/usr/include/vtk-6.3/vtkParticleTracerBase.h is in libvtk6-dev 6.3.0+dfsg1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkParticleTracerBase.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkParticleTracerBase - A particle tracer for vector fields
// .SECTION Description
// vtkParticleTracerBase is the base class for filters that advect particles
// in a vector field. Note that the input vtkPointData structure must
// be identical on all datasets.
//
// .SECTION See Also
// vtkRibbonFilter vtkRuledSurfaceFilter vtkInitialValueProblemSolver
// vtkRungeKutta2 vtkRungeKutta4 vtkRungeKutta45 vtkStreamTracer
#ifndef vtkParticleTracerBase_h
#define vtkParticleTracerBase_h
#include "vtkFiltersFlowPathsModule.h" // For export macro
#include "vtkSmartPointer.h" // For protected ivars.
#include "vtkPolyDataAlgorithm.h"
//BTX
#include <vector> // STL Header
#include <list> // STL Header
//ETX
class vtkAbstractInterpolatedVelocityField;
class vtkAbstractParticleWriter;
class vtkCellArray;
class vtkCharArray;
class vtkCompositeDataSet;
class vtkDataArray;
class vtkDataSet;
class vtkDoubleArray;
class vtkFloatArray;
class vtkGenericCell;
class vtkInitialValueProblemSolver;
class vtkIntArray;
class vtkMultiBlockDataSet;
class vtkMultiProcessController;
class vtkPointData;
class vtkPoints;
class vtkPolyData;
class vtkTemporalInterpolatedVelocityField;
//BTX
namespace vtkParticleTracerBaseNamespace
{
typedef struct { double x[4]; } Position;
typedef struct {
// These are used during iteration
Position CurrentPosition;
int CachedDataSetId[2];
vtkIdType CachedCellId[2];
int LocationState;
// These are computed scalars we might display
int SourceID;
int TimeStepAge;
int InjectedPointId;
int InjectedStepId;
int UniqueParticleId;
double SimulationTime;
// These are useful to track for debugging etc
int ErrorCode;
float age;
// these are needed across time steps to compute vorticity
float rotation;
float angularVel;
float time;
float speed;
// once the partice is added, PointId is valid and is the tuple location
// in ProtoPD.
vtkIdType PointId;
// if PointId is negative then in parallel this particle was just
// received and we need to get the tuple value from vtkPParticleTracerBase::Tail.
vtkIdType TailPointId;
} ParticleInformation;
typedef std::vector<ParticleInformation> ParticleVector;
typedef ParticleVector::iterator ParticleIterator;
typedef std::list<ParticleInformation> ParticleDataList;
typedef ParticleDataList::iterator ParticleListIterator;
};
//ETX
class VTKFILTERSFLOWPATHS_EXPORT vtkParticleTracerBase : public vtkPolyDataAlgorithm
{
public:
enum Solvers
{
RUNGE_KUTTA2,
RUNGE_KUTTA4,
RUNGE_KUTTA45,
NONE,
UNKNOWN
};
vtkTypeMacro(vtkParticleTracerBase,vtkPolyDataAlgorithm)
void PrintSelf(ostream& os, vtkIndent indent);
void PrintParticleHistories();
// Description
// Turn on/off vorticity computation at streamline points
// (necessary for generating proper stream-ribbons using the
// vtkRibbonFilter.
vtkGetMacro(ComputeVorticity, bool);
void SetComputeVorticity(bool);
// Description
// Specify the terminal speed value, below which integration is terminated.
vtkGetMacro(TerminalSpeed, double);
void SetTerminalSpeed(double);
// Description
// This can be used to scale the rate with which the streamribbons
// twist. The default is 1.
vtkGetMacro(RotationScale, double);
void SetRotationScale(double);
// Description:
// To get around problems with the Paraview Animation controls
// we can just animate the time step and ignore the TIME_ requests
vtkSetMacro(IgnorePipelineTime, int);
vtkGetMacro(IgnorePipelineTime, int);
vtkBooleanMacro(IgnorePipelineTime, int);
// Description:
// When animating particles, it is nice to inject new ones every Nth step
// to produce a continuous flow. Setting ForceReinjectionEveryNSteps to a
// non zero value will cause the particle source to reinject particles
// every Nth step even if it is otherwise unchanged.
// Note that if the particle source is also animated, this flag will be
// redundant as the particles will be reinjected whenever the source changes
// anyway
vtkGetMacro(ForceReinjectionEveryNSteps,int);
void SetForceReinjectionEveryNSteps(int);
// Description:
// Setting TerminationTime to a positive value will cause particles
// to terminate when the time is reached. Use a vlue of zero to
// diable termination. The units of time should be consistent with the
// primary time variable.
void SetTerminationTime(double t);
vtkGetMacro(TerminationTime,double);
void SetIntegrator(vtkInitialValueProblemSolver *);
vtkGetObjectMacro ( Integrator, vtkInitialValueProblemSolver );
void SetIntegratorType(int type);
int GetIntegratorType();
// Description:
// Setting TerminationTime to a positive value will cause particles
// to terminate when the time is reached. Use a vlue of zero to
// diable termination. The units of time should be consistent with the
// primary time variable.
vtkGetMacro(StartTime, double);
void SetStartTime(double t);
// Description:
// if StaticSeeds is set and the mesh is static,
// then every time particles are injected we can re-use the same
// injection information. We classify particles according to
// processor just once before start.
// If StaticSeeds is set and a moving seed source is specified
// the motion will be ignored and results will not be as expected.
// The default is that StaticSeeds is 0.
vtkSetMacro(StaticSeeds,int);
vtkGetMacro(StaticSeeds,int);
// Description:
// if StaticMesh is set, many optimizations for cell caching
// can be assumed. if StaticMesh is not set, the algorithm
// will attempt to find out if optimizations can be used, but
// setting it to true will force all optimizations.
// Do not Set StaticMesh to true if a dynamic mesh is being used
// as this will invalidate all results.
// The default is that StaticMesh is 0.
vtkSetMacro(StaticMesh,int);
vtkGetMacro(StaticMesh,int);
// Description:
// Set/Get the Writer associated with this Particle Tracer
// Ideally a parallel IO capable vtkH5PartWriter should be used
// which will collect particles from all parallel processes
// and write them to a single HDF5 file.
virtual void SetParticleWriter(vtkAbstractParticleWriter *pw);
vtkGetObjectMacro(ParticleWriter, vtkAbstractParticleWriter);
// Description:
// Set/Get the filename to be used with the particle writer when
// dumping particles to disk
vtkSetStringMacro(ParticleFileName);
vtkGetStringMacro(ParticleFileName);
// Description:
// Set/Get the filename to be used with the particle writer when
// dumping particles to disk
vtkSetMacro(EnableParticleWriting,int);
vtkGetMacro(EnableParticleWriting,int);
vtkBooleanMacro(EnableParticleWriting,int);
// Description:
// Set/Get the flag to disable cache
// This is off by default and turned on in special circumstances
// such as in a coprocessing workflow
vtkSetMacro(DisableResetCache,int);
vtkGetMacro(DisableResetCache,int);
vtkBooleanMacro(DisableResetCache,int);
// Description:
// Provide support for multiple see sources
void AddSourceConnection(vtkAlgorithmOutput* input);
void RemoveAllSources();
protected:
vtkSmartPointer<vtkPolyData> Output; //managed by child classes
// Description:
// ProtoPD is used just to keep track of the input array names and number of components
// for copy allocating from other vtkPointDatas where the data is really stored
vtkSmartPointer<vtkPointData> ProtoPD;
vtkIdType UniqueIdCounter;// global Id counter used to give particles a stamp
vtkParticleTracerBaseNamespace::ParticleDataList ParticleHistories;
vtkSmartPointer<vtkPointData> ParticlePointData; //the current particle point data consistent
//with particle history
//Everything related to time
int IgnorePipelineTime; //whether to use the pipeline time for termination
int DisableResetCache; //whether to enable ResetCache() method
vtkParticleTracerBase();
virtual ~vtkParticleTracerBase();
//
// Make sure the pipeline knows what type we expect as input
//
virtual int FillInputPortInformation(int port, vtkInformation* info);
//
// The usual suspects
//
virtual int ProcessRequest(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
//
// Store any information we need in the output and fetch what we can
// from the input
//
virtual int RequestInformation(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
//
// Compute input time steps given the output step
//
virtual int RequestUpdateExtent(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
//
// what the pipeline calls for each time step
//
virtual int RequestData(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
//
// these routines are internally called to actually generate the output
//
virtual int ProcessInput(vtkInformationVector** inputVector);
// This is the main part of the algorithm:
// * move all the particles one step
// * Reinject particles (by adding them to this->ParticleHistories)
// either at the beginning or at the end of each step (modulo this->ForceReinjectionEveryNSteps)
// * Output a polydata representing the moved particles
// Note that if the starting and the ending time coincide, the polydata is still valid.
virtual vtkPolyData* Execute(vtkInformationVector** inputVector);
// the RequestData will call these methods in turn
virtual void Initialize(){} //the first iteration
virtual int OutputParticles(vtkPolyData* poly)=0; //every iteration
virtual void Finalize(){} //the last iteration
//
// Initialization of input (vector-field) geometry
//
int InitializeInterpolator();
int UpdateDataCache(vtkDataObject *td);
// Description : Test the list of particles to see if they are
// inside our data. Add good ones to passed list and set count to the
// number that passed
void TestParticles(
vtkParticleTracerBaseNamespace::ParticleVector &candidates,
vtkParticleTracerBaseNamespace::ParticleVector &passed,
int &count);
void TestParticles(
vtkParticleTracerBaseNamespace::ParticleVector &candidates, std::vector<int> &passed);
// Description : Before starting the particle trace, classify
// all the injection/seed points according to which processor
// they belong to. This saves us retesting at every injection time
// providing 1) The volumes are static, 2) the seed points are static
// If either are non static, then this step is skipped.
virtual void AssignSeedsToProcessors(double time,
vtkDataSet *source, int sourceID, int ptId,
vtkParticleTracerBaseNamespace::ParticleVector &localSeedPoints,
int &localAssignedCount);
// Description : once seeds have been assigned to a process, we
// give each one a uniqu ID. We need to use MPI to find out
// who is using which numbers.
virtual void AssignUniqueIds(
vtkParticleTracerBaseNamespace::ParticleVector &localSeedPoints);
// Description : copy list of particles from a vector used for testing particles
// and sending between processors, into a list, which is used as the master
// list on this processor
void UpdateParticleList(
vtkParticleTracerBaseNamespace::ParticleVector &candidates);
// Description : Perform a GatherV operation on a vector of particles
// this is used during classification of seed points and also between iterations
// of the main loop as particles leave each processor domain. Returns true
// if particles moved between processes and false otherwise.
virtual bool UpdateParticleListFromOtherProcesses(){return false;}
// Description : The main loop performing Runge-Kutta integration of a single
// particle between the two times supplied.
void IntegrateParticle(
vtkParticleTracerBaseNamespace::ParticleListIterator &it,
double currenttime, double terminationtime,
vtkInitialValueProblemSolver* integrator);
// if the particle is added to send list, then returns value is 1,
// if it is kept on this process after a retry return value is 0
virtual bool SendParticleToAnotherProcess(
vtkParticleTracerBaseNamespace::ParticleInformation &,
vtkParticleTracerBaseNamespace::ParticleInformation &, vtkPointData*)
{
return true;
}
// Description:
// This is an old routine kept for possible future use.
// In dynamic meshes, particles might leave the domain and need to be extrapolated across
// a gap between the meshes before they re-renter another domain
// dodgy rotating meshes need special care....
bool ComputeDomainExitLocation(
double pos[4], double p2[4], double intersection[4],
vtkGenericCell *cell);
//
// Scalar arrays that are generated as each particle is updated
//
void CreateProtoPD(vtkDataObject* input);
vtkFloatArray* GetParticleAge(vtkPointData*);
vtkIntArray* GetParticleIds(vtkPointData*);
vtkCharArray* GetParticleSourceIds(vtkPointData*);
vtkIntArray* GetInjectedPointIds(vtkPointData*);
vtkIntArray* GetInjectedStepIds(vtkPointData*);
vtkIntArray* GetErrorCodeArr(vtkPointData*);
vtkFloatArray* GetParticleVorticity(vtkPointData*);
vtkFloatArray* GetParticleRotation(vtkPointData*);
vtkFloatArray* GetParticleAngularVel(vtkPointData*);
// utility function we use to test if a point is inside any of our local datasets
bool InsideBounds(double point[]);
void CalculateVorticity( vtkGenericCell* cell, double pcoords[3],
vtkDoubleArray* cellVectors, double vorticity[3] );
//------------------------------------------------------
double GetCacheDataTime(int i);
double GetCacheDataTime();
virtual void ResetCache();
void AddParticle(vtkParticleTracerBaseNamespace::ParticleInformation &info, double* velocity);
// Description:
// Methods that check that the input arrays are ordered the
// same on all data sets. This needs to be true for all
// blocks in a composite data set as well as across all processes.
virtual bool IsPointDataValid(vtkDataObject* input);
bool IsPointDataValid(vtkCompositeDataSet* input, std::vector<std::string>& arrayNames);
void GetPointDataArrayNames(vtkDataSet* input, std::vector<std::string>& names);
vtkGetMacro(ReinjectionCounter, int);
vtkGetMacro(CurrentTimeValue, double);
// Description:
// Methods to append values to existing point data arrays that may
// only be desired on specific concrete derived classes.
virtual void InitializeExtraPointDataArrays(vtkPointData* vtkNotUsed(outputPD)) {}
virtual void AppendToExtraPointDataArrays(vtkParticleTracerBaseNamespace::ParticleInformation &) {}
vtkTemporalInterpolatedVelocityField* GetInterpolator();
private:
// Description:
// Hide this because we require a new interpolator type
void SetInterpolatorPrototype(vtkAbstractInterpolatedVelocityField*) {}
// Description:
// When particles leave the domain, they must be collected
// and sent to the other processes for possible continuation.
// These routines manage the collection and sending after each main iteration.
// RetryWithPush adds a small push to a particle along it's current velocity
// vector, this helps get over cracks in dynamic/rotating meshes. This is a
// first order integration though so it may introduce a bit extra error compared
// to the integrator that is used.
bool RetryWithPush(
vtkParticleTracerBaseNamespace::ParticleInformation &info, double* point1,double delT, int subSteps);
bool SetTerminationTimeNoModify(double t);
//Parameters of tracing
vtkInitialValueProblemSolver* Integrator;
double IntegrationStep;
double MaximumError;
bool ComputeVorticity;
double RotationScale;
double TerminalSpeed;
// A counter to keep track of how many times we reinjected
int ReinjectionCounter;
// Important for Caching of Cells/Ids/Weights etc
int AllFixedGeometry;
int StaticMesh;
int StaticSeeds;
std::vector<double> InputTimeValues;
double StartTime;
double TerminationTime;
double CurrentTimeValue;
int StartTimeStep; //InputTimeValues[StartTimeStep] <= StartTime <= InputTimeValues[StartTimeStep+1]
int CurrentTimeStep;
int TerminationTimeStep; //computed from start time
bool FirstIteration;
//Innjection parameters
int ForceReinjectionEveryNSteps;
vtkTimeStamp ParticleInjectionTime;
bool HasCache;
// Particle writing to disk
vtkAbstractParticleWriter *ParticleWriter;
char *ParticleFileName;
int EnableParticleWriting;
// The main lists which are held during operation- between time step updates
vtkParticleTracerBaseNamespace::ParticleVector LocalSeeds;
// The velocity interpolator
vtkSmartPointer<vtkTemporalInterpolatedVelocityField> Interpolator;
vtkAbstractInterpolatedVelocityField * InterpolatorPrototype;
// Data for time step CurrentTimeStep-1 and CurrentTimeStep
vtkSmartPointer<vtkMultiBlockDataSet> CachedData[2];
// Cache bounds info for each dataset we will use repeatedly
typedef struct {
double b[6];
} bounds;
std::vector<bounds> CachedBounds[2];
// temporary variables used by Exeucte(), for convenience only
vtkSmartPointer<vtkPoints> OutputCoordinates;
vtkSmartPointer<vtkFloatArray> ParticleAge;
vtkSmartPointer<vtkIntArray> ParticleIds;
vtkSmartPointer<vtkCharArray> ParticleSourceIds;
vtkSmartPointer<vtkIntArray> InjectedPointIds;
vtkSmartPointer<vtkIntArray> InjectedStepIds;
vtkSmartPointer<vtkIntArray> ErrorCode;
vtkSmartPointer<vtkFloatArray> ParticleVorticity;
vtkSmartPointer<vtkFloatArray> ParticleRotation;
vtkSmartPointer<vtkFloatArray> ParticleAngularVel;
vtkSmartPointer<vtkDoubleArray> CellVectors;
vtkSmartPointer<vtkPointData> OutputPointData;
vtkSmartPointer<vtkDataSet> DataReferenceT[2];
vtkSmartPointer<vtkCellArray> ParticleCells;
vtkParticleTracerBase(const vtkParticleTracerBase&); // Not implemented.
void operator=(const vtkParticleTracerBase&); // Not implemented.
vtkTimeStamp ExecuteTime;
unsigned int NumberOfParticles();
friend class ParticlePathFilterInternal;
friend class StreaklineFilterInternal;
static const double Epsilon;
};
#endif
|