This file is indexed.

/usr/include/vigra/watersheds.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
/************************************************************************/
/*                                                                      */
/*               Copyright 1998-2005 by Ullrich Koethe                  */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_WATERSHEDS_HXX
#define VIGRA_WATERSHEDS_HXX

#include <functional>
#include "mathutil.hxx"
#include "stdimage.hxx"
#include "pixelneighborhood.hxx"
#include "localminmax.hxx"
#include "labelimage.hxx"
#include "seededregiongrowing.hxx"
#include "functorexpression.hxx"
#include "union_find.hxx"
#include "multi_shape.hxx"

namespace vigra {

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Neighborhood>
unsigned int watershedLabeling(SrcIterator upperlefts,
                        SrcIterator lowerrights, SrcAccessor sa,
                        DestIterator upperleftd, DestAccessor da,
                        Neighborhood)
{
    typedef typename DestAccessor::value_type LabelType;

    int w = lowerrights.x - upperlefts.x;
    int h = lowerrights.y - upperlefts.y;
    int x,y;

    SrcIterator ys(upperlefts);
    SrcIterator xs(ys);
    DestIterator yd(upperleftd);
    DestIterator xd(yd);

    // temporary image to store region labels
    UnionFindArray<LabelType> labels;

    // initialize the neighborhood circulators
    NeighborOffsetCirculator<Neighborhood> ncstart(Neighborhood::CausalFirst);
    NeighborOffsetCirculator<Neighborhood> ncstartBorder(Neighborhood::North);
    NeighborOffsetCirculator<Neighborhood> ncend(Neighborhood::CausalLast);
    ++ncend;
    NeighborOffsetCirculator<Neighborhood> ncendBorder(Neighborhood::North);
    ++ncendBorder;

    // pass 1: scan image from upper left to lower right
    // to find connected components

    // Each component will be represented by a tree of pixels. Each
    // pixel contains the scan order address of its parent in the
    // tree.  In order for pass 2 to work correctly, the parent must
    // always have a smaller scan order address than the child.
    // Therefore, we can merge trees only at their roots, because the
    // root of the combined tree must have the smallest scan order
    // address among all the tree's pixels/ nodes.  The root of each
    // tree is distinguished by pointing to itself (it contains its
    // own scan order address). This condition is enforced whenever a
    // new region is found or two regions are merged
    da.set(labels.finalizeIndex(labels.nextFreeIndex()), xd);

    ++xs.x;
    ++xd.x;
    for(x = 1; x != w; ++x, ++xs.x, ++xd.x)
    {
        if((sa(xs) & Neighborhood::directionBit(Neighborhood::West)) ||
           (sa(xs, Neighborhood::west()) & Neighborhood::directionBit(Neighborhood::East)))
        {
            da.set(da(xd, Neighborhood::west()), xd);
        }
        else
        {
            da.set(labels.finalizeIndex(labels.nextFreeIndex()), xd);
        }
    }

    ++ys.y;
    ++yd.y;
    for(y = 1; y != h; ++y, ++ys.y, ++yd.y)
    {
        xs = ys;
        xd = yd;

        for(x = 0; x != w; ++x, ++xs.x, ++xd.x)
        {
            NeighborOffsetCirculator<Neighborhood> nc(x == w-1
                                                        ? ncstartBorder
                                                        : ncstart);
            NeighborOffsetCirculator<Neighborhood> nce(x == 0
                                                         ? ncendBorder
                                                         : ncend);
            LabelType currentIndex = labels.nextFreeIndex();
            for(; nc != nce; ++nc)
            {
                if((sa(xs) & nc.directionBit()) || (sa(xs, *nc) & nc.oppositeDirectionBit()))
                {
                    currentIndex = labels.makeUnion(da(xd,*nc), currentIndex);
                }
            }
            da.set(labels.finalizeIndex(currentIndex), xd);
        }
    }

    unsigned int count = labels.makeContiguous();

    // pass 2: assign one label to each region (tree)
    // so that labels form a consecutive sequence 1, 2, ...
    yd = upperleftd;
    for(y=0; y != h; ++y, ++yd.y)
    {
        DestIterator xd(yd);
        for(x = 0; x != w; ++x, ++xd.x)
        {
            da.set(labels.findLabel(da(xd)), xd);
        }
    }
    return count;
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Neighborhood>
unsigned int watershedLabeling(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                               pair<DestIterator, DestAccessor> dest,
                               Neighborhood neighborhood)
{
    return watershedLabeling(src.first, src.second, src.third,
                             dest.first, dest.second, neighborhood);
}


template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
void prepareWatersheds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                      DestIterator upperleftd, DestAccessor da,
                      FourNeighborCode)
{
    int w = lowerrights.x - upperlefts.x;
    int h = lowerrights.y - upperlefts.y;
    int x,y;

    SrcIterator ys(upperlefts);
    SrcIterator xs(ys);

    DestIterator yd = upperleftd;

    for(y = 0; y != h; ++y, ++ys.y, ++yd.y)
    {
        xs = ys;
        DestIterator xd = yd;

        for(x = 0; x != w; ++x, ++xs.x, ++xd.x)
        {
            AtImageBorder atBorder = isAtImageBorder(x,y,w,h);
            typename SrcAccessor::value_type v = sa(xs);
            // the following choice causes minima to point
            // to their lowest neighbor -- would this be better???
            // typename SrcAccessor::value_type v = NumericTraits<typename SrcAccessor::value_type>::max();
            int o = 0; // means center is minimum
            if(atBorder == NotAtBorder)
            {
                NeighborhoodCirculator<SrcIterator, FourNeighborCode>  c(xs), cend(c);
                do {
                    if(sa(c) <= v)
                    {
                        v = sa(c);
                        o = c.directionBit();
                    }
                }
                while(++c != cend);
            }
            else
            {
                RestrictedNeighborhoodCirculator<SrcIterator, FourNeighborCode>  c(xs, atBorder), cend(c);
                do {
                    if(sa(c) <= v)
                    {
                        v = sa(c);
                        o = c.directionBit();
                    }
                }
                while(++c != cend);
            }
            da.set(o, xd);
        }
    }
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
void prepareWatersheds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                      DestIterator upperleftd, DestAccessor da,
                      EightNeighborCode)
{
    int w = lowerrights.x - upperlefts.x;
    int h = lowerrights.y - upperlefts.y;
    int x,y;

    SrcIterator ys(upperlefts);
    SrcIterator xs(ys);

    DestIterator yd = upperleftd;

    for(y = 0; y != h; ++y, ++ys.y, ++yd.y)
    {
        xs = ys;
        DestIterator xd = yd;

        for(x = 0; x != w; ++x, ++xs.x, ++xd.x)
        {
            AtImageBorder atBorder = isAtImageBorder(x,y,w,h);
            typename SrcAccessor::value_type v = sa(xs);
            // the following choice causes minima to point
            // to their lowest neighbor -- would this be better???
            // typename SrcAccessor::value_type v = NumericTraits<typename SrcAccessor::value_type>::max();
            int o = 0; // means center is minimum
            if(atBorder == NotAtBorder)
            {
                // handle diagonal and principal neighbors separately
                // so that principal neighbors are preferred when there are
                // candidates with equal strength
                NeighborhoodCirculator<SrcIterator, EightNeighborCode>
                                      c(xs, EightNeighborCode::NorthEast);
                for(int i = 0; i < 4; ++i, c += 2)
                {
                    if(sa(c) <= v)
                    {
                        v = sa(c);
                        o = c.directionBit();
                    }
                }
                --c;
                for(int i = 0; i < 4; ++i, c += 2)
                {
                    if(sa(c) <= v)
                    {
                        v = sa(c);
                        o = c.directionBit();
                    }
                }
            }
            else
            {
                RestrictedNeighborhoodCirculator<SrcIterator, EightNeighborCode>
                             c(xs, atBorder), cend(c);
                do
                {
                    if(!c.isDiagonal())
                        continue;
                    if(sa(c) <= v)
                    {
                        v = sa(c);
                        o = c.directionBit();
                    }
                }
                while(++c != cend);
                do
                {
                    if(c.isDiagonal())
                        continue;
                    if(sa(c) <= v)
                    {
                        v = sa(c);
                        o = c.directionBit();
                    }
                }
                while(++c != cend);
            }
            da.set(o, xd);
        }
    }
}

/** \addtogroup SeededRegionGrowing Region Segmentation Algorithms
    Region growing, watersheds, and voronoi tesselation
*/
//@{

    /**\brief Options object for generateWatershedSeeds().
     *
        <b> Usage:</b>

        <b>\#include</b> \<vigra/watersheds.hxx\><br>
        Namespace: vigra
        
        \code
        MultiArray<2, float>  boundary_indicator(w, h);
        MultiArray<2, int>    seeds(boundary_indicator.shape());
        
        // detect all minima in 'boundary_indicator' that are below gray level 22
        generateWatershedSeeds(boundary_indicator, seeds,
                               SeedOptions().minima().threshold(22.0));
        \endcode
     */
class SeedOptions
{
public:
    enum DetectMinima { LevelSets, Minima, ExtendedMinima, Unspecified };
    
    double thresh;
    DetectMinima mini;
    
        /**\brief Construct default options object.
         *
            Defaults are: detect minima without thresholding (i.e. all minima).
         */
    SeedOptions()
    : thresh(NumericTraits<double>::max()),
      mini(Minima)
    {}
    
        /** Generate seeds at minima.
        
            Default: true
         */
    SeedOptions & minima()
    {
        mini = Minima;
        return *this;
    }
    
        /** Generate seeds at minima and minimal plateaus.
        
            Default: false
         */
    SeedOptions & extendedMinima()
    {
        mini = ExtendedMinima;
        return *this;
    }
    
        /** Generate seeds as level sets.
        
            Note that you must also set a threshold to define which level set is to be used.<br>
            Default: false
         */
    SeedOptions & levelSets()
    {
        mini = LevelSets;
        return *this;
    }
    
        /** Generate seeds as level sets at given threshold.
        
            Equivalent to <tt>SeedOptions().levelSet().threshold(threshold)</tt><br>
            Default: false
         */
    SeedOptions & levelSets(double threshold)
    {
        mini = LevelSets;
        thresh = threshold;
        return *this;
    }
    
        /** Set threshold.
        
            The threshold will be used by both the minima and level set variants
            of seed generation.<br>
            Default: no thresholding
         */
    SeedOptions & threshold(double threshold)
    {
        thresh = threshold;
        return *this;
    }
    
        // check whether the threshold has been set for the target type T
    template <class T>
    bool thresholdIsValid() const
    {
        return thresh < double(NumericTraits<T>::max());
    }
    
        // indicate that this option object is invalid (for internal use in watersheds)
    SeedOptions & unspecified()
    {
        mini = Unspecified;
        return *this;
    }
};

/** \brief Generate seeds for watershed computation and seeded region growing.

    The source image is a boundary indicator such as the gradient magnitude
    or the trace of the \ref boundaryTensor(). Seeds are generally generated
    at locations where the boundaryness (i.e. the likelihood of the point being on the
    boundary) is very small. In particular, seeds can be placed by either
    looking for local minima (possibly including minimal plateaus) of the boundaryness,
    of by looking at level sets (i.e. regions where the boundaryness is below a threshold).
    Both methods can also be combined, so that only minima below a threshold are returned.
    The particular seeding strategy is specified by the <tt>options</tt> object 
    (see \ref SeedOptions).
    
    The pixel type of the input image must be <tt>LessThanComparable</tt>.
    The pixel type of the output image must be large enough to hold the labels for all seeds.
    (typically, you will use <tt>UInt32</tt>). The function will label seeds by consecutive integers
    (starting from 1) and returns the largest label it used.
    
    Pass \ref vigra::NeighborhoodType "IndirectNeighborhood" or \ref vigra::NeighborhoodType "DirectNeighborhood" 
    (first form of the function) 
    or \ref vigra::EightNeighborCode or \ref vigra::FourNeighborCode (second and third forms) to determine the 
    neighborhood where pixel values are compared. 

    <b> Declarations:</b>

    use arbitrary-dimensional arrays:
    \code
    namespace vigra {
        template <unsigned int N, class T, class S1,
                                  class Label, class S2>
        Label
        generateWatershedSeeds(MultiArrayView<N, T, S1> const & data,
                               MultiArrayView<N, Label, S2> seeds,
                               NeighborhoodType neighborhood = IndirectNeighborhood,
                               SeedOptions const & options = SeedOptions());
    }
    \endcode

    \deprecatedAPI{generateWatershedSeeds}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor,
                  class Neighborhood = EightNeighborCode>
        unsigned int
        generateWatershedSeeds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                               DestIterator upperleftd, DestAccessor da, 
                               Neighborhood neighborhood = EightNeighborCode(),
                               SeedOptions const & options = SeedOptions());
    }
    \endcode
    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor,
                  class Neighborhood = EightNeighborCode>
        unsigned int
        generateWatershedSeeds(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                               pair<DestIterator, DestAccessor> dest, 
                               Neighborhood neighborhood = EightNeighborCode(),
                               SeedOptions const & options = SeedOptions());
    }
    \endcode
    \deprecatedEnd

    <b> Usage:</b>

    <b>\#include</b> \<vigra/multi_watersheds.hxx\> (MultiArray variant)<br>
    <b>\#include</b> \<vigra/watersheds.hxx\> (deprecated variants)<br>
    Namespace: vigra

    For detailed examples see \ref watershedsMultiArray() and \ref watershedsRegionGrowing().
*/
doxygen_overloaded_function(template <...> unsigned int generateWatershedSeeds)

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Neighborhood>
unsigned int
generateWatershedSeeds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                       DestIterator upperleftd, DestAccessor da, 
                       Neighborhood neighborhood,
                       SeedOptions const & options = SeedOptions())
{
    using namespace functor;
    typedef typename SrcAccessor::value_type SrcType;
    
    vigra_precondition(options.mini != SeedOptions::LevelSets || 
                       options.thresholdIsValid<SrcType>(),
        "generateWatershedSeeds(): SeedOptions.levelSets() must be specified with threshold.");
    
    Diff2D shape = lowerrights - upperlefts;
    BImage seeds(shape);
    
    if(options.mini == SeedOptions::LevelSets)
    {
        transformImage(srcIterRange(upperlefts, lowerrights, sa),
                       destImage(seeds),
                       ifThenElse(Arg1() <= Param(options.thresh), Param(1), Param(0)));
    }
    else
    {
        LocalMinmaxOptions lm_options;
        lm_options.neighborhood(Neighborhood::DirectionCount)
                  .markWith(1.0)
                  .allowAtBorder()
                  .allowPlateaus(options.mini == SeedOptions::ExtendedMinima);
        if(options.thresholdIsValid<SrcType>())
            lm_options.threshold(options.thresh);
            
        localMinima(srcIterRange(upperlefts, lowerrights, sa), destImage(seeds),
                    lm_options);
    }
    
    return labelImageWithBackground(srcImageRange(seeds), destIter(upperleftd, da), 
                                    Neighborhood::DirectionCount == 8, 0);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int
generateWatershedSeeds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                       DestIterator upperleftd, DestAccessor da, 
                       SeedOptions const & options = SeedOptions())
{
    return generateWatershedSeeds(upperlefts, lowerrights, sa, upperleftd, da, 
                                   EightNeighborCode(), options);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Neighborhood>
inline unsigned int
generateWatershedSeeds(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                       pair<DestIterator, DestAccessor> dest, 
                       Neighborhood neighborhood,
                       SeedOptions const & options = SeedOptions())
{
    return generateWatershedSeeds(src.first, src.second, src.third,
                                   dest.first, dest.second,    
                                   neighborhood, options);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int
generateWatershedSeeds(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                       pair<DestIterator, DestAccessor> dest, 
                       SeedOptions const & options = SeedOptions())
{
    return generateWatershedSeeds(src.first, src.second, src.third,
                                   dest.first, dest.second,    
                                   EightNeighborCode(), options);
}

/********************************************************/
/*                                                      */
/*                 watershedsUnionFind                  */
/*                                                      */
/********************************************************/

/** \brief Region segmentation by means of the union-find watershed algorithm.

    Note: This function is largely obsolete, \ref watershedsMultiArray() should be
    preferred unless top speed is required.
    
    This function implements the union-find version of the watershed algorithms
    described as algorithm 4.7 in

    J. Roerdink, R. Meijster: <em>"The watershed transform: definitions, algorithms,
    and parallelization strategies"</em>, Fundamenta Informaticae, 41:187-228, 2000

    The source image is a boundary indicator such as the gaussianGradientMagnitude()
    or the trace of the \ref boundaryTensor(). Local minima of the boundary indicator
    are used as region seeds, and all other pixels are recursively assigned to the same
    region as their lowest neighbor. Pass \ref vigra::EightNeighborCode or
    \ref vigra::FourNeighborCode to determine the neighborhood where pixel values
    are compared. The pixel type of the input image must be <tt>LessThanComparable</tt>.
    The function uses accessors.

    Note that VIGRA provides an alternative implementation of the watershed transform via
    \ref watershedsRegionGrowing(). It is slower, but offers many more configuration options.

    <b> Declarations:</b>

    pass 2D array views:
    \code
    namespace vigra {
        template <class T1, class S1,
                  class T2, class S2,
                  class Neighborhood>
        unsigned int
        watershedsUnionFind(MultiArrayView<2, T1, S1> const & src,
                            MultiArrayView<2, T2, S2> dest, 
                            Neighborhood neighborhood = EightNeighborCode());
    }
    \endcode

    \deprecatedAPI{watershedsUnionFind}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor,
                  class Neighborhood = EightNeighborCode>
        unsigned int
        watershedsUnionFind(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                            DestIterator upperleftd, DestAccessor da,
                            Neighborhood neighborhood = EightNeighborCode())
    }
    \endcode
    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor,
                  class Neighborhood = EightNeighborCode>
        unsigned int
        watershedsUnionFind(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                            pair<DestIterator, DestAccessor> dest,
                            Neighborhood neighborhood = EightNeighborCode())
    }
    \endcode
    \deprecatedEnd

    <b> Usage:</b>

    <b>\#include</b> \<vigra/watersheds.hxx\><br>
    Namespace: vigra

    Example: watersheds of the gradient magnitude.

    \code
    MultiArray<2, float> in(w,h);
    ... // read input data

    // compute gradient magnitude as boundary indicator
    MultiArray<2, float> gradMag(w, h);
    gaussianGradientMagnitude(src, gradMag, 3.0);

    // the pixel type of the destination image must be large enough to hold
    // numbers up to 'max_region_label' to prevent overflow
    MultiArray<2, unsigned int> labeling(w,h);
    unsigned int max_region_label = watershedsUnionFind(gradMag, labeling);
    \endcode

    \deprecatedUsage{watershedsUnionFind}
    Example: watersheds of the gradient magnitude.

    \code
    vigra::BImage in(w,h);
    ... // read input data

    // compute gradient magnitude as boundary indicator
    vigra::FImage gradMag(w, h);
    gaussianGradientMagnitude(srcImageRange(src), destImage(gradMag), 3.0);

    // the pixel type of the destination image must be large enough to hold
    // numbers up to 'max_region_label' to prevent overflow
    vigra::IImage labeling(w,h);
    int max_region_label = watershedsUnionFind(srcImageRange(gradMag), destImage(labeling));

    \endcode
    <b> Required Interface:</b>
    \code
    SrcIterator src_upperleft, src_lowerright;
    DestIterator dest_upperleft;

    SrcAccessor src_accessor;
    DestAccessor dest_accessor;

    // compare src values
    src_accessor(src_upperleft) <= src_accessor(src_upperleft)

    // set result
    int label;
    dest_accessor.set(label, dest_upperleft);
    \endcode
    \deprecatedEnd
*/
doxygen_overloaded_function(template <...> unsigned int watershedsUnionFind)

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Neighborhood>
unsigned int
watershedsUnionFind(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                    DestIterator upperleftd, DestAccessor da, 
                    Neighborhood neighborhood)
{
    SImage orientationImage(lowerrights - upperlefts);

    prepareWatersheds(upperlefts, lowerrights, sa,
                     orientationImage.upperLeft(), orientationImage.accessor(), neighborhood);
    return watershedLabeling(orientationImage.upperLeft(), orientationImage.lowerRight(), orientationImage.accessor(),
                             upperleftd, da, neighborhood);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int
watershedsUnionFind(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
           DestIterator upperleftd, DestAccessor da)
{
    return watershedsUnionFind(upperlefts, lowerrights, sa, upperleftd, da, EightNeighborCode());
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Neighborhood>
inline unsigned int
watershedsUnionFind(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                    pair<DestIterator, DestAccessor> dest, Neighborhood neighborhood)
{
    return watershedsUnionFind(src.first, src.second, src.third, 
                               dest.first, dest.second, neighborhood);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int
watershedsUnionFind(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                    pair<DestIterator, DestAccessor> dest)
{
    return watershedsUnionFind(src.first, src.second, src.third, 
                               dest.first, dest.second);
}

template <class T1, class S1,
          class T2, class S2,
          class Neighborhood>
inline unsigned int
watershedsUnionFind(MultiArrayView<2, T1, S1> const & src,
                    MultiArrayView<2, T2, S2> dest, Neighborhood neighborhood)
{
    return watershedsUnionFind(srcImageRange(src), 
                               destImage(dest), neighborhood);
}

template <class T1, class S1,
          class T2, class S2>
inline unsigned int
watershedsUnionFind(MultiArrayView<2, T1, S1> const & src,
                    MultiArrayView<2, T2, S2> dest)
{
    vigra_precondition(src.shape() == dest.shape(),
        "watershedsUnionFind(): shape mismatch between input and output.");
    return watershedsUnionFind(srcImageRange(src), 
                               destImage(dest));
}

/** \brief Options object for watershed algorithms.

    <b> Usage:</b>

    see \ref watershedsMultiArray() and watershedsRegionGrowing() for detailed examples.
*/
class WatershedOptions
{
  public:
    enum Method { RegionGrowing, UnionFind };
  
    double max_cost, bias;
    SRGType terminate;
    Method method;
    unsigned int biased_label, bucket_count;
    SeedOptions seed_options;
    
    
    
        /** \brief Create options object with default settings.

            Defaults are: perform complete grow (all pixels are assigned to regions),
            use standard algorithm, assume that the destination image already contains 
            region seeds.
        */
    WatershedOptions()
    : max_cost(0.0),
      bias(1.0),
      terminate(CompleteGrow),
      method(RegionGrowing),
      biased_label(0),
      bucket_count(0),
      seed_options(SeedOptions().unspecified())
    {}    
    
        /** \brief Perform complete grow.

            That is, all pixels are assigned to regions, without explicit contours
            in between.
            
            Default: true
        */
    WatershedOptions & completeGrow()
    {
        terminate = SRGType(CompleteGrow | (terminate & StopAtThreshold));
        return *this;
    }
    
        /** \brief Keep one-pixel wide contour between regions.
        
            Note that this option is unsupported by the turbo algorithm.

            Default: false
        */
    WatershedOptions & keepContours()
    {
        terminate = SRGType(KeepContours | (terminate & StopAtThreshold));
        return *this;
    }
    
        /** \brief Set \ref SRGType explicitly.
        
            Default: CompleteGrow
        */
    WatershedOptions & srgType(SRGType type)
    {
        terminate = type;
        return *this;
    }
    
        /** \brief Stop region growing when the boundaryness exceeds the threshold.
        
            This option may be combined with completeGrow() and keepContours().
        
            Default: no early stopping
        */
    WatershedOptions & stopAtThreshold(double threshold)
    {
        terminate = SRGType(terminate | StopAtThreshold);
        max_cost = threshold;
        return *this;
    }
    
        /** \brief Use a simpler, but faster region growing algorithm.
        
            The algorithm internally uses a \ref BucketQueue to determine
            the processing order of the pixels. This is only useful,
            when the input boundary indicator image contains integers
            in the range <tt>[0, ..., bucket_count-1]</tt>. Since
            these boundary indicators are typically represented as
            UInt8 images, the default <tt>bucket_count</tt> is 256.
        
            Default: don't use the turbo algorithm
        */
    WatershedOptions & turboAlgorithm(unsigned int bucket_count = 256)
    {
        this->bucket_count = bucket_count;
        method = RegionGrowing;
        return *this;
    }
    
        /** \brief Specify seed options.
        
            In this case, watershedsRegionGrowing() assumes that the destination
            image does not yet contain seeds. It will therefore call 
            generateWatershedSeeds() and pass on the seed options.
        
            Default: don't compute seeds (i.e. assume that destination image already
            contains seeds).
        */
    WatershedOptions & seedOptions(SeedOptions const & s)
    {
        seed_options = s;
        return *this;
    }
    
        /** \brief Bias the cost of the specified region by the given factor.
        
            In certain applications, one region (typically the background) should
            be preferred in region growing. This is most easily achieved
            by adjusting the assignment cost for that region as <tt>factor*cost</tt>,
            with a factor slightly below 1.
        
            Default: don't bias any region.
        */
    WatershedOptions & biasLabel(unsigned int label, double factor)
    {
        biased_label = label;
        bias = factor;
        return *this;
    }
    
        /** \brief Specify the algorithm to be used.
        
            Possible values are <tt>WatershedOptions::RegionGrowing</tt> and
            <tt>WatershedOptions::UnionFind</tt>. The latter algorithm is fastest
            but doesn't support seeds and any of the other options.
        
            Default: RegionGrowing.
        */
    WatershedOptions & useMethod(Method method)
    {
        this->method = method;
        return *this;
    }
    
        /** \brief Use region-growing watershed.
        
            Use this method when you want to specify seeds explicitly (seeded watersheds) 
            or use any of the other options.
        
            Default: true.
        */
    WatershedOptions & regionGrowing()
    {
        method = RegionGrowing;
        return *this;
    }
    
        /** \brief Use union-find watershed.
        
            This is the fasted method, but it doesn't support seeds and any of the other 
            options (they will be silently ignored).
        
            Default: false.
        */
    WatershedOptions & unionFind()
    {
        method = UnionFind;
        return *this;
    }
};

namespace detail {

template <class CostType, class LabelType>
class WatershedStatistics
{
  public:
  
    typedef SeedRgDirectValueFunctor<CostType> value_type;
    typedef value_type & reference;
    typedef value_type const & const_reference;
    
    typedef CostType  first_argument_type;
    typedef LabelType second_argument_type;
    typedef LabelType argument_type;
    
    WatershedStatistics()
    {}

    void resize(unsigned int)
    {}

    void reset()
    {}

        /** update regions statistics (do nothing in the watershed algorithm)
        */
    template <class T1, class T2>
    void operator()(first_argument_type const &, second_argument_type const &) 
    {}

        /** ask for maximal index (label) allowed
        */
    LabelType maxRegionLabel() const
        { return size() - 1; }

        /** ask for array size (i.e. maxRegionLabel() + 1)
        */
    LabelType size() const
        { return NumericTraits<LabelType>::max(); }

        /** read the statistics functor for a region via its label
        */
    const_reference operator[](argument_type label) const
        { return stats; }

        /** access the statistics functor for a region via its label
        */
    reference operator[](argument_type label)
        { return stats; }

    value_type stats;
};

template <class Value>
class SeedRgBiasedValueFunctor
{
  public:
    double bias;

        /* the functor's argument type
        */
    typedef Value argument_type;

        /* the functor's result type (unused, only necessary for
            use of SeedRgDirectValueFunctor in \ref vigra::ArrayOfRegionStatistics
        */
    typedef Value result_type;

        /* the return type of the cost() function
        */
    typedef Value cost_type;
    
    SeedRgBiasedValueFunctor(double b = 1.0)
    : bias(b)
    {}

        /* Do nothing (since we need not update region statistics).
        */
    void operator()(argument_type const &) const {}

        /* Return scaled argument
        */
    cost_type cost(argument_type const & v) const
    {
        return cost_type(bias*v);
    }
};

template <class CostType, class LabelType>
class BiasedWatershedStatistics
{
  public:
  
    typedef SeedRgBiasedValueFunctor<CostType> value_type;
    typedef value_type & reference;
    typedef value_type const & const_reference;
    
    typedef CostType  first_argument_type;
    typedef LabelType second_argument_type;
    typedef LabelType argument_type;
    
    BiasedWatershedStatistics(LabelType biasedLabel, double bias)
    : biased_label(biasedLabel),
      biased_stats(bias)
    {}

    void resize(unsigned int)
    {}

    void reset()
    {}

        /** update regions statistics (do nothing in the watershed algorithm)
        */
    template <class T1, class T2>
    void operator()(first_argument_type const &, second_argument_type const &) 
    {}

        /** ask for maximal index (label) allowed
        */
    LabelType maxRegionLabel() const
        { return size() - 1; }

        /** ask for array size (i.e. maxRegionLabel() + 1)
        */
    LabelType size() const
        { return NumericTraits<LabelType>::max(); }

        /** read the statistics functor for a region via its label
        */
    const_reference operator[](argument_type label) const
    { 
        return (label == biased_label)
                    ? biased_stats
                    : stats; 
    }

        /** access the statistics functor for a region via its label
        */
    reference operator[](argument_type label)
    { 
        return (label == biased_label)
                    ? biased_stats
                    : stats; 
    }

    LabelType biased_label;
    value_type stats, biased_stats;
};

} // namespace detail

/** \brief Region segmentation by means of a flooding-based watershed algorithm.

    Note: This function is largely obsolete, \ref watershedsMultiArray() should be
    preferred unless top speed is required.
    
    This function implements variants of the watershed algorithm
    described in

    L. Vincent and P. Soille: <em>"Watersheds in digital spaces: An efficient algorithm
    based on immersion simulations"</em>, IEEE Trans. Patt. Analysis Mach. Intell. 13(6):583-598, 1991

    The source image is a boundary indicator such as the gaussianGradientMagnitude()
    or the trace of the \ref boundaryTensor(), and the destination is a label image
    designating membership of each point in one of the regions. Plateaus in the boundary
    indicator (i.e. regions of constant gray value) are handled via a Euclidean distance
    transform by default.
    
    By default, the destination image is assumed to hold seeds for a seeded watershed 
    transform. Seeds may, for example, be created by means of generateWatershedSeeds(). 
    Note that the seeds will be overridden with the final watershed segmentation.
    
    Alternatively, you may provide \ref SeedOptions in order to instruct 
    watershedsRegionGrowing() to generate its own seeds (it will call generateWatershedSeeds()
    internally). In that case, the destination image should be zero-initialized.
    
    You can specify the neighborhood system to be used by passing \ref FourNeighborCode 
    or \ref EightNeighborCode (default).
    
    Further options to be specified via \ref WatershedOptions are:
    
    <ul>
    <li> Whether to keep a 1-pixel-wide contour (with label 0) between regions or 
         perform complete grow (i.e. all pixels are assigned to a region).
    <li> Whether to stop growing when the boundaryness exceeds a threshold (remaining
         pixels keep label 0).
    <li> Whether to use a faster, but less powerful algorithm ("turbo algorithm"). It
         is faster because it orders pixels by means of a \ref BucketQueue (therefore,
         the boundary indicator must contain integers in the range 
         <tt>[0, ..., bucket_count-1]</tt>, where <tt>bucket_count</tt> is specified in
         the options object), it only supports complete growing (no contour between regions
         is possible), and it handles plateaus in a simplistic way. It also saves some
         memory because it allocates less temporary storage.
    <li> Whether one region (label) is to be preferred or discouraged by biasing its cost 
         with a given factor (smaller than 1 for preference, larger than 1 for discouragement).
    </ul>

    Note that VIGRA provides an alternative implementation of the watershed transform via
    \ref watershedsUnionFind(). 

    <b> Declarations:</b>

    pass 2D array views:
    \code
    namespace vigra {
        template <class T1, class S1,
                  class T2, class S2,
                  class Neighborhood = EightNeighborCode>
        unsigned int
        watershedsRegionGrowing(MultiArrayView<2, T1, S1> const & src,
                                MultiArrayView<2, T2, S2> dest, 
                                Neighborhood neighborhood = EightNeighborCode(),
                                WatershedOptions const & options = WatershedOptions());

        template <class T1, class S1,
                  class T2, class S2>
        unsigned int
        watershedsRegionGrowing(MultiArrayView<2, T1, S1> const & src,
                                MultiArrayView<2, T2, S2> dest, 
                                WatershedOptions const & options = WatershedOptions());
    }
    \endcode

    \deprecatedAPI{watershedsRegionGrowing}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor,
                  class Neighborhood = EightNeighborCode>
        unsigned int
        watershedsRegionGrowing(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                                DestIterator upperleftd, DestAccessor da, 
                                Neighborhood neighborhood = EightNeighborCode(),
                                WatershedOptions const & options = WatershedOptions());

        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        unsigned int
        watershedsRegionGrowing(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                                DestIterator upperleftd, DestAccessor da, 
                                WatershedOptions const & options = WatershedOptions());
    }
    \endcode
    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor,
                  class Neighborhood = EightNeighborCode>
        unsigned int
        watershedsRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                                pair<DestIterator, DestAccessor> dest, 
                                Neighborhood neighborhood = EightNeighborCode(),
                                WatershedOptions const & options = WatershedOptions());
                                
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        unsigned int
        watershedsRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                                pair<DestIterator, DestAccessor> dest, 
                                WatershedOptions const & options = WatershedOptions());
    }
    \endcode
    \deprecatedEnd
    
    <b> Usage:</b>

    <b>\#include</b> \<vigra/watersheds.hxx\><br>
    Namespace: vigra

    Example: watersheds of the gradient magnitude.

    \code
    MultiArray<2, float> src(w, h);
    ... // read input data
    
    // compute gradient magnitude at scale 1.0 as a boundary indicator
    MultiArray<2, float> gradMag(w, h);
    gaussianGradientMagnitude(src, gradMag, 1.0);

    // example 1
    {
        // the pixel type of the destination image must be large enough to hold
        // numbers up to 'max_region_label' to prevent overflow
        MultiArray<2, unsigned int> labeling(w, h);
        
        // call watershed algorithm for 4-neighborhood, leave a 1-pixel boundary between regions,
        // and autogenerate seeds from all gradient minima where the magnitude is below 2.0
        unsigned int max_region_label = 
              watershedsRegionGrowing(gradMag, labeling,
                                      FourNeighborCode(),
                                      WatershedOptions().keepContours()
                                           .seedOptions(SeedOptions().minima().threshold(2.0)));
    }
    
    // example 2
    {
        MultiArray<2, unsigned int> labeling(w, h);
        
        // compute seeds beforehand (use connected components of all pixels 
        // where the gradient  is below 4.0)
        unsigned int max_region_label = 
              generateWatershedSeeds(gradMag, labeling,
                                     SeedOptions().levelSets(4.0));
        
        // quantize the gradient image to 256 gray levels
        MultiArray<2, unsigned char> gradMag256(w, h);
        FindMinMax<float> minmax; 
        inspectImage(gradMag, minmax); // find original range
        transformImage(gradMag, gradMag256,
                       linearRangeMapping(minmax, 0, 255));
        
        // call the turbo algorithm with 256 bins, using 8-neighborhood
        watershedsRegionGrowing(gradMag256, labeling,
                                WatershedOptions().turboAlgorithm(256));
    }
    
    // example 3
    {
       MultiArray<2, unsigned int> labeling(w, h);
        
        .. // get seeds from somewhere, e.g. an interactive labeling program,
           // make sure that label 1 corresponds to the background
        
        // bias the watershed algorithm so that the background is preferred
        // by reducing the cost for label 1 to 90%
        watershedsRegionGrowing(gradMag, labeling,
                                WatershedOptions().biasLabel(1, 0.9));
    }
    \endcode

    \deprecatedUsage{watershedsRegionGrowing}
    \code
    vigra::BImage src(w, h);
    ... // read input data
    
    // compute gradient magnitude at scale 1.0 as a boundary indicator
    vigra::FImage gradMag(w, h);
    gaussianGradientMagnitude(srcImageRange(src), destImage(gradMag), 1.0);

    // example 1
    {
        // the pixel type of the destination image must be large enough to hold
        // numbers up to 'max_region_label' to prevent overflow
        vigra::IImage labeling(w, h);
        
        // call watershed algorithm for 4-neighborhood, leave a 1-pixel boundary between regions,
        // and autogenerate seeds from all gradient minima where the magnitude is below 2.0
        unsigned int max_region_label = 
              watershedsRegionGrowing(srcImageRange(gradMag), destImage(labeling),
                                      FourNeighborCode(),
                                      WatershedOptions().keepContours()
                                           .seedOptions(SeedOptions().minima().threshold(2.0)));
    }
    
    // example 2
    {
        vigra::IImage labeling(w, h);
        
        // compute seeds beforehand (use connected components of all pixels 
        // where the gradient  is below 4.0)
        unsigned int max_region_label = 
              generateWatershedSeeds(srcImageRange(gradMag), destImage(labeling),
                                     SeedOptions().levelSets(4.0));
        
        // quantize the gradient image to 256 gray levels
        vigra::BImage gradMag256(w, h);
        vigra::FindMinMax<float> minmax; 
        inspectImage(srcImageRange(gradMag), minmax); // find original range
        transformImage(srcImageRange(gradMag), destImage(gradMag256),
                       linearRangeMapping(minmax, 0, 255));
        
        // call the turbo algorithm with 256 bins, using 8-neighborhood
        watershedsRegionGrowing(srcImageRange(gradMag256), destImage(labeling),
                                WatershedOptions().turboAlgorithm(256));
    }
    
    // example 3
    {
        vigra::IImage labeling(w, h);
        
        .. // get seeds from somewhere, e.g. an interactive labeling program,
           // make sure that label 1 corresponds to the background
        
        // bias the watershed algorithm so that the background is preferred
        // by reducing the cost for label 1 to 90%
        watershedsRegionGrowing(srcImageRange(gradMag), destImage(labeling),
                                WatershedOptions().biasLabel(1, 0.9));
    }
    \endcode
    <b> Required Interface:</b>
    \code
    SrcIterator src_upperleft, src_lowerright;
    DestIterator dest_upperleft;

    SrcAccessor src_accessor;
    DestAccessor dest_accessor;

    // compare src values
    src_accessor(src_upperleft) <= src_accessor(src_upperleft)

    // set result
    int label;
    dest_accessor.set(label, dest_upperleft);
    \endcode
    \deprecatedEnd
*/
doxygen_overloaded_function(template <...> unsigned int watershedsRegionGrowing)

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Neighborhood>
unsigned int
watershedsRegionGrowing(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                        DestIterator upperleftd, DestAccessor da, 
                        Neighborhood neighborhood,
                        WatershedOptions const & options = WatershedOptions())
{
    typedef typename SrcAccessor::value_type ValueType; 
    typedef typename DestAccessor::value_type LabelType; 
    
    unsigned int max_region_label = 0;
    
    if(options.seed_options.mini != SeedOptions::Unspecified)
    {
        // we are supposed to compute seeds
        max_region_label = 
            generateWatershedSeeds(srcIterRange(upperlefts, lowerrights, sa), 
                                   destIter(upperleftd, da),
                                   neighborhood, options.seed_options);
    }
    
    if(options.biased_label != 0)
    {
        // create a statistics functor for biased region growing
        detail::BiasedWatershedStatistics<ValueType, LabelType> 
                                 regionstats(options.biased_label, options.bias);

        // perform region growing, starting from the seeds computed above
        if(options.bucket_count == 0)
        {
            max_region_label = 
            seededRegionGrowing(srcIterRange(upperlefts, lowerrights, sa),
                                srcIter(upperleftd, da),
                                destIter(upperleftd, da), 
                                regionstats, options.terminate, neighborhood, options.max_cost);
        }
        else
        {
            max_region_label = 
            fastSeededRegionGrowing(srcIterRange(upperlefts, lowerrights, sa),
                                    destIter(upperleftd, da), 
                                    regionstats, options.terminate, 
                                    neighborhood, options.max_cost, options.bucket_count);
        }
    }
    else
    {
        // create a statistics functor for region growing
        detail::WatershedStatistics<ValueType, LabelType> regionstats;

        // perform region growing, starting from the seeds computed above
        if(options.bucket_count == 0)
        {
            max_region_label = 
            seededRegionGrowing(srcIterRange(upperlefts, lowerrights, sa),
                                srcIter(upperleftd, da),
                                destIter(upperleftd, da), 
                                regionstats, options.terminate, neighborhood, options.max_cost);
        }
        else
        {
            max_region_label = 
            fastSeededRegionGrowing(srcIterRange(upperlefts, lowerrights, sa),
                                    destIter(upperleftd, da), 
                                    regionstats, options.terminate, 
                                    neighborhood, options.max_cost, options.bucket_count);
        }
    }
    
    return max_region_label;
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int
watershedsRegionGrowing(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                        DestIterator upperleftd, DestAccessor da, 
                        WatershedOptions const & options = WatershedOptions())
{
    return watershedsRegionGrowing(upperlefts, lowerrights, sa, upperleftd,  da,
                                   EightNeighborCode(), options);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Neighborhood>
inline unsigned int
watershedsRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                        pair<DestIterator, DestAccessor> dest, 
                        Neighborhood neighborhood,
                        WatershedOptions const & options = WatershedOptions())
{
    return watershedsRegionGrowing(src.first, src.second, src.third,
                                   dest.first, dest.second,    
                                   neighborhood, options);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int
watershedsRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                        pair<DestIterator, DestAccessor> dest, 
                        WatershedOptions const & options = WatershedOptions())
{
    return watershedsRegionGrowing(src.first, src.second, src.third,
                                   dest.first, dest.second,    
                                   EightNeighborCode(), options);
}

template <class T1, class S1,
          class T2, class S2,
          class Neighborhood>
inline unsigned int
watershedsRegionGrowing(MultiArrayView<2, T1, S1> const & src,
                        MultiArrayView<2, T2, S2> dest, 
                        Neighborhood neighborhood,
                        WatershedOptions const & options = WatershedOptions())
{
    vigra_precondition(src.shape() == dest.shape(),
        "watershedsRegionGrowing(): shape mismatch between input and output.");
    return watershedsRegionGrowing(srcImageRange(src),
                                   destImage(dest),    
                                   neighborhood, options);
}

template <class T1, class S1,
          class T2, class S2>
inline unsigned int
watershedsRegionGrowing(MultiArrayView<2, T1, S1> const & src,
                        MultiArrayView<2, T2, S2> dest, 
                        WatershedOptions const & options = WatershedOptions())
{
    vigra_precondition(src.shape() == dest.shape(),
        "watershedsRegionGrowing(): shape mismatch between input and output.");
    return watershedsRegionGrowing(srcImageRange(src),
                                   destImage(dest),    
                                   EightNeighborCode(), options);
}

//@}

} // namespace vigra

#endif // VIGRA_WATERSHEDS_HXX