/usr/include/vtk-6.3/vtkAbstractArray.h is in libvtk6-dev 6.3.0+dfsg1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkAbstractArray.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
//
// .NAME vtkAbstractArray - Abstract superclass for all arrays
//
// .SECTION Description
//
// vtkAbstractArray is an abstract superclass for data array objects.
// This class defines an API that all subclasses must support. The
// data type must be assignable and copy-constructible, but no other
// assumptions about its type are made. Most of the subclasses of
// this array deal with numeric data either as scalars or tuples of
// scalars. A program can use the IsNumeric() method to check whether
// an instance of vtkAbstractArray contains numbers. It is also
// possible to test for this by attempting to SafeDownCast an array to
// an instance of vtkDataArray, although this assumes that all numeric
// arrays will always be descended from vtkDataArray.
//
// <p>
//
// Every array has a character-string name. The naming of the array
// occurs automatically when it is instantiated, but you are free to
// change this name using the SetName() method. (The array name is
// used for data manipulation.)
//
// .SECTION See Also
// vtkDataArray vtkStringArray vtkCellArray
#ifndef vtkAbstractArray_h
#define vtkAbstractArray_h
#include "vtkCommonCoreModule.h" // For export macro
#include "vtkObject.h"
#include "vtkVariant.h" // for variant arguments
class vtkArrayIterator;
class vtkDataArray;
class vtkIdList;
class vtkIdTypeArray;
class vtkInformation;
class vtkInformationDoubleVectorKey;
class vtkInformationIntegerKey;
class vtkInformationInformationVectorKey;
class vtkInformationVariantVectorKey;
class vtkVariantArray;
class VTKCOMMONCORE_EXPORT vtkAbstractArray : public vtkObject
{
public:
friend class vtkDataArrayTemplateHelper;
vtkTypeMacro(vtkAbstractArray,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Allocate memory for this array. Delete old storage only if necessary.
// Note that ext is no longer used.
virtual int Allocate(vtkIdType sz, vtkIdType ext=1000) = 0;
// Description:
// Release storage and reset array to initial state.
virtual void Initialize() = 0;
// Description:
// Return the underlying data type. An integer indicating data type is
// returned as specified in vtkSetGet.h.
virtual int GetDataType() =0;
// Description:
// Return the size of the underlying data type. For a bit, 0 is
// returned. For string 0 is returned. Arrays with variable length
// components return 0.
virtual int GetDataTypeSize() = 0;
static int GetDataTypeSize(int type);
// Description:
// Return the size, in bytes, of the lowest-level element of an
// array. For vtkDataArray and subclasses this is the size of the
// data type. For vtkStringArray, this is
// sizeof(vtkStdString::value_type), which winds up being
// sizeof(char).
virtual int GetElementComponentSize() = 0;
// Description:
// Set/Get the dimension (n) of the components. Must be >= 1. Make sure that
// this is set before allocation.
vtkSetClampMacro(NumberOfComponents, int, 1, VTK_INT_MAX);
int GetNumberOfComponents() { return this->NumberOfComponents; }
// Description:
// Set the name for a component. Must be >= 1.
void SetComponentName( vtkIdType component, const char *name );
//Description:
// Get the component name for a given component.
// Note: will return the actual string that is stored
const char* GetComponentName( vtkIdType component );
// Description:
// Returns if any component has had a name assigned
bool HasAComponentName();
// Description:
// Copies the component names from the inputed array to the current array
// make sure that the current array has the same number of components as the input array
int CopyComponentNames( vtkAbstractArray *da );
// Description:
// Set the number of tuples (a component group) in the array. Note that
// this may allocate space depending on the number of components.
// Also note that if allocation is performed no copy is performed so
// existing data will be lost (if data conservation is sought, one may
// use the Resize method instead).
virtual void SetNumberOfTuples(vtkIdType number) = 0;
// Description:
// Get the number of tuples (a component group) in the array.
vtkIdType GetNumberOfTuples()
{return (this->MaxId + 1)/this->NumberOfComponents;}
// Description:
// Set the tuple at the ith location using the jth tuple in the source array.
// This method assumes that the two arrays have the same type
// and structure. Note that range checking and memory allocation is not
// performed; use in conjunction with SetNumberOfTuples() to allocate space.
virtual void SetTuple(vtkIdType i, vtkIdType j, vtkAbstractArray* source) = 0;
// Description:
// Insert the jth tuple in the source array, at ith location in this array.
// Note that memory allocation is performed as necessary to hold the data.
virtual void InsertTuple(vtkIdType i, vtkIdType j, vtkAbstractArray* source) = 0;
// Description:
// Copy the tuples indexed in srcIds from the source array to the tuple
// locations indexed by dstIds in this array.
// Note that memory allocation is performed as necessary to hold the data.
virtual void InsertTuples(vtkIdList *dstIds, vtkIdList *srcIds,
vtkAbstractArray* source) = 0;
// Description:
// Copy n consecutive tuples starting at srcStart from the source array to
// this array, starting at the dstStart location.
// Note that memory allocation is performed as necessary to hold the data.
virtual void InsertTuples(vtkIdType dstStart, vtkIdType n, vtkIdType srcStart,
vtkAbstractArray* source) = 0;
// Description:
// Insert the jth tuple in the source array, at the end in this array.
// Note that memory allocation is performed as necessary to hold the data.
// Returns the location at which the data was inserted.
virtual vtkIdType InsertNextTuple(vtkIdType j, vtkAbstractArray* source) = 0;
// Description:
// Given a list of point ids, return an array of tuples.
// You must insure that the output array has been previously
// allocated with enough space to hold the data.
virtual void GetTuples(vtkIdList *ptIds, vtkAbstractArray* output);
// Description:
// Get the tuples for the range of points ids specified
// (i.e., p1->p2 inclusive). You must insure that the output array has
// been previously allocated with enough space to hold the data.
virtual void GetTuples(vtkIdType p1, vtkIdType p2, vtkAbstractArray *output);
// Description:
// Returns true if this array uses the standard memory layout defined in the
// VTK user guide, e.g. a contiguous array:
// {t1c1, t1c2, t1c3, ... t1cM, t2c1, ... tNcM}
// where t1c2 is the second component of the first tuple.
//
// If the array does not have the standard memory layout GetVoidPointer should
// not be used, as a deep copy of the data must be made. Instead, use a
// vtkTypedDataArrayIterator to get pointer-like semantics that can safely
// access the data values.
//
// Subclasses that return false here must derive from vtkMappedDataArray
// to ensure that they will work safely with the rest of the pipeline.
virtual bool HasStandardMemoryLayout();
// Description:
// Return a void pointer. For image pipeline interface and other
// special pointer manipulation.
// If the data is simply being iterated over, consider using
// vtkDataArrayIteratorMacro for safety and efficiency, rather than using this
// member directly.
virtual void *GetVoidPointer(vtkIdType id) = 0;
// Description:
// Deep copy of data. Implementation left to subclasses, which
// should support as many type conversions as possible given the
// data type.
//
// Subclasses should call vtkAbstractArray::DeepCopy() so that the
// information object (if one exists) is copied from \a da.
virtual void DeepCopy(vtkAbstractArray* da);
// Description:
// Set the ith tuple in this array as the interpolated tuple value,
// given the ptIndices in the source array and associated
// interpolation weights.
// This method assumes that the two arrays are of the same type
// and strcuture.
virtual void InterpolateTuple(vtkIdType i, vtkIdList *ptIndices,
vtkAbstractArray* source, double* weights) = 0;
// Description
// Insert the ith tuple in this array as interpolated from the two values,
// p1 and p2, and an interpolation factor, t.
// The interpolation factor ranges from (0,1),
// with t=0 located at p1. This method assumes that the three arrays are of
// the same type. p1 is value at index id1 in source1, while, p2 is
// value at index id2 in source2.
virtual void InterpolateTuple(vtkIdType i,
vtkIdType id1, vtkAbstractArray* source1,
vtkIdType id2, vtkAbstractArray* source2, double t) =0;
// Description:
// Free any unnecessary memory.
// Description:
// Resize object to just fit data requirement. Reclaims extra memory.
virtual void Squeeze() = 0;
// Description:
// Resize the array while conserving the data. Returns 1 if
// resizing succeeded and 0 otherwise.
virtual int Resize(vtkIdType numTuples) = 0;
// Description:
// Reset to an empty state, without freeing any memory.
void Reset()
{
this->MaxId = -1;
this->DataChanged();
}
// Description:
// Return the size of the data.
vtkIdType GetSize()
{return this->Size;}
// Description:
// What is the maximum id currently in the array.
vtkIdType GetMaxId()
{return this->MaxId;}
// Description:
// This method lets the user specify data to be held by the array. The
// array argument is a pointer to the data. size is the size of
// the array supplied by the user. Set save to 1 to keep the class
// from deleting the array when it cleans up or reallocates memory.
// The class uses the actual array provided; it does not copy the data
// from the supplied array.
virtual void SetVoidArray(void *vtkNotUsed(array),
vtkIdType vtkNotUsed(size),
int vtkNotUsed(save)) =0;
// Description:
// This method copies the array data to the void pointer specified
// by the user. It is up to the user to allocate enough memory for
// the void pointer.
virtual void ExportToVoidPointer(void *vtkNotUsed(out_ptr)) {}
// Description:
// Return the memory in kibibytes (1024 bytes) consumed by this data array. Used to
// support streaming and reading/writing data. The value returned is
// guaranteed to be greater than or equal to the memory required to
// actually represent the data represented by this object. The
// information returned is valid only after the pipeline has
// been updated.
virtual unsigned long GetActualMemorySize() = 0;
// Description:
// Set/get array's name
vtkSetStringMacro(Name);
vtkGetStringMacro(Name);
// Description:
// Get the name of a data type as a string.
virtual const char *GetDataTypeAsString( void )
{ return vtkImageScalarTypeNameMacro( this->GetDataType() ); }
// Description:
// Creates an array for dataType where dataType is one of
// VTK_BIT, VTK_CHAR, VTK_UNSIGNED_CHAR, VTK_SHORT,
// VTK_UNSIGNED_SHORT, VTK_INT, VTK_UNSIGNED_INT, VTK_LONG,
// VTK_UNSIGNED_LONG, VTK_DOUBLE, VTK_DOUBLE, VTK_ID_TYPE,
// VTK_STRING.
// Note that the data array returned has to be deleted by the
// user.
static vtkAbstractArray* CreateArray(int dataType);
// Description:
// This method is here to make backward compatibility easier. It
// must return true if and only if an array contains numeric data.
virtual int IsNumeric() = 0;
// Description:
// Subclasses must override this method and provide the right kind
// of templated vtkArrayIteratorTemplate.
virtual vtkArrayIterator* NewIterator() = 0;
// Description:
// Returns the size of the data in DataTypeSize units. Thus, the
// number of bytes for the data can be computed by GetDataSize() *
// GetDataTypeSize(). Non-contiguous or variable- size arrays need
// to override this method.
virtual vtkIdType GetDataSize()
{
return this->GetNumberOfComponents() * this->GetNumberOfTuples();
}
// Description:
// Return the indices where a specific value appears.
virtual vtkIdType LookupValue(vtkVariant value) = 0;
virtual void LookupValue(vtkVariant value, vtkIdList* ids) = 0;
// Description:
// Retrieve value from the array as a variant.
virtual vtkVariant GetVariantValue(vtkIdType idx);
// Description:
// Insert a value into the array from a variant. This method does
// bounds checking.
virtual void InsertVariantValue(vtkIdType idx, vtkVariant value);
// Description:
// Set a value in the array from a variant. This method does NOT do
// bounds checking.
virtual void SetVariantValue(vtkIdType idx, vtkVariant value) = 0;
// Description:
// Tell the array explicitly that the data has changed.
// This is only necessary to call when you modify the array contents
// without using the array's API (i.e. you retrieve a pointer to the
// data and modify the array contents). You need to call this so that
// the fast lookup will know to rebuild itself. Otherwise, the lookup
// functions will give incorrect results.
virtual void DataChanged() = 0;
// Description:
// Delete the associated fast lookup data structure on this array,
// if it exists. The lookup will be rebuilt on the next call to a lookup
// function.
virtual void ClearLookup() = 0;
// Description:
// Populate the given vtkVariantArray with a set of distinct values taken on
// by the requested component (or, when passed -1, by the tuples as a whole).
// If the set of prominent values has more than 32 entries, then the array
// is assumed to be continuous in nature and no values are returned.
//
// This method takes 2 parameters: \a uncertainty and \a minimumProminence.
// Note that this set of returned values may not be complete if
// \a uncertainty and \a minimumProminence are both larger than 0.0;
// in order to perform interactively, a subsample of the array is
// used to determine the set of values.
//
// The first parameter (\a uncertainty, U) is the maximum acceptable
// probability that a prominent value will not be detected.
// Setting this to 0 will cause every value in the array to be examined.
//
// The second parameter (\a minimumProminence, P) specifies the smallest
// relative frequency (in [0,1]) with which a value in the array may
// occur and still be considered prominent. Setting this to 0
// will force every value in the array to be traversed.
// Using numbers close to 0 for this parameter quickly causes
// the number of samples required to obtain the given uncertainty to
// subsume the entire array, as rare occurrences require frequent
// sampling to detect.
//
// For an array with T tuples and given uncertainty U and mininumum
// prominence P, we sample N values, with N = f(T; P, U).
// We want f to be sublinear in T in order to interactively handle large
// arrays; in practice, we can make f independent of T:
// \f$ N >= \frac{5}{P}\mathrm{ln}\left(\frac{1}{PU}\right) \f$,
// but note that small values of P are costly to achieve.
// The default parameters will locate prominent values that occur at least
// 1 out of every 1000 samples with a confidence of 0.999999 (= 1 - 1e6).
// Thanks to Seshadri Comandur (Sandia National Laboratories) for the
// bounds on the number of samples.
//
// The first time this is called, the array is examined and unique values
// are stored in the vtkInformation object associated with the array.
// The list of unique values will be updated on subsequent calls only if
// the array's MTime is newer than the associated vtkInformation object or
// if better sampling (lower \a uncertainty or \a minimumProminence) is
// requested.
// The DISCRETE_VALUE_SAMPLE_PARAMETERS() information key is used to
// store the numbers which produced any current set of prominent values.
//
// Also, note that every value encountered is reported and counts toward
// the maximum of 32 distinct values, regardless of the value's frequency.
// This is required for an efficient implementation.
// Use the vtkOrderStatistics filter if you wish to threshold the set of
// distinct values to eliminate "unprominent" (infrequently-occurring)
// values.
virtual void GetProminentComponentValues(int comp, vtkVariantArray* values,
double uncertainty = 1.e-6, double minimumProminence = 1.e-3);
// TODO: Implement these lookup functions also.
//virtual void LookupRange(vtkVariant min, vtkVariant max, vtkIdList* ids,
// bool includeMin = true, bool includeMax = true) = 0;
//virtual void LookupGreaterThan(vtkVariant min, vtkIdList* ids, bool includeMin = false) = 0;
//virtual void LookupLessThan(vtkVariant max, vtkIdList* ids, bool includeMax = false) = 0;
// Description:
// Get an information object that can be used to annotate the array.
// This will always return an instance of vtkInformation, if one is
// not currently associated with the array it will be created.
vtkInformation* GetInformation();
// Description:
// Inquire if this array has an instance of vtkInformation
// already associated with it.
bool HasInformation(){ return this->Information!=0; }
//BTX
// Description:
// Copy information instance. Arrays use information objects
// in a variety of ways. It is important to have flexibility in
// this regard because certain keys should not be coppied, while
// others must be.
//
// NOTE: Subclasses must always call their superclass's CopyInformation
// method, so that all classes in the hierarchy get a chance to remove
// keys they do not wish to be coppied. The subclass will not need to
// explicilty copy the keys as it's handled here.
virtual int CopyInformation(vtkInformation *infoFrom, int deep=1);
//ETX
// Description:
// This key is a hint to end user interface that this array
// is internal and should not be shown to the end user.
static vtkInformationIntegerKey* GUI_HIDE();
// Description:
// This key is used to hold a vector of COMPONENT_VALUES (and, for
// vtkDataArray subclasses, COMPONENT_RANGE) keys -- one
// for each component of the array. You may add additional per-component
// key-value pairs to information objects in this vector. However if you
// do so, you must be sure to either (1) set COMPONENT_VALUES to
// an invalid variant and set COMPONENT_RANGE to
// {VTK_DOUBLE_MAX, VTK_DOUBLE_MIN} or (2) call ComputeUniqueValues(component)
// and ComputeRange(component) <b>before</b> modifying the information object.
// Otherwise it is possible for modifications to the array to take place
// without the bounds on the component being updated since the modification
// time of the vtkInformation object is used to determine when the
// COMPONENT_RANGE values are out of date.
static vtkInformationInformationVectorKey* PER_COMPONENT();
// Description:
// A key used to hold discrete values taken on either by the tuples of the
// array (when present in this->GetInformation()) or individual components
// (when present in one entry of the PER_COMPONENT() information vector).
static vtkInformationVariantVectorKey* DISCRETE_VALUES();
// Description:
// A key used to hold conditions under which cached discrete values were generated;
// the value is a 2-vector of doubles.
// The first entry corresponds to the maximum uncertainty that prominent values
// exist but have not been detected. The second entry corresponds to the smallest
// relative frequency a value is allowed to have and still appear on the list.
static vtkInformationDoubleVectorKey* DISCRETE_VALUE_SAMPLE_PARAMETERS();
// Deprecated. Use vtkAbstractArray::MaxDiscreteValues instead.
enum {
MAX_DISCRETE_VALUES = 32
};
// Description:
// Get/Set the maximum number of prominent values this array may contain
// before it is considered continuous. Default value is 32.
vtkGetMacro(MaxDiscreteValues, unsigned int);
vtkSetMacro(MaxDiscreteValues, unsigned int);
enum {
AbstractArray = 0,
DataArray,
TypedDataArray,
DataArrayTemplate,
MappedDataArray
};
// Description:
// Method for type-checking in FastDownCast implementations.
virtual int GetArrayType()
{
return AbstractArray;
}
protected:
// Construct object with default tuple dimension (number of components) of 1.
vtkAbstractArray();
~vtkAbstractArray();
// Description:
// Set an information object that can be used to annotate the array.
// Use this with caution as array instances depend on persistence of
// information keys. See CopyInformation.
virtual void SetInformation( vtkInformation* );
// Description:
// Obtain the set of unique values taken on by each component of the array,
// as well as by the tuples of the array.
//
// The results are stored in the PER_COMPONENT() vtkInformation objects
// using the DISCRETE_VALUES() key.
// If the key is present but stores 0 values, the array either has no
// entries or does not behave as a discrete set.
// If the key is not present, the array has not been examined for
// distinct values or has been modified since the last examination.
virtual void UpdateDiscreteValueSet(double uncertainty, double minProminence);
vtkIdType Size; // allocated size of data
vtkIdType MaxId; // maximum index inserted thus far
int NumberOfComponents; // the number of components per tuple
// maximum number of prominent values before array is considered continuous.
unsigned int MaxDiscreteValues;
char* Name;
bool RebuildArray; // whether to rebuild the fast lookup data structure.
vtkInformation* Information;
//BTX
class vtkInternalComponentNames;
vtkInternalComponentNames* ComponentNames; //names for each component
//ETX
private:
vtkAbstractArray(const vtkAbstractArray&); // Not implemented.
void operator=(const vtkAbstractArray&); // Not implemented.
};
#endif
|