This file is indexed.

/usr/include/libwildmagic/Wm5SymmetricEigensolverGTE.h is in libwildmagic-dev 5.13-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.12.1 (2014/07/09)

// NOTE: This code was written for the upcoming Geometric Tools Engine but
// has been back-ported to Wild Magic 5 because it has better quality than
// its previous version.

#ifndef WM5SYMMETRICEIGENSOLVER_H
#define WM5SYMMETRICEIGENSOLVER_H

#include "Wm5MathematicsLIB.h"

// The SymmetricEigensolver class is an implementation of Algorithm 8.2.3
// (Symmetric QR Algorithm) described in "Matrix Computations, 2nd edition"
// by G. H. Golub and C. F. Van Loan, The Johns Hopkins University Press,
// Baltimore MD, Fourth Printing 1993.  Algorithm 8.2.1 (Householder
// Tridiagonalization) is used to reduce matrix A to tridiagonal T.
// Algorithm 8.2.2 (Implicit Symmetric QR Step with Wilkinson Shift) is
// used for the iterative reduction from tridiagonal to diagonal.  If A is
// the original matrix, D is the diagonal matrix of eigenvalues, and Q is
// the orthogonal matrix of eigenvectors, then theoretically Q^T*A*Q = D.
// Numerically, we have errors E = Q^T*A*Q - D.  Algorithm 8.2.3 mentions
// that one expects |E| is approximately u*|A|, where |M| denotes the
// Frobenius norm of M and where u is the unit roundoff for the
// floating-point arithmetic: 2^{-23} for 'float', which is FLT_EPSILON
// = 1.192092896e-7f, and 2^{-52} for'double', which is DBL_EPSILON
// = 2.2204460492503131e-16.
//
// The condition |a(i,i+1)| <= epsilon*(|a(i,i) + a(i+1,i+1)|) used to
// determine when the reduction decouples to smaller problems is implemented
// as:  sum = |a(i,i)| + |a(i+1,i+1)|; sum + |a(i,i+1)| == sum.  The idea is
// that the superdiagonal term is small relative to its diagonal neighbors,
// and so it is effectively zero.  The unit tests have shown that this
// interpretation of decoupling is effective.
//
// The authors suggest that once you have the tridiagonal matrix, a practical
// implementation will store the diagonal and superdiagonal entries in linear
// arrays, ignoring the theoretically zero values not in the 3-band.  This is
// good for cache coherence.  The authors also suggest storing the Householder
// vectors in the lower-triangular portion of the matrix to save memory.  The
// implementation uses both suggestions.
//
// For matrices with randomly generated values in [0,1], the unit tests
// produce the following information for N-by-N matrices.
//
// N  |A|     |E|        |E|/|A|    iterations
// -------------------------------------------
//  2  1.2332 5.5511e-17 4.5011e-17  1
//  3  2.0024 1.1818e-15 5.9020e-16  5
//  4  2.8708 9.9287e-16 3.4585e-16  7
//  5  2.9040 2.5958e-15 8.9388e-16  9
//  6  4.0427 2.2434e-15 5.5493e-16 12
//  7  5.0276 3.2456e-15 6.4555e-16 15
//  8  5.4468 6.5626e-15 1.2048e-15 15
//  9  6.1510 4.0317e-15 6.5545e-16 17
// 10  6.7523 4.9334e-15 7.3062e-16 21
// 11  7.1322 7.1347e-15 1.0003e-15 22
// 12  7.8324 5.6106e-15 7.1633e-16 24
// 13  8.1073 5.1366e-15 6.3357e-16 25
// 14  8.6257 8.3496e-15 9.6798e-16 29
// 15  9.2603 6.9526e-15 7.5080e-16 31
// 16  9.9853 6.5807e-15 6.5904e-16 32
// 17 10.5388 8.0931e-15 7.6793e-16 35
// 18 11.2377 1.1149e-14 9.9218e-16 38
// 19 11.7105 1.0711e-14 9.1470e-16 42
// 20 12.2227 1.7723e-14 1.4500e-15 42
// 21 12.7411 1.2515e-14 9.8231e-16 47
// 22 13.4462 1.2645e-14 9.4046e-16 50
// 23 13.9541 1.2899e-14 9.2444e-16 47
// 24 14.3298 1.6337e-14 1.1400e-15 53
// 25 14.8050 1.4760e-14 9.9701e-16 54
// 26 15.3914 1.7076e-14 1.1094e-15 57
// 27 15.8430 1.9714e-14 1.2443e-15 60
// 28 16.4771 1.7148e-14 1.0407e-15 60
// 29 16.9909 1.7309e-14 1.0187e-15 60
// 30 17.4456 2.1453e-14 1.2297e-15 64
// 31 17.9909 2.2069e-14 1.2267e-15 68
//
// The eigenvalues and |E|/|A| values were compared to those generated by
// Mathematica Version 9.0; Wolfram Research, Inc., Champaign IL, 2012.
// The results were all comparable with eigenvalues agreeing to a large
// number of decimal places.
//
// Timing on an Intel (R) Core (TM) i7-3930K CPU @ 3.20 GHZ (in seconds):
//
// N    |E|/|A|    iters tridiag QR     evecs    evec[N]  comperr
// --------------------------------------------------------------
//  512 4.4149e-15 1017   0.180  0.005    1.151    0.848    2.166
// 1024 6.1691e-15 1990   1.775  0.031   11.894   12.759   21.179
// 2048 8.5108e-15 3849  16.592  0.107  119.744  116.56   212.227
//
// where iters is the number of QR steps taken, tridiag is the computation
// of the Householder reflection vectors, evecs is the composition of
// Householder reflections and Givens rotations to obtain the matrix of
// eigenvectors, evec[N] is N calls to get the eigenvectors separately, and
// comperr is the computation E = Q^T*A*Q - D.  The construction of the full
// eigenvector matrix is, of course, quite expensive.  If you need only a
// small number of eigenvectors, use function GetEigenvector(int,Real*).

namespace Wm5
{

template <typename Real>
class WM5_MATHEMATICS_ITEM SymmetricEigensolverGTE
{
public:
    // The solver processes NxN symmetric matrices, where N > 1 ('size' is N)
    // and the matrix is stored in row-major order.  The maximum number of
    // iterations ('maxIterations') must be specified for the reduction of a
    // tridiagonal matrix to a diagonal matrix.  The goal is to compute
    // NxN orthogonal Q and NxN diagonal D for which Q^T*A*Q = D.
    SymmetricEigensolverGTE(int size, unsigned maxIterations);

    // A copy of the NxN symmetric input is made internally.  The order of
    // the eigenvalues is specified by sortType: -1 (decreasing), 0 (no
    // sorting), or +1 (increasing).  When sorted, the eigenvectors are
    // ordered accordingly.  The return value is the number of iterations
    // consumed when convergence occurred, 0xFFFFFFFF when convergence did
    // not occur, or 0 when N <= 1 was passed to the constructor.
    unsigned int Solve(Real const* input, int sortType);

    // Get the eigenvalues of the matrix passed to Solve(...).  The input
    // 'eigenvalues' must have N elements.
    void GetEigenvalues(Real* eigenvalues) const;

    // Accumulate the Householder reflections and Givens rotations to produce
    // the orthogonal matrix Q for which Q^T*A*Q = D.  The input
    // 'eigenvectors' must be NxN and stored in row-major order.
    void GetEigenvectors(Real* eigenvectors) const;

    // With no sorting, when N is odd the matrix returned by GetEigenvectors
    // is a reflection and when N is even it is a rotation.  With sorting
    // enabled, the type of matrix returned depends on the permutation of
    // columns.  If the permutation has C cycles, the minimum number of column
    // transpositions is T = N-C.  Thus, when C is odd the matrix is a
    // reflection and when C is even the matrix is a rotation.
    bool IsRotation() const;

    // Compute a single eigenvector, which amounts to computing column c
    // of matrix Q.  The reflections and rotations are applied incrementally.
    // This is useful when you want only a small number of the eigenvectors.
    void GetEigenvector(int c, Real* eigenvector) const;

private:
    // Tridiagonalize using Householder reflections.  On input, mMatrix is a
    // copy of the input matrix.  On output, the upper-triangular part of
    // mMatrix including the diagonal stores the tridiagonalization.  The
    // lower-triangular part contains 2/Dot(v,v) that are used in computing
    // eigenvectors and the part below the subdiagonal stores the essential
    // parts of the Householder vectors v (the elements of v after the
    // leading 1-valued component).
    void Tridiagonalize();

    // A helper for generating Givens rotation sine and cosine robustly.
    void GetSinCos(Real u, Real v, Real& cs, Real& sn);

    // The QR step with implicit shift.  Generally, the initial T is unreduced
    // tridiagonal (all subdiagonal entries are nonzero).  If a QR step causes
    // a superdiagonal entry to become zero, the matrix decouples into a block
    // diagonal matrix with two tridiagonal blocks.  These blocks can be
    // reduced independently of each other, which allows for parallelization
    // of the algorithm.  The inputs imin and imax identify the subblock of T
    // to be processed.   That block has upper-left element T(imin,imin) and
    // lower-right element T(imax,imax).
    void DoQRImplicitShift(int imin, int imax);

    // Sort the eigenvalues and compute the corresponding permutation of the
    // indices of the array storing the eigenvalues.  The permutation is used
    // for reordering the eigenvalues and eigenvectors in the calls to
    // GetEigenvalues(...) and GetEigenvectors(...).
    void ComputePermutation(int sortType);

    // The number N of rows and columns of the matrices to be processed.
    int mSize;

    // The maximum number of iterations for reducing the tridiagonal mtarix
    // to a diagonal matrix.
    unsigned int mMaxIterations;

    // The internal copy of a matrix passed to the solver.  See the comments
    // about function Tridiagonalize() about what is stored in the matrix.
    std::vector<Real> mMatrix;  // NxN elements

    // After the initial tridiagonalization by Householder reflections, we no
    // longer need the full mMatrix.  Copy the diagonal and superdiagonal
    // entries to linear arrays in order to be cache friendly.
    std::vector<Real> mDiagonal;  // N elements
    std::vector<Real> mSuperdiagonal;  // N-1 elements

    // The Givens rotations used to reduce the initial tridiagonal matrix to
    // a diagonal matrix.  A rotation is the identity with the following
    // replacement entries:  R(index,index) = cs, R(index,index+1) = sn,
    // R(index+1,index) = -sn, and R(index+1,index+1) = cs.  If N is the
    // matrix size and K is the maximum number of iterations, the maximum
    // number of Givens rotations is K*(N-1).  The maximum amount of memory
    // is allocated to store these.
    struct WM5_MATHEMATICS_ITEM GivensRotation
    {
        GivensRotation();
        GivensRotation(int inIndex, Real inCs, Real inSn);
        int index;
        Real cs, sn;
    };

    std::vector<GivensRotation> mGivens;  // K*(N-1) elements

    // When sorting is requested, the permutation associated with the sort is
    // stored in mPermutation.  When sorting is not requested, mPermutation[0]
    // is set to -1.  mVisited is used for finding cycles in the permutation.
    struct SortItem
    {
        Real eigenvalue;
        int index;

        bool operator<(SortItem const& item) const
        {
            return eigenvalue < item.eigenvalue;
        }

        bool operator>(SortItem const& item) const
        {
            return eigenvalue > item.eigenvalue;
        }
    };
    std::vector<int> mPermutation;  // N elements
    mutable std::vector<int> mVisited;  // N elements
    mutable int mIsRotation;  // 1 = rotation, 0 = reflection, -1 = unknown

    // Temporary storage to compute Householder reflections and to support
    // sorting of eigenvectors.
    mutable std::vector<Real> mPVector;  // N elements
    mutable std::vector<Real> mVVector;  // N elements
    mutable std::vector<Real> mWVector;  // N elements
};

typedef SymmetricEigensolverGTE<float> SymmetricEigensolverGTEf;
typedef SymmetricEigensolverGTE<double> SymmetricEigensolverGTEd;

}

#endif