This file is indexed.

/usr/include/vtk-6.3/vtkOBBTree.h is in libvtk6-dev 6.3.0+dfsg1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkOBBTree.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkOBBTree - generate oriented bounding box (OBB) tree
// .SECTION Description
// vtkOBBTree is an object to generate oriented bounding box (OBB) trees.
// An oriented bounding box is a bounding box that does not necessarily line
// up along coordinate axes. The OBB tree is a hierarchical tree structure
// of such boxes, where deeper levels of OBB confine smaller regions of space.
//
// To build the OBB, a recursive, top-down process is used. First, the root OBB
// is constructed by finding the mean and covariance matrix of the cells (and
// their points) that define the dataset. The eigenvectors of the covariance
// matrix are extracted, giving a set of three orthogonal vectors that define
// the tightest-fitting OBB. To create the two children OBB's, a split plane
// is found that (approximately) divides the number cells in half. These are
// then assigned to the children OBB's. This process then continues until
// the MaxLevel ivar limits the recursion, or no split plane can be found.
//
// A good reference for OBB-trees is Gottschalk & Manocha in Proceedings of
// Siggraph `96.

// .SECTION Caveats
// Since this algorithms works from a list of cells, the OBB tree will only
// bound the "geometry" attached to the cells if the convex hull of the
// cells bounds the geometry.
//
// Long, skinny cells (i.e., cells with poor aspect ratio) may cause
// unsatisfactory results. This is due to the fact that this is a top-down
// implementation of the OBB tree, requiring that one or more complete cells
// are contained in each OBB. This requirement makes it hard to find good
// split planes during the recursion process. A bottom-up implementation would
// go a long way to correcting this problem.

// .SECTION See Also
// vtkLocator vtkCellLocator vtkPointLocator

#ifndef vtkOBBTree_h
#define vtkOBBTree_h

#include "vtkFiltersGeneralModule.h" // For export macro
#include "vtkAbstractCellLocator.h"

class vtkMatrix4x4;

// Special class defines node for the OBB tree
//
//BTX
//
class VTKFILTERSGENERAL_EXPORT vtkOBBNode { //;prevent man page generation
public:
  vtkOBBNode();
  ~vtkOBBNode();

  double Corner[3]; //center point of this node
  double Axes[3][3]; //the axes defining the OBB - ordered from long->short
  vtkOBBNode *Parent; //parent node; NULL if root
  vtkOBBNode **Kids; //two children of this node; NULL if leaf
  vtkIdList *Cells; //list of cells in node
  void DebugPrintTree( int level, double *leaf_vol, int *minCells,
                       int *maxCells );

private:
  vtkOBBNode(const vtkOBBNode& other); // no copy constructor
  vtkOBBNode& operator=(const vtkOBBNode& rhs); // no copy assignment
};
//ETX
//

class VTKFILTERSGENERAL_EXPORT vtkOBBTree : public vtkAbstractCellLocator
{
public:
  vtkTypeMacro(vtkOBBTree,vtkAbstractCellLocator);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Construct with automatic computation of divisions, averaging
  // 25 cells per octant.
  static vtkOBBTree *New();

  // Re-use any superclass signatures that we don't override.
  using vtkAbstractCellLocator::IntersectWithLine;

  // Description:
  // Take the passed line segment and intersect it with the data set.
  // This method assumes that the data set is a vtkPolyData that describes
  // a closed surface, and the intersection points that are returned in
  // 'points' alternate between entrance points and exit points.
  // The return value of the function is 0 if no intersections were found,
  // -1 if point 'a0' lies inside the closed surface, or +1 if point 'a0'
  // lies outside the closed surface.
  // Either 'points' or 'cellIds' can be set to NULL if you don't want
  // to receive that information.
  int IntersectWithLine(const double a0[3], const double a1[3],
                        vtkPoints *points, vtkIdList *cellIds);

  // Description:
  // Return the first intersection of the specified line segment with
  // the OBB tree, as well as information about the cell which the
  // line segment intersected.
  int IntersectWithLine(double a0[3], double a1[3], double tol,
                        double& t, double x[3], double pcoords[3],
                        int &subId, vtkIdType &cellId, vtkGenericCell *cell);

  // Description:
  // Compute an OBB from the list of points given. Return the corner point
  // and the three axes defining the orientation of the OBB. Also return
  // a sorted list of relative "sizes" of axes for comparison purposes.
  static void ComputeOBB(vtkPoints *pts, double corner[3], double max[3],
                  double mid[3], double min[3], double size[3]);

  // Description:
  // Compute an OBB for the input dataset using the cells in the data.
  // Return the corner point and the three axes defining the orientation
  // of the OBB. Also return a sorted list of relative "sizes" of axes for
  // comparison purposes.
  void ComputeOBB(vtkDataSet *input, double corner[3], double max[3],
                  double mid[3], double min[3], double size[3]);

  // Description:
  // Determine whether a point is inside or outside the data used to build
  // this OBB tree.  The data must be a closed surface vtkPolyData data set.
  // The return value is +1 if outside, -1 if inside, and 0 if undecided.
  int InsideOrOutside(const double point[3]);

  //BTX

  // Description:
  // Returns true if nodeB and nodeA are disjoint after optional
  // transformation of nodeB with matrix XformBtoA
  int DisjointOBBNodes( vtkOBBNode *nodeA, vtkOBBNode *nodeB,
                        vtkMatrix4x4 *XformBtoA );

  // Description:
  // Returns true if line intersects node.
  int LineIntersectsNode( vtkOBBNode *pA, double b0[3], double b1[3] );

  // Description:
  // Returns true if triangle (optionally transformed) intersects node.
  int TriangleIntersectsNode( vtkOBBNode *pA,
                              double p0[3], double p1[3],
                              double p2[3], vtkMatrix4x4 *XformBtoA );

  // Description:
  // For each intersecting leaf node pair, call function.
  // OBBTreeB is optionally transformed by XformBtoA before testing.
  int IntersectWithOBBTree( vtkOBBTree *OBBTreeB, vtkMatrix4x4 *XformBtoA,
                            int(*function)( vtkOBBNode *nodeA,
                                            vtkOBBNode *nodeB,
                                            vtkMatrix4x4 *Xform,
                                            void *arg ),
                            void *data_arg );
  //ETX

  // Description:
  // Satisfy locator's abstract interface, see vtkLocator.
  void FreeSearchStructure();
  void BuildLocator();

  // Description:
  // Create polygonal representation for OBB tree at specified level. If
  // level < 0, then the leaf OBB nodes will be gathered. The aspect ratio (ar)
  // and line diameter (d) are used to control the building of the
  // representation. If a OBB node edge ratio's are greater than ar, then the
  // dimension of the OBB is collapsed (OBB->plane->line). A "line" OBB will be
  // represented either as two crossed polygons, or as a line, depending on
  // the relative diameter of the OBB compared to the diameter (d).
  void GenerateRepresentation(int level, vtkPolyData *pd);

  //BTX
protected:
  vtkOBBTree();
  ~vtkOBBTree();

  // Compute an OBB from the list of cells given.  This used to be
  // public but should not have been.  A public call has been added
  // so that the functionality can be accessed.
  void ComputeOBB(vtkIdList *cells, double corner[3], double max[3],
                       double mid[3], double min[3], double size[3]);

  vtkOBBNode *Tree;
  void BuildTree(vtkIdList *cells, vtkOBBNode *parent, int level);
  vtkPoints *PointsList;
  int *InsertedPoints;
  int OBBCount;

  void DeleteTree(vtkOBBNode *OBBptr);
  void GeneratePolygons(vtkOBBNode *OBBptr, int level, int repLevel,
                        vtkPoints* pts, vtkCellArray *polys);

  //ETX
private:
  vtkOBBTree(const vtkOBBTree&);  // Not implemented.
  void operator=(const vtkOBBTree&);  // Not implemented.
};

#endif