This file is indexed.

/usr/include/vtk-6.3/vtkImageData.h is in libvtk6-dev 6.3.0+dfsg1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkImageData.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkImageData - topologically and geometrically regular array of data
// .SECTION Description
// vtkImageData is a data object that is a concrete implementation of
// vtkDataSet. vtkImageData represents a geometric structure that is
// a topological and geometrical regular array of points. Examples include
// volumes (voxel data) and pixmaps.

#ifndef vtkImageData_h
#define vtkImageData_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkDataSet.h"

#include "vtkStructuredData.h" // Needed for inline methods

class vtkDataArray;
class vtkLine;
class vtkPixel;
class vtkVertex;
class vtkVoxel;

class VTKCOMMONDATAMODEL_EXPORT vtkImageData : public vtkDataSet
{
public:
  static vtkImageData *New();

  vtkTypeMacro(vtkImageData,vtkDataSet);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Copy the geometric and topological structure of an input image data
  // object.
  virtual void CopyStructure(vtkDataSet *ds);

  // Description:
  // Return what type of dataset this is.
  virtual int GetDataObjectType() {return VTK_IMAGE_DATA;};

  // Description:
  // Standard vtkDataSet API methods. See vtkDataSet for more information.
  virtual vtkIdType GetNumberOfCells();
  virtual vtkIdType GetNumberOfPoints();
  virtual double *GetPoint(vtkIdType ptId);
  virtual void GetPoint(vtkIdType id, double x[3]);
  virtual vtkCell *GetCell(vtkIdType cellId);
  virtual void GetCell(vtkIdType cellId, vtkGenericCell *cell);
  virtual void GetCellBounds(vtkIdType cellId, double bounds[6]);
  virtual vtkIdType FindPoint(double x, double y, double z)
    {
    return this->vtkDataSet::FindPoint(x, y, z);
    }
  virtual vtkIdType FindPoint(double x[3]);
  virtual vtkIdType FindCell(
    double x[3], vtkCell *cell, vtkIdType cellId, double tol2,
    int& subId, double pcoords[3], double *weights);
  virtual vtkIdType FindCell(
    double x[3], vtkCell *cell, vtkGenericCell *gencell,
    vtkIdType cellId, double tol2, int& subId,
    double pcoords[3], double *weights);
  virtual vtkCell *FindAndGetCell(double x[3], vtkCell *cell, vtkIdType cellId,
                                  double tol2, int& subId, double pcoords[3],
                                  double *weights);
  virtual int GetCellType(vtkIdType cellId);
  virtual void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds)
    {vtkStructuredData::GetCellPoints(cellId,ptIds,this->DataDescription,
                                      this->GetDimensions());}
  virtual void GetPointCells(vtkIdType ptId, vtkIdList *cellIds)
    {vtkStructuredData::GetPointCells(ptId,cellIds,this->GetDimensions());}
  virtual void ComputeBounds();
  virtual int GetMaxCellSize() {return 8;}; //voxel is the largest

  // Description:
  // Restore data object to initial state.
  virtual void Initialize();

  // Description:
  // \deprecated{This is for backward compatibility only - use SetExtent().}
  // Same as SetExtent(0, i-1, 0, j-1, 0, k-1)
  virtual void SetDimensions(int i, int j, int k);

  // Description:
  // \deprecated{This is for backward compatibility only - use SetExtent().}
  // Same as SetExtent(0, dims[0]-1, 0, dims[1]-1, 0, dims[2]-1)
  virtual void SetDimensions(const int dims[3]);

  // Description:
  // Get dimensions of this structured points dataset.
  // It is the number of points on each axis.
  // Dimensions are computed from Extents during this call.
  virtual int *GetDimensions();
  virtual void GetDimensions(int dims[3]);

  // Description:
  // Convenience function computes the structured coordinates for a point x[3].
  // The voxel is specified by the array ijk[3], and the parametric coordinates
  // in the cell are specified with pcoords[3]. The function returns a 0 if the
  // point x is outside of the volume, and a 1 if inside the volume.
  virtual int ComputeStructuredCoordinates(
    const double x[3],  int ijk[3],  double pcoords[3]);

  static int ComputeStructuredCoordinates( const double x[3], int ijk[3], double pcoords[3],
                                           const int* extent,
                                           const double* spacing,
                                           const double* origin,
                                           const double* bounds);
  // Description:
  // Given structured coordinates (i,j,k) for a voxel cell, compute the eight
  // gradient values for the voxel corners. The order in which the gradient
  // vectors are arranged corresponds to the ordering of the voxel points.
  // Gradient vector is computed by central differences (except on edges of
  // volume where forward difference is used). The scalars s are the scalars
  // from which the gradient is to be computed. This method will treat
  // only 3D structured point datasets (i.e., volumes).
  virtual void GetVoxelGradient(
    int i,int j,int k, vtkDataArray *s, vtkDataArray *g);

  // Description:
  // Given structured coordinates (i,j,k) for a point in a structured point
  // dataset, compute the gradient vector from the scalar data at that point.
  // The scalars s are the scalars from which the gradient is to be computed.
  // This method will treat structured point datasets of any dimension.
  virtual void GetPointGradient(
    int i, int j, int k, vtkDataArray *s, double g[3]);

  // Description:
  // Return the dimensionality of the data.
  virtual int GetDataDimension();

  // Description:
  // Given a location in structured coordinates (i-j-k), return the point id.
  virtual vtkIdType ComputePointId(int ijk[3]) {
    return vtkStructuredData::ComputePointIdForExtent(this->Extent,ijk);};

  // Description:
  // Given a location in structured coordinates (i-j-k), return the cell id.
  virtual vtkIdType ComputeCellId(int ijk[3]) {
    return vtkStructuredData::ComputeCellIdForExtent(this->Extent,ijk);};

  // Description:
  // Set / Get the extent on just one axis
  virtual void SetAxisUpdateExtent(int axis, int min, int max,
                                   const int* updateExtent,
                                   int* axisUpdateExtent);
  virtual void GetAxisUpdateExtent(int axis, int &min, int &max, const int* updateExtent);

  // Description:
  // Set/Get the extent. On each axis, the extent is defined by the index
  // of the first point and the index of the last point.  The extent should
  // be set before the "Scalars" are set or allocated.  The Extent is
  // stored in the order (X, Y, Z).
  // The dataset extent does not have to start at (0,0,0). (0,0,0) is just the
  // extent of the origin.
  // The first point (the one with Id=0) is at extent
  // (Extent[0],Extent[2],Extent[4]). As for any dataset, a data array on point
  // data starts at Id=0.
  virtual void SetExtent(int extent[6]);
  virtual void SetExtent(int x1, int x2, int y1, int y2, int z1, int z2);
  vtkGetVector6Macro(Extent, int);

  // Description:
  // These returns the minimum and maximum values the ScalarType can hold
  // without overflowing.
  virtual double GetScalarTypeMin(vtkInformation* meta_data);
  virtual double GetScalarTypeMin();
  virtual double GetScalarTypeMax(vtkInformation* meta_data);
  virtual double GetScalarTypeMax();

  // Description:
  // Get the size of the scalar type in bytes.
  virtual int GetScalarSize(vtkInformation* meta_data);
  virtual int GetScalarSize();

  // Description:
  // Different ways to get the increments for moving around the data.
  // GetIncrements() calls ComputeIncrements() to ensure the increments are
  // up to date.  The first three methods compute the increments based on the
  // active scalar field while the next three, the scalar field is passed in.
  virtual vtkIdType *GetIncrements();
  virtual void GetIncrements(vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ);
  virtual void GetIncrements(vtkIdType inc[3]);
  virtual vtkIdType *GetIncrements(vtkDataArray *scalars);
  virtual void GetIncrements(vtkDataArray *scalars,
                             vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ);
  virtual void GetIncrements(vtkDataArray *scalars, vtkIdType inc[3]);

  // Description:
  // Different ways to get the increments for moving around the data.
  // incX is always returned with 0.  incY is returned with the
  // increment needed to move from the end of one X scanline of data
  // to the start of the next line.  incZ is filled in with the
  // increment needed to move from the end of one image to the start
  // of the next.  The proper way to use these values is to for a loop
  // over Z, Y, X, C, incrementing the pointer by 1 after each
  // component.  When the end of the component is reached, the pointer
  // is set to the beginning of the next pixel, thus incX is properly set to 0.
  // The first form of GetContinuousIncrements uses the active scalar field
  // while the second form allows the scalar array to be passed in.
  virtual void GetContinuousIncrements(
    int extent[6], vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ);
  virtual void GetContinuousIncrements(vtkDataArray *scalars,
    int extent[6], vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ);

  // Description:
  // Access the native pointer for the scalar data
  virtual void *GetScalarPointerForExtent(int extent[6]);
  virtual void *GetScalarPointer(int coordinates[3]);
  virtual void *GetScalarPointer(int x, int y, int z);
  virtual void *GetScalarPointer();

  // Description:
  // For access to data from tcl
  virtual float GetScalarComponentAsFloat(int x, int y, int z, int component);
  virtual void SetScalarComponentFromFloat(
    int x, int y, int z, int component, float v);
  virtual double GetScalarComponentAsDouble(int x, int y, int z, int component);
  virtual void SetScalarComponentFromDouble(
    int x, int y, int z, int component, double v);

  // Description:
  // Allocate the point scalars for this dataset. The data type determines
  // the type of the array (VTK_FLOAT, VTK_INT etc.) where as numComponents
  // determines its number of components.
  virtual void AllocateScalars(int dataType, int numComponents);

  // Description:
  // Allocate the point scalars for this dataset. The data type and the
  // number of components of the array is determined by the meta-data in
  // the pipeline information. This is usually produced by a reader/filter
  // upstream in the pipeline.
  virtual void AllocateScalars(vtkInformation* pipeline_info);

  // Description:
  // This method is passed a input and output region, and executes the filter
  // algorithm to fill the output from the input.
  // It just executes a switch statement to call the correct function for
  // the regions data types.
  virtual void CopyAndCastFrom(vtkImageData *inData, int extent[6]);
  virtual void CopyAndCastFrom(vtkImageData *inData, int x0, int x1,
                               int y0, int y1, int z0, int z1)
    {int e[6]; e[0]=x0; e[1]=x1; e[2]=y0; e[3]=y1; e[4]=z0; e[5]=z1;
    this->CopyAndCastFrom(inData, e);}

  // Description:
  // Reallocates and copies to set the Extent to updateExtent.
  // This is used internally when the exact extent is requested,
  // and the source generated more than the update extent.
  virtual void Crop(const int* updateExtent);

  // Description:
  // Return the actual size of the data in kibibytes (1024 bytes). This number
  // is valid only after the pipeline has updated. The memory size
  // returned is guaranteed to be greater than or equal to the
  // memory required to represent the data (e.g., extra space in
  // arrays, etc. are not included in the return value). THIS METHOD
  // IS THREAD SAFE.
  virtual unsigned long GetActualMemorySize();

  // Description:
  // Set the spacing (width,height,length) of the cubical cells that
  // compose the data set.
  vtkSetVector3Macro(Spacing,double);
  vtkGetVector3Macro(Spacing,double);

  // Description:
  // Set/Get the origin of the dataset. The origin is the position in world
  // coordinates of the point of extent (0,0,0). This point does not have to be
  // part of the dataset, in other words, the dataset extent does not have to
  // start at (0,0,0) and the origin can be outside of the dataset bounding
  // box.
  // The origin plus spacing determine the position in space of the points.
  vtkSetVector3Macro(Origin,double);
  vtkGetVector3Macro(Origin,double);

  static void SetScalarType(int, vtkInformation* meta_data);
  static int GetScalarType(vtkInformation* meta_data);
  static bool HasScalarType(vtkInformation* meta_data);
  int GetScalarType();
  const char* GetScalarTypeAsString()
    { return vtkImageScalarTypeNameMacro ( this->GetScalarType() ); };

  // Description:
  // Set/Get the number of scalar components for points. As with the
  // SetScalarType method this is setting pipeline info.
  static void SetNumberOfScalarComponents( int n, vtkInformation* meta_data);
  static int GetNumberOfScalarComponents(vtkInformation* meta_data);
  static bool HasNumberOfScalarComponents(vtkInformation* meta_data);
  int GetNumberOfScalarComponents();

  // Description:
  // Override these to handle origin, spacing, scalar type, and scalar
  // number of components.  See vtkDataObject for details.
  virtual void CopyInformationFromPipeline(vtkInformation* information);

  // Description:
  // Copy information from this data object to the pipeline information.
  // This is used by the vtkTrivialProducer that is created when someone
  // calls SetInputData() to connect the image to a pipeline.
  virtual void CopyInformationToPipeline(vtkInformation* information);

  // Description:
  // make the output data ready for new data to be inserted. For most
  // objects we just call Initialize. But for image data we leave the old
  // data in case the memory can be reused.
  virtual void PrepareForNewData();

  // Description:
  // Shallow and Deep copy.
  virtual void ShallowCopy(vtkDataObject *src);
  virtual void DeepCopy(vtkDataObject *src);

  //--------------------------------------------------------------------------
  // Methods that apply to any array (not just scalars).
  // I am starting to experiment with generalizing imaging fitlers
  // to operate on more than just scalars.

  // Description:
  // These are convenience methods for getting a pointer
  // from any filed array.  It is a start at expanding image filters
  // to process any array (not just scalars).
  void *GetArrayPointerForExtent(vtkDataArray* array, int extent[6]);
  void *GetArrayPointer(vtkDataArray* array, int coordinates[3]);

  // Description:
  // Since various arrays have different number of components,
  // the will have different increments.
  void GetArrayIncrements(vtkDataArray *array, vtkIdType increments[3]);

  // Description:
  // Given how many pixel are required on a side for bounrary conditions (in
  // bnds), the target extent to traverse, compute the internal extent (the
  // extent for this ImageData that does not suffer from any boundary
  // conditions) and place it in intExt
  void ComputeInternalExtent(int *intExt, int *tgtExt, int *bnds);

  // Description:
  // The extent type is a 3D extent
  virtual int GetExtentType() { return VTK_3D_EXTENT; };

  //BTX
  // Description:
  // Retrieve an instance of this class from an information object.
  static vtkImageData* GetData(vtkInformation* info);
  static vtkImageData* GetData(vtkInformationVector* v, int i=0);
  //ETX

protected:
  vtkImageData();
  ~vtkImageData();

  // The extent of what is currently in the structured grid.
  // Dimensions is just an array to return a value.
  // Its contents are out of data until GetDimensions is called.
  int Dimensions[3];
  vtkIdType Increments[3];

  double Origin[3];
  double Spacing[3];

  int Extent[6];

  // The first method assumes Active Scalars
  void ComputeIncrements();
  // This one is given the number of components of the
  // scalar field explicitly
  void ComputeIncrements(int numberOfComponents);
  void ComputeIncrements(vtkDataArray *scalars);

  // The first method assumes Acitive Scalars
  void ComputeIncrements(vtkIdType inc[3]);
  // This one is given the number of components of the
  // scalar field explicitly
  void ComputeIncrements(int numberOfComponents, vtkIdType inc[3]);
  void ComputeIncrements(vtkDataArray *scalars, vtkIdType inc[3]);
  void CopyOriginAndSpacingFromPipeline(vtkInformation* info);

  vtkTimeStamp ExtentComputeTime;

  void SetDataDescription(int desc);
  int GetDataDescription() { return this->DataDescription; }

private:
  void InternalImageDataCopy(vtkImageData *src);
private:

  //BTX
  friend class vtkUniformGrid;
  //ETX

  // for the GetCell method
  vtkVertex *Vertex;
  vtkLine *Line;
  vtkPixel *Pixel;
  vtkVoxel *Voxel;

  // for the GetPoint method
  double Point[3];

  int DataDescription;

  vtkImageData(const vtkImageData&);  // Not implemented.
  void operator=(const vtkImageData&);  // Not implemented.
};


//----------------------------------------------------------------------------
inline void vtkImageData::ComputeIncrements()
{
  this->ComputeIncrements(this->Increments);
}

//----------------------------------------------------------------------------
inline void vtkImageData::ComputeIncrements(int numberOfComponents)
{
  this->ComputeIncrements(numberOfComponents, this->Increments);
}

//----------------------------------------------------------------------------
inline void vtkImageData::ComputeIncrements(vtkDataArray *scalars)
{
  this->ComputeIncrements(scalars, this->Increments);
}

//----------------------------------------------------------------------------
inline double * vtkImageData::GetPoint(vtkIdType id)
{
  this->GetPoint(id, this->Point);
  return this->Point;
}

//----------------------------------------------------------------------------
inline vtkIdType vtkImageData::GetNumberOfPoints()
{
  const int *extent = this->Extent;
  vtkIdType dims[3];
  dims[0] = extent[1] - extent[0] + 1;
  dims[1] = extent[3] - extent[2] + 1;
  dims[2] = extent[5] - extent[4] + 1;

  return dims[0]*dims[1]*dims[2];
}

//----------------------------------------------------------------------------
inline int vtkImageData::GetDataDimension()
{
  return vtkStructuredData::GetDataDimension(this->DataDescription);
}

#endif