This file is indexed.

/usr/include/vtk-6.3/vtkConvexPointSet.h is in libvtk6-dev 6.3.0+dfsg1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkConvexPointSet.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkConvexPointSet - a 3D cell defined by a set of convex points
// .SECTION Description
// vtkConvexPointSet is a concrete implementation that represents a 3D cell
// defined by a convex set of points. An example of such a cell is an octant
// (from an octree). vtkConvexPointSet uses the ordered triangulations
// approach (vtkOrderedTriangulator) to create triangulations guaranteed to
// be compatible across shared faces. This allows a general approach to
// processing complex, convex cell types.

// .SECTION See Also
// vtkHexahedron vtkPyramid vtkTetra vtkVoxel vtkWedge

#ifndef vtkConvexPointSet_h
#define vtkConvexPointSet_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkCell3D.h"

class vtkUnstructuredGrid;
class vtkCellArray;
class vtkTriangle;
class vtkTetra;
class vtkDoubleArray;

class VTKCOMMONDATAMODEL_EXPORT vtkConvexPointSet : public vtkCell3D
{
public:
  static vtkConvexPointSet *New();
  vtkTypeMacro(vtkConvexPointSet,vtkCell3D);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // See vtkCell3D API for description of this method.
  virtual int HasFixedTopology() {return 0;}

  // Description:
  // See vtkCell3D API for description of these methods.
  virtual void GetEdgePoints(int vtkNotUsed(edgeId), int* &vtkNotUsed(pts)) {}
  virtual void GetFacePoints(int vtkNotUsed(faceId), int* &vtkNotUsed(pts)) {}
  virtual double *GetParametricCoords();

  // Description:
  // See the vtkCell API for descriptions of these methods.
  virtual int GetCellType() {return VTK_CONVEX_POINT_SET;}

  // Description:
  // This cell requires that it be initialized prior to access.
  virtual int RequiresInitialization() {return 1;}
  virtual void Initialize();

  // Description:
  // A convex point set has no explicit cell edge or faces; however
  // implicitly (after triangulation) it does. Currently the method
  // GetNumberOfEdges() always returns 0 while the GetNumberOfFaces() returns
  // the number of boundary triangles of the triangulation of the convex
  // point set. The method GetNumberOfFaces() triggers a triangulation of the
  // convex point set; repeated calls to GetFace() then return the boundary
  // faces. (Note: GetNumberOfEdges() currently returns 0 because it is a
  // rarely used method and hard to implement. It can be changed in the future.
  virtual int GetNumberOfEdges() {return 0;}
  virtual vtkCell *GetEdge(int) {return NULL;}
  virtual int GetNumberOfFaces();
  virtual vtkCell *GetFace(int faceId);

  // Description:
  // Satisfy the vtkCell API. This method contours by triangulating the
  // cell and then contouring the resulting tetrahedra.
  virtual void Contour(double value, vtkDataArray *cellScalars,
                       vtkIncrementalPointLocator *locator, vtkCellArray *verts,
                       vtkCellArray *lines, vtkCellArray *polys,
                       vtkPointData *inPd, vtkPointData *outPd,
                       vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);

  // Description:
  // Satisfy the vtkCell API. This method contours by triangulating the
  // cell and then adding clip-edge intersection points into the
  // triangulation; extracting the clipped region.
  virtual void Clip(double value, vtkDataArray *cellScalars,
                    vtkIncrementalPointLocator *locator, vtkCellArray *connectivity,
                    vtkPointData *inPd, vtkPointData *outPd,
                    vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
                    int insideOut);

  // Description:
  // Satisfy the vtkCell API. This method determines the subId, pcoords,
  // and weights by triangulating the convex point set, and then
  // determining which tetrahedron the point lies in.
  virtual int EvaluatePosition(double x[3], double* closestPoint,
                               int& subId, double pcoords[3],
                               double& dist2, double *weights);

  // Description:
  // The inverse of EvaluatePosition.
  virtual void EvaluateLocation(int& subId, double pcoords[3], double x[3],
                                double *weights);

  // Description:
  // Triangulates the cells and then intersects them to determine the
  // intersection point.
  virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                                double x[3], double pcoords[3], int& subId);

  // Description:
  // Triangulate using methods of vtkOrderedTriangulator.
  virtual int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);

  // Description:
  // Computes derivatives by triangulating and from subId and pcoords,
  // evaluating derivatives on the resulting tetrahedron.
  virtual void Derivatives(int subId, double pcoords[3], double *values,
                           int dim, double *derivs);

  // Description:
  // Returns the set of points forming a face of the triangulation of these
  // points that are on the boundary of the cell that are closest
  // parametrically to the point specified.
  virtual int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);

  // Description:
  // Return the center of the cell in parametric coordinates.
  virtual int GetParametricCenter(double pcoords[3]);

  // Description:
  // A convex point set is triangulated prior to any operations on it so
  // it is not a primary cell, it is a composite cell.
  int IsPrimaryCell() {return 0;}

  // Description:
  // Compute the interpolation functions/derivatives
  // (aka shape functions/derivatives)
  virtual void InterpolateFunctions(double pcoords[3], double *sf);
  virtual void InterpolateDerivs(double pcoords[3], double *derivs);

protected:
  vtkConvexPointSet();
  ~vtkConvexPointSet();

  vtkTetra       *Tetra;
  vtkIdList      *TetraIds;
  vtkPoints      *TetraPoints;
  vtkDoubleArray *TetraScalars;

  vtkCellArray   *BoundaryTris;
  vtkTriangle    *Triangle;
  vtkDoubleArray *ParametricCoords;

private:
  vtkConvexPointSet(const vtkConvexPointSet&);  // Not implemented.
  void operator=(const vtkConvexPointSet&);  // Not implemented.
};

//----------------------------------------------------------------------------
inline int vtkConvexPointSet::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = pcoords[1] = pcoords[2] = 0.5;
  return 0;
}

#endif