/usr/include/vtk-6.3/vtkTransform.h is in libvtk6-dev 6.3.0+dfsg1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkTransform.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkTransform - describes linear transformations via a 4x4 matrix
// .SECTION Description
// A vtkTransform can be used to describe the full range of linear (also
// known as affine) coordinate transformations in three dimensions,
// which are internally represented as a 4x4 homogeneous transformation
// matrix. When you create a new vtkTransform, it is always initialized
// to the identity transformation.
// <P>The SetInput() method allows you to set another transform,
// instead of the identity transform, to be the base transformation.
// There is a pipeline mechanism to ensure that when the input is
// modified, the current transformation will be updated accordingly.
// This pipeline mechanism is also supported by the Concatenate() method.
// <P>Most of the methods for manipulating this transformation,
// e.g. Translate, Rotate, and Concatenate, can operate in either
// PreMultiply (the default) or PostMultiply mode. In PreMultiply
// mode, the translation, concatenation, etc. will occur before any
// transformations which are represented by the current matrix. In
// PostMultiply mode, the additional transformation will occur after
// any transformations represented by the current matrix.
// <P>This class performs all of its operations in a right handed
// coordinate system with right handed rotations. Some other graphics
// libraries use left handed coordinate systems and rotations.
// .SECTION See Also
// vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4
// vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter
// vtkImageReslice
#ifndef vtkTransform_h
#define vtkTransform_h
#include "vtkCommonTransformsModule.h" // For export macro
#include "vtkLinearTransform.h"
#include "vtkMatrix4x4.h" // Needed for inline methods
class VTKCOMMONTRANSFORMS_EXPORT vtkTransform : public vtkLinearTransform
{
public:
static vtkTransform *New();
vtkTypeMacro(vtkTransform,vtkLinearTransform);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Set the transformation to the identity transformation. If
// the transform has an Input, then the transformation will be
// reset so that it is the same as the Input.
void Identity();
// Description:
// Invert the transformation. This will also set a flag so that
// the transformation will use the inverse of its Input, if an Input
// has been set.
void Inverse();
// Description:
// Create a translation matrix and concatenate it with the current
// transformation according to PreMultiply or PostMultiply semantics.
void Translate(double x, double y, double z) {
this->Concatenation->Translate(x,y,z); };
void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); };
void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); };
// Description:
// Create a rotation matrix and concatenate it with the current
// transformation according to PreMultiply or PostMultiply semantics.
// The angle is in degrees, and (x,y,z) specifies the axis that the
// rotation will be performed around.
void RotateWXYZ(double angle, double x, double y, double z) {
this->Concatenation->Rotate(angle,x,y,z); };
void RotateWXYZ(double angle, const double axis[3]) {
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
void RotateWXYZ(double angle, const float axis[3]) {
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
// Description:
// Create a rotation matrix about the X, Y, or Z axis and concatenate
// it with the current transformation according to PreMultiply or
// PostMultiply semantics. The angle is expressed in degrees.
void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); };
void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); };
void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); };
// Description:
// Create a scale matrix (i.e. set the diagonal elements to x, y, z)
// and concatenate it with the current transformation according to
// PreMultiply or PostMultiply semantics.
void Scale(double x, double y, double z) {
this->Concatenation->Scale(x,y,z); };
void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); };
void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); };
// Description:
// Set the current matrix directly. Note: First, the current
// matrix is set to the identity, then the input matrix is concatenated.
void SetMatrix(vtkMatrix4x4 *matrix) {
this->SetMatrix(*matrix->Element); };
void SetMatrix(const double elements[16]) {
this->Concatenation->Identity(); this->Concatenate(elements); };
// Description:
// Concatenates the matrix with the current transformation according
// to PreMultiply or PostMultiply semantics.
void Concatenate(vtkMatrix4x4 *matrix) {
this->Concatenate(*matrix->Element); };
void Concatenate(const double elements[16]) {
this->Concatenation->Concatenate(elements); };
// Description:
// Concatenate the specified transform with the current transformation
// according to PreMultiply or PostMultiply semantics.
// The concatenation is pipelined, meaning that if any of the
// transformations are changed, even after Concatenate() is called,
// those changes will be reflected when you call TransformPoint().
void Concatenate(vtkLinearTransform *transform);
// Description:
// Sets the internal state of the transform to PreMultiply. All subsequent
// operations will occur before those already represented in the
// current transformation. In homogeneous matrix notation, M = M*A where
// M is the current transformation matrix and A is the applied matrix.
// The default is PreMultiply.
void PreMultiply() {
if (this->Concatenation->GetPreMultiplyFlag()) { return; }
this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); };
// Description:
// Sets the internal state of the transform to PostMultiply. All subsequent
// operations will occur after those already represented in the
// current transformation. In homogeneous matrix notation, M = A*M where
// M is the current transformation matrix and A is the applied matrix.
// The default is PreMultiply.
void PostMultiply() {
if (!this->Concatenation->GetPreMultiplyFlag()) { return; }
this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); };
// Description:
// Get the total number of transformations that are linked into this
// one via Concatenate() operations or via SetInput().
int GetNumberOfConcatenatedTransforms() {
return this->Concatenation->GetNumberOfTransforms() +
(this->Input == NULL ? 0 : 1); };
// Description
// Get one of the concatenated transformations as a vtkAbstractTransform.
// These transformations are applied, in series, every time the
// transformation of a coordinate occurs. This method is provided
// to make it possible to decompose a transformation into its
// constituents, for example to save a transformation to a file.
vtkLinearTransform *GetConcatenatedTransform(int i)
{
vtkAbstractTransform *t;
if (this->Input == NULL)
{
t=this->Concatenation->GetTransform(i);
}
else if (i < this->Concatenation->GetNumberOfPreTransforms())
{
t=this->Concatenation->GetTransform(i);
}
else if (i > this->Concatenation->GetNumberOfPreTransforms())
{
t=this->Concatenation->GetTransform(i-1);
}
else if (this->GetInverseFlag())
{
t=this->Input->GetInverse();
}
else
{
t=this->Input;
}
return static_cast<vtkLinearTransform *>(t);
}
// Description:
// Get the x, y, z orientation angles from the transformation matrix as an
// array of three floating point values.
void GetOrientation(double orient[3]);
void GetOrientation(float orient[3]) {
double temp[3]; this->GetOrientation(temp);
orient[0] = static_cast<float>(temp[0]);
orient[1] = static_cast<float>(temp[1]);
orient[2] = static_cast<float>(temp[2]); };
double *GetOrientation() {
this->GetOrientation(this->ReturnValue); return this->ReturnValue; };
// Description:
// Convenience function to get the x, y, z orientation angles from
// a transformation matrix as an array of three floating point values.
static void GetOrientation(double orient[3], vtkMatrix4x4 *matrix);
// Description:
// Return the wxyz angle+axis representing the current orientation.
// The angle is in degrees and the axis is a unit vector.
void GetOrientationWXYZ(double wxyz[4]);
void GetOrientationWXYZ(float wxyz[4]) {
double temp[4]; this->GetOrientationWXYZ(temp);
wxyz[0]=static_cast<float>(temp[0]);
wxyz[1]=static_cast<float>(temp[1]);
wxyz[2]=static_cast<float>(temp[2]);
wxyz[3]=static_cast<float>(temp[3]);};
double *GetOrientationWXYZ() {
this->GetOrientationWXYZ(this->ReturnValue); return this->ReturnValue; };
// Description:
// Return the position from the current transformation matrix as an array
// of three floating point numbers. This is simply returning the translation
// component of the 4x4 matrix.
void GetPosition(double pos[3]);
void GetPosition(float pos[3]) {
double temp[3]; this->GetPosition(temp);
pos[0] = static_cast<float>(temp[0]);
pos[1] = static_cast<float>(temp[1]);
pos[2] = static_cast<float>(temp[2]); };
double *GetPosition() {
this->GetPosition(this->ReturnValue); return this->ReturnValue; };
// Description:
// Return the scale factors of the current transformation matrix as
// an array of three float numbers. These scale factors are not necessarily
// about the x, y, and z axes unless unless the scale transformation was
// applied before any rotations.
void GetScale(double scale[3]);
void GetScale(float scale[3]) {
double temp[3]; this->GetScale(temp);
scale[0] = static_cast<float>(temp[0]);
scale[1] = static_cast<float>(temp[1]);
scale[2] = static_cast<float>(temp[2]); };
double *GetScale() {
this->GetScale(this->ReturnValue); return this->ReturnValue; };
// Description:
// Return a matrix which is the inverse of the current transformation
// matrix.
void GetInverse(vtkMatrix4x4 *inverse);
// Description:
// Return a matrix which is the transpose of the current transformation
// matrix. This is equivalent to the inverse if and only if the
// transformation is a pure rotation with no translation or scale.
void GetTranspose(vtkMatrix4x4 *transpose);
// Description:
// Set the input for this transformation. This will be used as the
// base transformation if it is set. This method allows you to build
// a transform pipeline: if the input is modified, then this transformation
// will automatically update accordingly. Note that the InverseFlag,
// controlled via Inverse(), determines whether this transformation
// will use the Input or the inverse of the Input.
void SetInput(vtkLinearTransform *input);
vtkLinearTransform *GetInput() { return this->Input; };
// Description:
// Get the inverse flag of the transformation. This controls
// whether it is the Input or the inverse of the Input that
// is used as the base transformation. The InverseFlag is
// flipped every time Inverse() is called. The InverseFlag
// is off when a transform is first created.
int GetInverseFlag() {
return this->Concatenation->GetInverseFlag(); };
// Description:
// Pushes the current transformation onto the transformation stack.
void Push() { if (this->Stack == NULL) {
this->Stack = vtkTransformConcatenationStack::New(); }
this->Stack->Push(&this->Concatenation);
this->Modified(); };
// Description:
// Deletes the transformation on the top of the stack and sets the top
// to the next transformation on the stack.
void Pop() { if (this->Stack == NULL) { return; }
this->Stack->Pop(&this->Concatenation);
this->Modified(); };
// Description:
// Check for self-reference. Will return true if concatenating
// with the specified transform, setting it to be our inverse,
// or setting it to be our input will create a circular reference.
// CircuitCheck is automatically called by SetInput(), SetInverse(),
// and Concatenate(vtkXTransform *). Avoid using this function,
// it is experimental.
int CircuitCheck(vtkAbstractTransform *transform);
// Return an inverse transform which will always update itself
// to match this transform.
vtkAbstractTransform *GetInverse() {
return vtkLinearTransform::GetInverse(); }
// Description:
// Make a new transform of the same type.
vtkAbstractTransform *MakeTransform();
// Description:
// Override GetMTime to account for input and concatenation.
unsigned long GetMTime();
// Description:
// Use this method only if you wish to compute the transformation in
// homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint().
// This method calls this->GetMatrix()->MultiplyPoint().
void MultiplyPoint(const float in[4], float out[4]) {
this->GetMatrix()->MultiplyPoint(in,out);};
void MultiplyPoint(const double in[4], double out[4]) {
this->GetMatrix()->MultiplyPoint(in,out);};
protected:
vtkTransform ();
~vtkTransform ();
void InternalDeepCopy(vtkAbstractTransform *t);
void InternalUpdate();
vtkLinearTransform *Input;
vtkTransformConcatenation *Concatenation;
vtkTransformConcatenationStack *Stack;
// this allows us to check whether people have been fooling
// around with our matrix
unsigned long MatrixUpdateMTime;
float Point[4];
double DoublePoint[4];
double ReturnValue[4];
private:
vtkTransform (const vtkTransform&); // Not implemented
void operator=(const vtkTransform&); // Not implemented
};
#endif
|