  endif
  if (strcmpi(ftype, "corr"))
    for i = imchannels:-1:1
      retval(:,:,i) = filter2(f, im(:,:,i), res_size);
    endfor
  else
    for i = imchannels:-1:1
      retval(:,:,i) = conv2(im(:,:,i), f, res_size);
    endfor
  endif

  ## Change the class of the output to the class of the input
  ## (the filtering functions returns doubles)
  retval = cast(retval, C);

endfunction

%!test
%!  img = [
%!   8   2   6   7   4   3   7   8   4   1
%!   9   9   1   1   4   7   3   3   8   1
%!   2   9   8   3   7   6   5   8   6   5
%!   9   5   9   1   8   2   7   3   5   8
%!   6   8   7   1   2   2   9   9   9   9
%!   1   2   7   8   5   5   9   4   3   2
%!   3   4   7   7   5   9   5   2   7   6
%!   5   9   4   3   6   4   2   3   7   5
%!   9   8   6   9   7   6   2   6   4   1
%!   9   9   2   1   7   3   3   5   6   4];
%!
%! expected_corr = [
%!  46  53  30  34  44  42  40  51  42  19
%!  48  66  57  42  46  50  59  58  49  34
%!  48  67  55  54  44  58  50  50  64  39
%!  44  77  52  43  28  55  57  75  70  50
%!  29  51  65  51  42  50  60  62  55  42
%!  23  44  58  59  63  59  55  57  50  36
%!  36  50  52  56  56  47  48  45  47  39
%!  51  64  70  62  56  50  40  38  41  31
%!  58  72  50  49  58  45  41  42  49  28
%!  27  37  27  21  19  26  16  23  24  17];
%! assert (imfilter (img, [0 1 0; 2 1 1; 1 2 2]), expected_corr)
%!
%! ## test order of options (and matching with defaults)
%! assert (imfilter (img, [0 1 0; 2 1 1; 1 2 2], 0), expected_corr)
%! assert (imfilter (img, [0 1 0; 2 1 1; 1 2 2], "corr"), expected_corr)
%! assert (imfilter (img, [0 1 0; 2 1 1; 1 2 2], "corr", 0), expected_corr)
%! assert (imfilter (img, [0 1 0; 2 1 1; 1 2 2], 0, "corr"), expected_corr)
%!
%! expected_conv = [
%!  21  31  23  22  21  28  29  26  22   6
%!  47  55  43  43  51  44  49  64  44  24
%!  56  69  53  34  47  50  57  48  52  37
%!  38  70  60  56  41  57  54  61  66  44
%!  46  67  53  48  32  54  59  65  63  46
%!  28  56  63  50  36  54  58  66  63  47
%!  20  43  55  62  67  57  52  53  44  28
%!  42  51  54  61  57  53  44  46  48  39
%!  53  70  63  50  57  42  38  38  43  33
%!  53  62  50  54  52  44  38  40  40  20];
%! assert (imfilter (img, [0 1 0; 2 1 1; 1 2 2], "conv"), expected_conv)
%!
%! ## alternative class
%! assert (imfilter (single (img), [0 1 0; 2 1 1; 1 2 2]),
%!         single (expected_corr))
%! assert (imfilter (int8 (img), [0 1 0; 2 1 1; 1 2 2]),
%!         int8 (expected_corr))
%! assert (imfilter (uint8 (img), [0 1 0; 2 1 1; 1 2 2]),
%!         uint8 (expected_corr))
%!
%! assert (imfilter (single (img), [0 1 0; 2 1 1; 1 2 2], "conv"),
%!         single (expected_conv))
%! assert (imfilter (int8 (img), [0 1 0; 2 1 1; 1 2 2], "conv"),
%!         int8 (expected_conv))
%! assert (imfilter (uint8 (img), [0 1 0; 2 1 1; 1 2 2], "conv"),
%!         uint8 (expected_conv))
%!

## test padding with even sized filters (bug #45568)
%!test
%! I = zeros (6);
%! I(2:3,2:3) = 1;
%! F = zeros (4);
%! F(2,2:3) = 1;
%! result = [0 0 0 0 0 0
%!           1 2 1 0 0 0
%!           1 2 1 0 0 0
%!           0 0 0 0 0 0
%!           0 0 0 0 0 0
%!           0 0 0 0 0 0];
%! assert (imfilter (I, F), result)