/usr/include/nodejs/src/util-inl.h is in nodejs-dev 4.8.2~dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | #ifndef SRC_UTIL_INL_H_
#define SRC_UTIL_INL_H_
#include "util.h"
namespace node {
template <typename T>
ListNode<T>::ListNode() : prev_(this), next_(this) {}
template <typename T>
ListNode<T>::~ListNode() {
Remove();
}
template <typename T>
void ListNode<T>::Remove() {
prev_->next_ = next_;
next_->prev_ = prev_;
prev_ = this;
next_ = this;
}
template <typename T>
bool ListNode<T>::IsEmpty() const {
return prev_ == this;
}
template <typename T, ListNodeMember(T) M>
ListHead<T, M>::Iterator::Iterator(ListNode<T>* node) : node_(node) {}
template <typename T, ListNodeMember(T) M>
T* ListHead<T, M>::Iterator::operator*() const {
return ContainerOf(M, node_);
}
template <typename T, ListNodeMember(T) M>
const typename ListHead<T, M>::Iterator&
ListHead<T, M>::Iterator::operator++() {
node_ = node_->next_;
return *this;
}
template <typename T, ListNodeMember(T) M>
bool ListHead<T, M>::Iterator::operator!=(const Iterator& that) const {
return node_ != that.node_;
}
template <typename T, ListNodeMember(T) M>
ListHead<T, M>::~ListHead() {
while (IsEmpty() == false)
head_.next_->Remove();
}
template <typename T, ListNodeMember(T) M>
void ListHead<T, M>::MoveBack(ListHead* that) {
if (IsEmpty())
return;
ListNode<T>* to = &that->head_;
head_.next_->prev_ = to->prev_;
to->prev_->next_ = head_.next_;
head_.prev_->next_ = to;
to->prev_ = head_.prev_;
head_.prev_ = &head_;
head_.next_ = &head_;
}
template <typename T, ListNodeMember(T) M>
void ListHead<T, M>::PushBack(T* element) {
ListNode<T>* that = &(element->*M);
head_.prev_->next_ = that;
that->prev_ = head_.prev_;
that->next_ = &head_;
head_.prev_ = that;
}
template <typename T, ListNodeMember(T) M>
void ListHead<T, M>::PushFront(T* element) {
ListNode<T>* that = &(element->*M);
head_.next_->prev_ = that;
that->prev_ = &head_;
that->next_ = head_.next_;
head_.next_ = that;
}
template <typename T, ListNodeMember(T) M>
bool ListHead<T, M>::IsEmpty() const {
return head_.IsEmpty();
}
template <typename T, ListNodeMember(T) M>
T* ListHead<T, M>::PopFront() {
if (IsEmpty())
return nullptr;
ListNode<T>* node = head_.next_;
node->Remove();
return ContainerOf(M, node);
}
template <typename T, ListNodeMember(T) M>
typename ListHead<T, M>::Iterator ListHead<T, M>::begin() const {
return Iterator(head_.next_);
}
template <typename T, ListNodeMember(T) M>
typename ListHead<T, M>::Iterator ListHead<T, M>::end() const {
return Iterator(const_cast<ListNode<T>*>(&head_));
}
template <typename Inner, typename Outer>
ContainerOfHelper<Inner, Outer>::ContainerOfHelper(Inner Outer::*field,
Inner* pointer)
: pointer_(reinterpret_cast<Outer*>(
reinterpret_cast<uintptr_t>(pointer) -
reinterpret_cast<uintptr_t>(&(static_cast<Outer*>(0)->*field)))) {
}
template <typename Inner, typename Outer>
template <typename TypeName>
ContainerOfHelper<Inner, Outer>::operator TypeName*() const {
return static_cast<TypeName*>(pointer_);
}
template <typename Inner, typename Outer>
inline ContainerOfHelper<Inner, Outer> ContainerOf(Inner Outer::*field,
Inner* pointer) {
return ContainerOfHelper<Inner, Outer>(field, pointer);
}
template <class TypeName>
inline v8::Local<TypeName> PersistentToLocal(
v8::Isolate* isolate,
const v8::Persistent<TypeName>& persistent) {
if (persistent.IsWeak()) {
return WeakPersistentToLocal(isolate, persistent);
} else {
return StrongPersistentToLocal(persistent);
}
}
template <class TypeName>
inline v8::Local<TypeName> StrongPersistentToLocal(
const v8::Persistent<TypeName>& persistent) {
return *reinterpret_cast<v8::Local<TypeName>*>(
const_cast<v8::Persistent<TypeName>*>(&persistent));
}
template <class TypeName>
inline v8::Local<TypeName> WeakPersistentToLocal(
v8::Isolate* isolate,
const v8::Persistent<TypeName>& persistent) {
return v8::Local<TypeName>::New(isolate, persistent);
}
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const char* data,
int length) {
return v8::String::NewFromOneByte(isolate,
reinterpret_cast<const uint8_t*>(data),
v8::String::kNormalString,
length);
}
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const signed char* data,
int length) {
return v8::String::NewFromOneByte(isolate,
reinterpret_cast<const uint8_t*>(data),
v8::String::kNormalString,
length);
}
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const unsigned char* data,
int length) {
return v8::String::NewFromOneByte(isolate,
reinterpret_cast<const uint8_t*>(data),
v8::String::kNormalString,
length);
}
template <typename TypeName>
void Wrap(v8::Local<v8::Object> object, TypeName* pointer) {
CHECK_EQ(false, object.IsEmpty());
CHECK_GT(object->InternalFieldCount(), 0);
object->SetAlignedPointerInInternalField(0, pointer);
}
void ClearWrap(v8::Local<v8::Object> object) {
Wrap<void>(object, nullptr);
}
template <typename TypeName>
TypeName* Unwrap(v8::Local<v8::Object> object) {
CHECK_EQ(false, object.IsEmpty());
CHECK_GT(object->InternalFieldCount(), 0);
void* pointer = object->GetAlignedPointerFromInternalField(0);
return static_cast<TypeName*>(pointer);
}
void SwapBytes(uint16_t* dst, const uint16_t* src, size_t buflen) {
for (size_t i = 0; i < buflen; i += 1)
dst[i] = (src[i] << 8) | (src[i] >> 8);
}
char ToLower(char c) {
return c >= 'A' && c <= 'Z' ? c + ('a' - 'A') : c;
}
bool StringEqualNoCase(const char* a, const char* b) {
do {
if (*a == '\0')
return *b == '\0';
if (*b == '\0')
return *a == '\0';
} while (ToLower(*a++) == ToLower(*b++));
return false;
}
// These should be used in our code as opposed to the native
// versions as they abstract out some platform and or
// compiler version specific functionality.
// malloc(0) and realloc(ptr, 0) have implementation-defined behavior in
// that the standard allows them to either return a unique pointer or a
// nullptr for zero-sized allocation requests. Normalize by always using
// a nullptr.
void* Realloc(void* pointer, size_t size) {
if (size == 0) {
free(pointer);
return nullptr;
}
return realloc(pointer, size);
}
// As per spec realloc behaves like malloc if passed nullptr.
void* Malloc(size_t size) {
if (size == 0) size = 1;
return Realloc(nullptr, size);
}
void* Calloc(size_t n, size_t size) {
if (n == 0) n = 1;
if (size == 0) size = 1;
CHECK_GE(n * size, n); // Overflow guard.
return calloc(n, size);
}
} // namespace node
#endif // SRC_UTIL_INL_H_
|