This file is indexed.

/usr/include/zeep/xml/serialize.hpp is in libzeep-dev 3.0.2-4+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
//  Copyright Maarten L. Hekkelman, Radboud University 2008.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)

#ifndef SOAP_XML_SERIALIZE_H
#define SOAP_XML_SERIALIZE_H

#include <sstream>
#include <vector>
#include <list>
#include <map>
#include <cassert>
#include <ctime>

#include <zeep/xml/node.hpp>
#include <zeep/exception.hpp>

#include <boost/config.hpp>
#include <boost/foreach.hpp>
#include <boost/mpl/if.hpp>
#include <boost/serialization/nvp.hpp>
#include <boost/type_traits/is_arithmetic.hpp>
#include <boost/type_traits/is_enum.hpp>
#include <boost/type_traits/remove_pointer.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/type_traits/integral_promotion.hpp> 
#include <boost/lexical_cast.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/date_time/gregorian/gregorian.hpp>
#include <boost/optional.hpp>
#include <boost/regex.hpp>

//	Lots of template wizardry here...
//
//	The goal is to make a completely transparent XML serializer/deserializer
//	in order to translate SOAP messages into/out of native C++ types.
//
//	The interface for the code below is compatible with the 'serialize' member
//	function required to use boost::serialization. 

/// \def SOAP_XML_ADD_ENUM(e,v)
/// \brief A macro to add the name of an enum value to the serializer
///
/// To be able to correctly use enum values in a schema file or when serializing,
/// you have to specify the enum values.
///
/// E.g., if you have a struct name Algorithm with values 'vector', 'dice' and 'jaccard'
/// you would write:
///
///>	enum Algorithm { vector, dice, jaccard };
///>	SOAP_XML_ADD_ENUM(Algorithm, vector);
///>	SOAP_XML_ADD_ENUM(Algorithm, dice);
///>	SOAP_XML_ADD_ENUM(Algorithm, jaccard);
///
/// An alternative (better?) way to do this is:
///
///>	zeep::xml::enum_map<Algorithm>::instance("Algorithm").add_enum()
///>		("vector", vector)
///>		("dice", dice)
///>		("jaccard", jaccard);

/// \def SOAP_XML_SET_STRUCT_NAME(s)
/// \brief A macro to assign a name to a struct used in serialization.
///
/// By default, libzeep uses the typeid(s).name() as the name for an element.
/// That's often not what is intented. Calling this macro will make sure
/// the type name you used in your code will be used instead.
///
/// E.g., struct FindResult { ... } might end up with a mangled name in the
/// schema. To use FindResult instead, call SOAP_XML_SET_STRUCT_NAME(FindResult);
///
/// An alternative is to call, which allows different schema and struct names:
/// zeep::xml::struct_serializer<FindResult>::set_struct_name("FindResult");

namespace zeep { namespace xml {

#ifndef LIBZEEP_DOXYGEN_INVOKED
const std::string kPrefix = "ns";
#endif

/// Older versions of libzeep used to use boost::serialization::nvp as type to
/// specify name/value pairs. This will continue to work, but to use attributes
/// we come up with a special version of name/value pairs specific for libzeep.

struct serializer;
struct deserializer;

template<typename T>
struct element_nvp : public boost::serialization::nvp<T>
{
	explicit element_nvp(const char* name, T& v) : boost::serialization::nvp<T>(name, v) {}
	element_nvp(const element_nvp& rhs) : boost::serialization::nvp<T>(rhs) {}
};

template<typename T>
struct attribute_nvp : public boost::serialization::nvp<T>
{
	explicit attribute_nvp(const char* name, T& v) : boost::serialization::nvp<T>(name, v) {}
	attribute_nvp(const attribute_nvp& rhs) : boost::serialization::nvp<T>(rhs) {}
};

template<typename T>
inline element_nvp<T> make_element_nvp(const char* name, T& v)
{
	return element_nvp<T>(name, v);
}
	
template<typename T>
inline attribute_nvp<T> make_attribute_nvp(const char* name, T& v)
{
	return attribute_nvp<T>(name, v);
}

#define ZEEP_ELEMENT_NAME_VALUE(name) \
	zeep::xml::make_element_nvp(BOOST_PP_STRINGIZE(name), name)

#define ZEEP_ATTRIBUTE_NAME_VALUE(name) \
	zeep::xml::make_attribute_nvp(BOOST_PP_STRINGIZE(name), name)
	
/// serializer, deserializer and schema_creator are classes that can be used
/// to initiate the serialization. They are the Archive classes that are
/// the first parameter to the templated function 'serialize' in the classes
/// that can be serialized. (See boost::serialization for more info).

/// serializer is the class that initiates the serialization process.

struct serializer
{
	serializer(container* node) : m_node(node) {}

	template<typename T>
	serializer& operator&(const boost::serialization::nvp<T>& rhs)
	{
		return serialize_element(rhs.name(), rhs.value());
	}
	
	template<typename T>
	serializer& operator&(const element_nvp<T>& rhs)
	{
		return serialize_element(rhs.name(), rhs.value());
	}
	
	template<typename T>
	serializer& operator&(const attribute_nvp<T>& rhs)
	{
		return serialize_attribute(rhs.name(), rhs.value());
	}
	
	template<typename T>
	serializer& serialize_element(const char* name, const T& data);

	template<typename T>
	serializer& serialize_attribute(const char* name, const T& data);

	container* m_node;
};

/// deserializer is the class that initiates the deserialization process.

struct deserializer
{
	deserializer(const container* node) : m_node(node) {}

	template<typename T>
	deserializer& operator&(const boost::serialization::nvp<T>& rhs)
	{
		return deserialize_element(rhs.name(), rhs.value());
	}

	template<typename T>
	deserializer& operator&(const element_nvp<T>& rhs)
	{
		return deserialize_element(rhs.name(), rhs.value());
	}
	
	template<typename T>
	deserializer& operator&(const attribute_nvp<T>& rhs)
	{
		return deserialize_attribute(rhs.name(), rhs.value());
	}
	
	template<typename T>
	deserializer& deserialize_element(const char* name, T& data);

	template<typename T>
	deserializer& deserialize_attribute(const char* name, T& data);

	const container* m_node;
};

#ifndef LIBZEEP_DOXYGEN_INVOKED
typedef std::map<std::string,element*> type_map;
#endif

/// schema_creator is used by zeep::dispatcher to create schema files.

struct schema_creator
{
	schema_creator(type_map& types, element* node)
		: m_node(node), m_types(types) {}
		
	template<typename T>
	schema_creator& operator&(const boost::serialization::nvp<T>& rhs)
	{
		return add_element(rhs.name(), rhs.value());
	}

	template<typename T>
	schema_creator& operator&(const element_nvp<T>& rhs)
	{
		return add_element(rhs.name(), rhs.value());
	}
	
	template<typename T>
	schema_creator& operator&(const attribute_nvp<T>& rhs)
	{
		return add_attribute(rhs.name(), rhs.value());
	}

	template<typename T>
	schema_creator& add_element(const char* name, const T& value);

	template<typename T>
	schema_creator& add_attribute(const char* name, const T& value);

	element* m_node;
	type_map& m_types;
};

#ifndef LIBZEEP_DOXYGEN_INVOKED

//	The actual (de)serializers
//
//	We have two kinds of serializers, basic type serializers can read and write
//	their values from/to strings. They also have a type_name that is used in
//	schema's, this should be the XSD standard name. These basic serializers are
//	used to write either XML element content or attribute values.
//
//	The basic serializers should typedef a type value_type and also implement
//	the following functions:
//
//		static std::string serialize_value(const value_type& value);
//		static value_type deserialize_value(const std::string& value);
//		static const char* type_name();
//
//	The basic serializers are accessed through another templated class,
//	serializer_type.
//
//	All versions of serializer_type<> should implement the following
//	functions:
//	
//		static void	serialize(element* n, const T& v);
//		static void	serialize_child(container* n, const char* name, const T& v);
//		static void	deserialize(const element* n, T& v);
//		static void	deserialize_child(const container* n, const char* name, T& v);
//		static element*	schema(const std::string& name);
//		static void register_type(type_map& types);
//
//	Examples of specializations of serializer_type are serialize_container_type
//	and serialize_boost_optional.

// arithmetic types are ints, doubles, etc... simply use lexical_cast to convert these
template<typename T, int S = sizeof(T), bool = boost::is_unsigned<T>::value> struct arithmetic_schema_name {};

template<typename T> struct arithmetic_schema_name<T, 1, false> {
	static const char* type_name() { return "xsd:byte"; }
};
template<typename T> struct arithmetic_schema_name<T, 1, true> {
	static const char* type_name() { return "xsd:unsignedByte"; }
};
template<typename T> struct arithmetic_schema_name<T, 2, false> {
	static const char* type_name() { return "xsd:short"; }
};
template<typename T> struct arithmetic_schema_name<T, 2, true> {
	static const char* type_name() { return "xsd:unsignedShort"; }
};
template<typename T> struct arithmetic_schema_name<T, 4, false> {
	static const char* type_name() { return "xsd:int"; }
};
template<typename T> struct arithmetic_schema_name<T, 4, true> {
	static const char* type_name() { return "xsd:unsignedInt"; }
};
template<typename T> struct arithmetic_schema_name<T, 8, false> {
	static const char* type_name() { return "xsd:long"; }
};
template<typename T> struct arithmetic_schema_name<T, 8, true> {
	static const char* type_name() { return "xsd:unsignedLong"; }
};
template<> struct arithmetic_schema_name<float> {
	static const char* type_name() { return "xsd:float"; }
};
template<> struct arithmetic_schema_name<double> {
	static const char* type_name() { return "xsd:double"; }
};

template<typename T>
struct arithmetic_serializer : public arithmetic_schema_name<T>
{
	typedef T value_type;

	// use promoted type to force writing out char as an integer
	typedef typename boost::integral_promotion<T>::type		promoted_type;

	static std::string serialize_value(const value_type& value)
	{
		return boost::lexical_cast<std::string>(static_cast<promoted_type>(value));
	}
	
	static value_type deserialize_value(const std::string& value)
	{
		return value.empty() ? 0 : static_cast<value_type>(boost::lexical_cast<promoted_type>(value));
	}
};

struct string_serializer
{
	typedef std::string value_type;
	
	static const char* type_name() { return "xsd:string"; }

	static std::string serialize_value(const std::string& value)
	{
		return value;
	}

	static std::string deserialize_value(const std::string& value)
	{
		return value;
	}
};

struct bool_serializer
{
	typedef bool value_type;

	static const char* type_name() { return "xsd:boolean"; }
	
	static std::string serialize_value(bool value)
	{
		return value ? "true" : "false";
	}

	static bool deserialize_value(const std::string& value)
	{
		return (value == "true" or value == "1");
	}
};

/// \brief serializer/deserializer for boost::posix_time::ptime
/// boost::posix_time::ptime values are always assumed to be UTC
struct boost_posix_time_ptime_serializer
{
	typedef boost::posix_time::ptime value_type;

	static const char* type_name() { return "xsd:dateTime"; }
	
	/// Serialize the boost::posix_time::ptime as YYYY-MM-DDThh:mm:ssZ (zero UTC offset)
	static std::string serialize_value(const boost::posix_time::ptime& v)
	{
		return boost::posix_time::to_iso_extended_string(v).append("Z");
	}

	/// Deserialize according to ISO8601 rules.
	/// If Zulu time is specified, then the parsed xsd:dateTime is returned.
	/// If an UTC offset is present, then the offset is subtracted from the xsd:dateTime, this yields UTC.
	/// If no UTC offset is present, then the xsd:dateTime is assumed to be local time and converted to UTC.
	static boost::posix_time::ptime deserialize_value(const std::string& s)
	{
		// We accept 3 general formats:
		//  1: date fields separated with dashes, time fields separated with colons, eg. 2013-02-17T15:25:20,502104+01:00
		//  2: date fields not separated, time fields separated with colons, eg. 20130217T15:25:20,502104+01:00
		//  3: date fields not separated, time fields not separated, eg. 20130217T152520,502104+01:00

		// Apart from the separators, the 3 regexes are basically the same, i.e. they have the same fields
		// Note: boost::regex is threadsafe, so we can declare these statically

		// Format 1:
		// ^(-?\d{4})-(\d{2})-(\d{2})T(\d{2})(:(\d{2})(:(\d{2})([.,](\d+))?)?)?((Z)|([-+])(\d{2})(:(\d{2}))?)?$
		//  ^         ^       ^       ^      ^ ^      ^ ^      ^    ^          ^^   ^     ^      ^ ^
		//  |         |       |       |      | |      | |      |    |          ||   |     |      | |
		//  |         |       |       |      | |      | |      |    |          ||   |     |      | [16] UTC minutes offset
		//  |         |       |       |      | |      | |      |    |          ||   |     |      [15] have UTC minutes offset?
		//  |         |       |       |      | |      | |      |    |          ||   |     [14] UTC hour offset
		//  |         |       |       |      | |      | |      |    |          ||   [13] UTC offset sign
		//  |         |       |       |      | |      | |      |    |          |[12] Zulu time
		//  |         |       |       |      | |      | |      |    |          [11] have time zone?
		//  |         |       |       |      | |      | |      |    [10] fractional seconds
		//  |         |       |       |      | |      | |      [9] have fractional seconds
		//  |         |       |       |      | |      | [8] seconds
		//  |         |       |       |      | |      [7] have seconds?
		//  |         |       |       |      | [6] minutes
		//  |         |       |       |      [5] have minutes?
		//  |         |       |       [4] hours
		//  |         |       [3] day
		//  |         [2] month
		//  [1] year
		static boost::regex re1("^(-?\\d{4})-(\\d{2})-(\\d{2})T(\\d{2})(:(\\d{2})(:(\\d{2})([.,](\\d+))?)?)?((Z)|([-+])(\\d{2})(:(\\d{2}))?)?$");

		// Format 2:
		// ^(-?\d{4})(\d{2})(\d{2})T(\d{2})(:(\d{2})(:(\d{2})([.,]\d+)?)?)?((Z)|([-+])(\d{2})(:(\d{2}))?)?$
		static boost::regex re2("^(-?\\d{4})(\\d{2})(\\d{2})T(\\d{2})(:(\\d{2})(:(\\d{2})([.,]\\d+)?)?)?((Z)|([-+])(\\d{2})(:(\\d{2}))?)?$");

		// Format 3:
		// ^(-?\d{4})(\d{2})(\d{2})T(\d{2})((\d{2})((\d{2})([.,]\d+)?)?)?((Z)|([-+])(\d{2})(:(\d{2}))?)?$
		static boost::regex re3("^(-?\\d{4})(\\d{2})(\\d{2})T(\\d{2})((\\d{2})((\\d{2})([.,]\\d+)?)?)?((Z)|([-+])(\\d{2})(:(\\d{2}))?)?$");

		static const int f_year              =  1;
		static const int f_month             =  2;
		static const int f_day               =  3;
		static const int f_hours             =  4;
		static const int f_have_minutes      =  5;
		static const int f_minutes           =  6;
		static const int f_have_seconds      =  7;
		static const int f_seconds           =  8;
		static const int f_have_frac         =  9;
		static const int f_frac              = 10;
		static const int f_have_tz           = 11;
		static const int f_zulu              = 12;
		static const int f_offs_sign         = 13;
		static const int f_offs_hours        = 14;
		static const int f_have_offs_minutes = 15;
		static const int f_offs_minutes      = 16;

		boost::smatch m;
		if (not boost::regex_match(s, m, re1)) {
			if (not boost::regex_match(s, m, re2)) {
				if (not boost::regex_match(s, m, re3)) {
					throw exception("Bad dateTime format");
				}
			}
		}

		boost::gregorian::date d(
		  boost::lexical_cast<int>(m[f_year])
		, boost::lexical_cast<int>(m[f_month])
		, boost::lexical_cast<int>(m[f_day])
		);

		int hours = boost::lexical_cast<int>(m[f_hours]);
		int minutes = 0, seconds = 0;
		if (m.length(f_have_minutes)) {
			minutes = boost::lexical_cast<int>(m[f_minutes]);
			if (m.length(f_have_seconds)) {
				seconds = boost::lexical_cast<int>(m[f_seconds]);
			}
		}
		boost::posix_time::time_duration t(hours, minutes, seconds);

		if (m.length(f_have_frac)) {
			double frac = boost::lexical_cast<double>(std::string(".").append(std::string(m[f_frac])));
			t += boost::posix_time::microseconds(static_cast<int64_t>((frac + .5) * 1e6));
		}

		boost::posix_time::ptime result = boost::posix_time::ptime(d, t);

		if (m.length(f_have_tz)) {
			if (not m.length(f_zulu)) {
				std::string sign = m[f_offs_sign];
				int hours = boost::lexical_cast<int>(m[f_offs_hours]);
				int minutes = 0;
				if (m.length(f_have_offs_minutes)) {
					minutes = boost::lexical_cast<int>(m[f_offs_minutes]);
				}
				boost::posix_time::time_duration offs(hours, minutes, 0);
				if (sign == "+") {
					result -= offs;
				} else {
					result += offs;
				}
			}
		} else {
			// Boost has no clear way of instantiating the *current* timezone, so
			// it's not possible to convert from local to UTC, using boost::local_time classes
			// For now, settle on using mktime...
			std::tm tm = boost::posix_time::to_tm(result);
			tm.tm_isdst = -1;
			std::time_t t = mktime(&tm);
			result = boost::posix_time::from_time_t(t);
		}

		return result;
	}
};

/// \brief serializer/deserializer for boost::gregorian::date
/// boost::gregorian::date values are assumed to be floating, i.e. we don't accept timezone info in dates
struct boost_gregorian_date_serializer
{
	typedef boost::gregorian::date value_type;
	
	static const char* type_name() { return "xsd:date"; }

	/// Serialize the boost::gregorian::date as YYYY-MM-DD
	static std::string serialize_value(container* parent, const std::string& name, const boost::gregorian::date& v)
	{
		return boost::gregorian::to_iso_extended_string(v);
	}

	/// Deserialize boost::gregorian::date according to ISO8601 rules, but without timezone.
	static boost::gregorian::date deserialize_value(const std::string& s)
	{
		// We accept 2 general formats:
		//  1: date fields separated with dashes, eg. 2013-02-17
		//  2: date fields not separated, eg. 20130217

		// Apart from the separators, the 2 regexes are basically the same, i.e. they have the same fields
		// Note: boost::regex is threadsafe, so we can declare these statically

		// Format 1:
		// ^(-?\d{4})-(\d{2})-(\d{2})$
		//  ^         ^       ^
		//  |         |       |
		//  |         |       |
		//  |         |       [3] day
		//  |         [2] month
		//  [1] year
		static boost::regex re1("^(-?\\d{4})-(\\d{2})-(\\d{2})$");

		// Format 2:
		// ^(-?\d{4})(\d{2})(\d{2})$
		static boost::regex re2("^(-?\\d{4})(\\d{2})(\\d{2})$");

		static const int f_year              =  1;
		static const int f_month             =  2;
		static const int f_day               =  3;

		boost::smatch m;
		if (not boost::regex_match(s, m, re1)) {
			if (not boost::regex_match(s, m, re2)) {
				throw exception("Bad date format");
			}
		}

		return boost::gregorian::date(
				  boost::lexical_cast<int>(m[f_year])
				, boost::lexical_cast<int>(m[f_month])
				, boost::lexical_cast<int>(m[f_day])
				);
	}
};

/// \brief serializer/deserializer for boost::posix_time::time_duration
/// boost::posix_time::time_duration values are assumed to be floating, i.e. we don't accept timezone info in times
struct boost_posix_time_time_duration_serializer
{
	typedef boost::posix_time::time_duration value_type;
	
	static const char* type_name() { return "xsd:time"; }

	/// Serialize the boost::posix_time::time_duration as hh:mm:ss,ffffff
	static std::string serialize_value(const boost::posix_time::time_duration& v)
	{
		return boost::posix_time::to_simple_string(v);
	}

	/// Deserialize boost::posix_time::time_duration according to ISO8601 rules, but without timezone.
	static boost::posix_time::time_duration deserialize_value(const std::string& s)
	{
		// We accept 2 general formats:
		//  1: time fields separated with colons, eg. 15:25:20,502104
		//  2: time fields not separated, eg. 152520,502104

		// Apart from the separators, the 2 regexes are basically the same, i.e. they have the same fields
		// Note: boost::regex is threadsafe, so we can declare these statically

		// Format 1:
		// ^(\d{2})(:(\d{2})(:(\d{2})([.,](\d+))?)?)?$
		//  ^      ^ ^      ^ ^      ^    ^
		//  |      | |      | |      |    |
		//  |      | |      | |      |    [7] fractional seconds
		//  |      | |      | |      [6] have fractional seconds
		//  |      | |      | [5] seconds
		//  |      | |      [4] have seconds?
		//  |      | [3] minutes
		//  |      [2] have minutes?
		//  [1] hours
		static boost::regex re1("^(\\d{2})(:(\\d{2})(:(\\d{2})([.,](\\d+))?)?)?$");

		// Format 2:
		// ^(\d{2})((\d{2})((\d{2})([.,](\d+))?)?)?$
		static boost::regex re2("^(\\d{2})((\\d{2})((\\d{2})([.,](\\d+))?)?)?$");

		static const int f_hours             =  1;
		static const int f_have_minutes      =  2;
		static const int f_minutes           =  3;
		static const int f_have_seconds      =  4;
		static const int f_seconds           =  5;
		static const int f_have_frac         =  6;
		static const int f_frac              =  7;

		boost::smatch m;
		if (not boost::regex_match(s, m, re1)) {
			if (not boost::regex_match(s, m, re2)) {
				throw exception("Bad time format");
			}
		}

		int hours = boost::lexical_cast<int>(m[f_hours]);
		int minutes = 0, seconds = 0;
		if (m.length(f_have_minutes)) {
			minutes = boost::lexical_cast<int>(m[f_minutes]);
			if (m.length(f_have_seconds)) {
				seconds = boost::lexical_cast<int>(m[f_seconds]);
			}
		}

		boost::posix_time::time_duration result = boost::posix_time::time_duration(hours, minutes, seconds);

		if (m.length(f_have_frac)) {
			double frac = boost::lexical_cast<double>(std::string(".").append(std::string(m[f_frac])));
			result += boost::posix_time::microseconds(static_cast<int64_t>((frac + .5) * 1e6));
		}
		
		return result;
	}
};

// code to serialize structs.
// struct_serializer_archive is a helper class to be used as Archive 

template<typename Archive, typename T>
struct struct_serializer
{
	static void serialize(Archive& stream, T& data)
	{
		data.serialize(stream, 0U);
	}
};

template<typename Struct>
struct struct_serializer_impl
{
	typedef Struct				value_type;
	static std::string			s_struct_name;

	static const char* type_name() { return s_struct_name.c_str(); }
	
	static void serialize(container* n, const value_type& value)
	{
		typedef struct_serializer<serializer,value_type> archive;
		
		serializer sr(n);
		archive::serialize(sr, const_cast<value_type&>(value));
	}

	static void	deserialize(const container* n, value_type& v)
	{
		typedef struct_serializer<deserializer,value_type>	archive;

		deserializer ds(n);
		archive::serialize(ds, v);
	}
	
	static element* schema(const std::string& name)
	{
		element* result(new element("xsd:element"));
		result->set_attribute("name", name);
		result->set_attribute("type", kPrefix + ':' + s_struct_name);
		result->set_attribute("minOccurs", "1");
		result->set_attribute("maxOccurs", "1");

		return result;
	}

	static void register_type(type_map& types)
	{
		element* n(new element("xsd:complexType"));
		n->set_attribute("name", s_struct_name);
		types[s_struct_name] = n;
		
		element* sequence(new element("xsd:sequence"));
		n->append(sequence);

		typedef struct_serializer<schema_creator,value_type>	archive;
	
		schema_creator schema(types, sequence);

		value_type v;
		archive::serialize(schema, v);
	}

	static void	set_struct_name(const std::string& name)
	{
		s_struct_name = name;
	}
};

template<typename Struct>
std::string struct_serializer_impl<Struct>::s_struct_name = typeid(Struct).name();

#endif

#define SOAP_XML_SET_STRUCT_NAME(s)	zeep::xml::struct_serializer_impl<s>::s_struct_name = BOOST_PP_STRINGIZE(s);

// code to serialize enums.

#ifndef LIBZEEP_DOXYGEN_INVOKED

template<typename T>
struct enum_map
{
	typedef typename std::map<T,std::string>	name_mapping_type;
	
	name_mapping_type							m_name_mapping;
	std::string									m_name;
	
	static enum_map& instance(const char* name = NULL)
	{
		static enum_map s_instance;
		if (name and s_instance.m_name.empty())
			s_instance.m_name = name;
		return s_instance;
	}

	class add_enum_helper
	{
		friend struct enum_map;
		add_enum_helper(name_mapping_type& mapping)
			: m_mapping(mapping) {}
		
		name_mapping_type& m_mapping;

	  public:
		add_enum_helper& operator()(const std::string& name, T value)
		{
			m_mapping[value] = name;
			return *this;
		}
	};
	
	add_enum_helper	add_enum()
	{
		return add_enum_helper(m_name_mapping);
	}
};

#endif

#define SOAP_XML_ADD_ENUM(e,v)	zeep::xml::enum_map<e>::instance(BOOST_PP_STRINGIZE(e)).m_name_mapping[v] = BOOST_PP_STRINGIZE(v);

#ifndef LIBZEEP_DOXYGEN_INVOKED

template<typename T>
struct enum_serializer
{
	typedef T							value_type;
	
	typedef enum_map<T>					t_enum_map;
	typedef std::map<T,std::string>		t_map;
	
	static const char* type_name()
	{
		static std::string s_type_name = t_enum_map::instance().m_name;
		return s_type_name.c_str();
	}
	
	static std::string serialize_value(const T& value)
	{
		return t_enum_map::instance().m_name_mapping[value];
	}

	static void serialize(container* n, const value_type& value)
	{
		n->str(serialize_value(value));
	}
	
	static T deserialize_value(const std::string& value)
	{
		T result = T();
		
		t_map& m = t_enum_map::instance().m_name_mapping;
		for (typename t_map::iterator e = m.begin(); e != m.end(); ++e)
		{
			if (e->second == value)
			{
				result = e->first;
				break;
			}
		}
		
		return result;
	}

	static void deserialize(const container* n, value_type& value)
	{
		value = deserialize_value(n->str());
	}
	
	static element* schema(const std::string& name)
	{
		std::string my_type_name = type_name();

		element* result(new element("xsd:element"));
		result->set_attribute("name", name);
		result->set_attribute("type", kPrefix + ':' + my_type_name);
		result->set_attribute("minOccurs", "1");
		result->set_attribute("maxOccurs", "1");
		
		return result;
	}
	
	static void register_type(type_map& types)
	{
		element* n(new element("xsd:simpleType"));
		n->set_attribute("name", type_name());
		types[type_name()] = n;
		
		element* restriction(new element("xsd:restriction"));
		restriction->set_attribute("base", "xsd:string");
		n->append(restriction);
		
		t_map& m = t_enum_map::instance().m_name_mapping;
		for (typename t_map::iterator e = m.begin(); e != m.end(); ++e)
		{
			element* en(new element("xsd:enumeration"));
			en->set_attribute("value", e->second);
			restriction->append(en);
		}
	}
};

// a wrapper type for basic type serializers

template<class Serializer>
struct wrapped_serializer : public Serializer
{
	typedef typename Serializer::value_type value_type;
	
	static void serialize(container* n, const value_type& value)
	{
		n->str(Serializer::serialize_value(value));
	}
	
	static void deserialize(const container* n, value_type& value)
	{
		value = Serializer::deserialize_value(n->str());
	}
	
	static element* schema(const std::string& name)
	{
		element* n(new element("xsd:element"));

		n->set_attribute("name", name);
		n->set_attribute("type", Serializer::type_name());
		n->set_attribute("minOccurs", "1");
		n->set_attribute("maxOccurs", "1");
		
		return n;
	}

	static void register_type(type_map& types)
	{
	}
};

// a common base class for many serializer_type classes

template<typename Serializer>
struct basic_serializer_type : public Serializer
{
	typedef typename Serializer::value_type	value_type;
	typedef Serializer						type_serializer_type;

	static void serialize_child(container* n, const char* name, const value_type& value)
	{
		element* e = new element(name);
		basic_serializer_type::serialize(e, value);
		n->append(e);
	}

	static void deserialize_child(const container* n, const char* name, value_type& value)
	{
		element* e = n->find_first(name);
		if (e != nullptr)
			basic_serializer_type::deserialize(e, value);
		else
			value = value_type();
	}
};

// serializer_type, the final interface for doing the actual work, is
// a templated class with a default implementation that derives from
// basic_serializer_type and a couple of specializations.

template<typename T>
struct serializer_type : public basic_serializer_type<
									typename boost::mpl::if_c<
											boost::is_arithmetic<T>::value,
											wrapped_serializer<arithmetic_serializer<T> >,
											typename boost::mpl::if_c<
												boost::is_enum<T>::value,
												enum_serializer<T>,
												struct_serializer_impl<T>
											>::type
										>::type>
{
};

template<>
struct serializer_type<bool> : public basic_serializer_type<wrapped_serializer<bool_serializer> >
{
};

template<>
struct serializer_type<std::string> : public basic_serializer_type<wrapped_serializer<string_serializer> >
{
};

template<>
struct serializer_type<boost::posix_time::ptime>
	: public basic_serializer_type<wrapped_serializer<boost_posix_time_ptime_serializer> >
{
};

template<>
struct serializer_type<boost::gregorian::date>
	: public basic_serializer_type<wrapped_serializer<boost_gregorian_date_serializer> >
{
};

template<>
struct serializer_type<boost::posix_time::time_duration>
	: public basic_serializer_type<wrapped_serializer<boost_posix_time_time_duration_serializer> >
{
};

// serializer for STL container types

template<typename C>
struct serialize_container_type
{
	typedef C container_type;
	typedef typename container_type::value_type value_type;
	typedef serializer_type<value_type> base_serializer_type;

	static const char* type_name() { return base_serializer_type::type_name(); }
	
	static void serialize_child(container* n, const char* name, const container_type& value)
	{
		BOOST_FOREACH (const value_type& v, value)
		{
			base_serializer_type::serialize_child(n, name, v);
		}
	}

	static void deserialize_child(const container* n, const char* name, container_type& value)
	{
		// clear the value first
		value.clear();
		
		BOOST_FOREACH (const element* e, *n)
		{
			if (e->name() != name)
				continue;
			
			value_type v;
			base_serializer_type::deserialize(e, v);
			value.push_back(v);
		}
	}

	static element* schema(const std::string& name)
	{
		element* result = base_serializer_type::schema(name);
	
		result->remove_attribute("minOccurs");
		result->set_attribute("minOccurs", "0");
		
		result->remove_attribute("maxOccurs");
		result->set_attribute("maxOccurs", "unbounded");
	
		return result;
	}

	static void register_type(type_map& types)
	{
		base_serializer_type::register_type(types);
	}
};

template<typename T>
struct serializer_type<std::vector<T> > : public serialize_container_type<std::vector<T> >
{
};

template<typename T>
struct serializer_type<std::list<T> > : public serialize_container_type<std::list<T> >
{
};

template<typename T>
struct serializer_type<std::deque<T> > : public serialize_container_type<std::deque<T> >
{
};

template<typename T>
struct serializer_type<boost::optional<T> >
{
	typedef T							value_type;
	typedef serializer_type<value_type>	base_serializer_type;
	
	static const char* type_name() { return base_serializer_type::type_name(); }

	static void serialize_child(container* n, const char* name, const boost::optional<value_type>& value)
	{
		if (value.is_initialized())
			base_serializer_type::serialize_child(n, name, value.get());
	}

	static void deserialize_child(const container* n, const char* name, boost::optional<value_type>& value)
	{
		// clear value first
		value.reset();
		
		element* e = n->find_first(name);
		if (e != nullptr)
		{
			value_type v;
			base_serializer_type::deserialize_child(n, name, v);
			value = v;
		}
	}

	static element* schema(const std::string& name)
	{
		element* result = base_serializer_type::schema(name);
	
		result->remove_attribute("minOccurs");
		result->set_attribute("minOccurs", "0");
		
		result->remove_attribute("maxOccurs");
		result->set_attribute("maxOccurs", "1");
	
		return result;
	}

	static void register_type(type_map& types)
	{
		base_serializer_type::register_type(types);
	}
};

// And finally, the implementation of serializer, deserializer and schema_creator.

template<typename T>
serializer& serializer::serialize_element(const char* name, const T& value)
{
	typedef typename boost::remove_const<typename boost::remove_reference<T>::type>::type	value_type;
	typedef serializer_type<value_type>											type_serializer;

	type_serializer::serialize_child(m_node, name, value);

	return *this;
}

template<typename T>
serializer& serializer::serialize_attribute(const char* name, const T& value)
{
	typedef typename boost::remove_const<typename boost::remove_reference<T>::type>::type	value_type;
	typedef typename serializer_type<value_type>::type_serializer_type						type_serializer;

	element* e = dynamic_cast<element*>(m_node);
	if (e == nullptr)
		throw exception("can only create attributes for elements");
	e->set_attribute(name, type_serializer::serialize_value(value));

	return *this;
}

template<typename T>
deserializer& deserializer::deserialize_element(const char* name, T& value)
{
	typedef typename boost::remove_const<typename boost::remove_reference<T>::type>::type	value_type;
	typedef serializer_type<value_type>											type_serializer;
	
	type_serializer::deserialize_child(m_node, name, value);

	return *this;
}

template<typename T>
deserializer& deserializer::deserialize_attribute(const char* name, T& value)
{
	typedef typename boost::remove_const<typename boost::remove_reference<T>::type>::type	value_type;
	typedef typename serializer_type<value_type>::type_serializer_type						type_serializer;

	const element* e = dynamic_cast<const element*>(m_node);
	if (e == nullptr)
		throw exception("can only deserialize attributes for elements");
	else
	{
		std::string attr = e->get_attribute(name);
		if (not attr.empty())
			value = type_serializer::deserialize_value(attr);
	}

	return *this;
}

template<typename T>
schema_creator& schema_creator::add_element(const char* name, const T& value)
{
	typedef typename boost::remove_const<typename boost::remove_reference<T>::type>::type	value_type;
	typedef serializer_type<value_type>											type_serializer;
	
	m_node->append(type_serializer::schema(name));

	std::string type_name = type_serializer::type_name();

	// we might be known already
	if (m_types.find(type_name) == m_types.end())
		type_serializer::register_type(m_types);

	return *this;
}

template<typename T>
schema_creator& schema_creator::add_attribute(const char* name, const T& value)
{
	typedef typename boost::remove_const<typename boost::remove_reference<T>::type>::type	value_type;
	typedef serializer_type<value_type>											type_serializer;
	
	element* n(new element("xsd:attribute"));

	std::string type_name = type_serializer::type_name();

	n->set_attribute("name", name);
	n->set_attribute("type", type_name);

	if (m_types.find(type_name) == m_types.end())
		type_serializer::register_type(m_types);

	assert(m_node->parent() != nullptr);
	if (m_node->parent() != nullptr)
		m_node->parent()->append(n);

	return *this;
}

#endif

}
}

#endif