/usr/include/vtk-6.3/vtkTriangle.h is in libvtk6-dev 6.3.0+dfsg1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkTriangle.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkTriangle - a cell that represents a triangle
// .SECTION Description
// vtkTriangle is a concrete implementation of vtkCell to represent a triangle
// located in 3-space.
#ifndef vtkTriangle_h
#define vtkTriangle_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkCell.h"
#include "vtkMath.h" // Needed for inline methods
class vtkLine;
class vtkQuadric;
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkTriangle : public vtkCell
{
public:
static vtkTriangle *New();
vtkTypeMacro(vtkTriangle,vtkCell);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Get the edge specified by edgeId (range 0 to 2) and return that edge's
// coordinates.
vtkCell *GetEdge(int edgeId);
// Description:
// See the vtkCell API for descriptions of these methods.
int GetCellType() {return VTK_TRIANGLE;};
int GetCellDimension() {return 2;};
int GetNumberOfEdges() {return 3;};
int GetNumberOfFaces() {return 0;};
vtkCell *GetFace(int) {return 0;};
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
void Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights);
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights);
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs);
virtual double *GetParametricCoords();
// Description:
// A convenience function to compute the area of a vtkTriangle.
double ComputeArea();
// Description:
// Clip this triangle using scalar value provided. Like contouring, except
// that it cuts the triangle to produce other triangles.
void Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut);
// Description:
// @deprecated Replaced by vtkTriangle::InterpolateFunctions as of VTK 5.2
static void InterpolationFunctions(double pcoords[3], double sf[3]);
// Description:
// @deprecated Replaced by vtkTriangle::InterpolateDerivs as of VTK 5.2
static void InterpolationDerivs(double pcoords[3], double derivs[6]);
// Description:
// Compute the interpolation functions/derivatives
// (aka shape functions/derivatives)
virtual void InterpolateFunctions(double pcoords[3], double sf[3])
{
vtkTriangle::InterpolationFunctions(pcoords,sf);
}
virtual void InterpolateDerivs(double pcoords[3], double derivs[6])
{
vtkTriangle::InterpolationDerivs(pcoords,derivs);
}
// Description:
// Return the ids of the vertices defining edge (`edgeId`).
// Ids are related to the cell, not to the dataset.
int *GetEdgeArray(int edgeId);
// Description:
// Plane intersection plus in/out test on triangle. The in/out test is
// performed using tol as the tolerance.
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId);
// Description:
// Return the center of the triangle in parametric coordinates.
int GetParametricCenter(double pcoords[3]);
// Description:
// Return the distance of the parametric coordinate provided to the
// cell. If inside the cell, a distance of zero is returned.
double GetParametricDistance(double pcoords[3]);
// Description:
// Compute the center of the triangle.
static void TriangleCenter(double p1[3], double p2[3], double p3[3],
double center[3]);
// Description:
// Compute the area of a triangle in 3D.
// See also vtkTriangle::ComputeArea()
static double TriangleArea(double p1[3], double p2[3], double p3[3]);
// Description:
// Compute the circumcenter (center[3]) and radius squared (method
// return value) of a triangle defined by the three points x1, x2,
// and x3. (Note that the coordinates are 2D. 3D points can be used
// but the z-component will be ignored.)
static double Circumcircle(double p1[2], double p2[2], double p3[2],
double center[2]);
// Description:
// Given a 2D point x[2], determine the barycentric coordinates of the point.
// Barycentric coordinates are a natural coordinate system for simplices that
// express a position as a linear combination of the vertices. For a
// triangle, there are three barycentric coordinates (because there are
// three vertices), and the sum of the coordinates must equal 1. If a
// point x is inside a simplex, then all three coordinates will be strictly
// positive. If two coordinates are zero (so the third =1), then the
// point x is on a vertex. If one coordinates are zero, the point x is on an
// edge. In this method, you must specify the vertex coordinates x1->x3.
// Returns 0 if triangle is degenerate.
static int BarycentricCoords(double x[2], double x1[2], double x2[2],
double x3[2], double bcoords[3]);
// Description:
// Project triangle defined in 3D to 2D coordinates. Returns 0 if
// degenerate triangle; non-zero value otherwise. Input points are x1->x3;
// output 2D points are v1->v3.
static int ProjectTo2D(double x1[3], double x2[3], double x3[3],
double v1[2], double v2[2], double v3[2]);
// Description:
// Compute the triangle normal from a points list, and a list of point ids
// that index into the points list.
static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts,
double n[3]);
// Description:
// Compute the triangle normal from three points.
static void ComputeNormal(double v1[3], double v2[3], double v3[3], double n[3]);
// Description:
// Compute the (unnormalized) triangle normal direction from three points.
static void ComputeNormalDirection(double v1[3], double v2[3], double v3[3],
double n[3]);
// Description:
// Given a point x, determine whether it is inside (within the
// tolerance squared, tol2) the triangle defined by the three
// coordinate values p1, p2, p3. Method is via comparing dot products.
// (Note: in current implementation the tolerance only works in the
// neighborhood of the three vertices of the triangle.
static int PointInTriangle(double x[3], double x1[3],
double x2[3], double x3[3],
double tol2);
// Description:
// Calculate the error quadric for this triangle. Return the
// quadric as a 4x4 matrix or a vtkQuadric. (from Peter
// Lindstrom's Siggraph 2000 paper, "Out-of-Core Simplification of
// Large Polygonal Models")
static void ComputeQuadric(double x1[3], double x2[3], double x3[3],
double quadric[4][4]);
static void ComputeQuadric(double x1[3], double x2[3], double x3[3],
vtkQuadric *quadric);
protected:
vtkTriangle();
~vtkTriangle();
vtkLine *Line;
private:
vtkTriangle(const vtkTriangle&); // Not implemented.
void operator=(const vtkTriangle&); // Not implemented.
};
//----------------------------------------------------------------------------
inline int vtkTriangle::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = 1./3; pcoords[2] = 0.0;
return 0;
}
//----------------------------------------------------------------------------
inline void vtkTriangle::ComputeNormalDirection(double v1[3], double v2[3],
double v3[3], double n[3])
{
double ax, ay, az, bx, by, bz;
// order is important!!! maintain consistency with triangle vertex order
ax = v3[0] - v2[0]; ay = v3[1] - v2[1]; az = v3[2] - v2[2];
bx = v1[0] - v2[0]; by = v1[1] - v2[1]; bz = v1[2] - v2[2];
n[0] = (ay * bz - az * by);
n[1] = (az * bx - ax * bz);
n[2] = (ax * by - ay * bx);
}
//----------------------------------------------------------------------------
inline void vtkTriangle::ComputeNormal(double v1[3], double v2[3],
double v3[3], double n[3])
{
double length;
vtkTriangle::ComputeNormalDirection(v1, v2, v3, n);
if ( (length = sqrt((n[0]*n[0] + n[1]*n[1] + n[2]*n[2]))) != 0.0 )
{
n[0] /= length;
n[1] /= length;
n[2] /= length;
}
}
//----------------------------------------------------------------------------
inline void vtkTriangle::TriangleCenter(double p1[3], double p2[3],
double p3[3], double center[3])
{
center[0] = (p1[0]+p2[0]+p3[0]) / 3.0;
center[1] = (p1[1]+p2[1]+p3[1]) / 3.0;
center[2] = (p1[2]+p2[2]+p3[2]) / 3.0;
}
//----------------------------------------------------------------------------
inline double vtkTriangle::TriangleArea(double p1[3], double p2[3], double p3[3])
{
double a,b,c;
a = vtkMath::Distance2BetweenPoints(p1,p2);
b = vtkMath::Distance2BetweenPoints(p2,p3);
c = vtkMath::Distance2BetweenPoints(p3,p1);
return (0.25* sqrt(fabs(4.0*a*c - (a-b+c)*(a-b+c))));
}
#endif
|