This file is indexed.

/usr/include/vigra/vector_distance.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/************************************************************************/
/*                                                                      */
/*    Copyright 2003-2015 by Philipp Schubert and Ullrich Koethe        */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_VECTOR_DISTANCE_HXX
#define VIGRA_VECTOR_DISTANCE_HXX

#include <vector>
#include <set>
#include <functional>
#include "array_vector.hxx"
#include "multi_array.hxx"
#include "accessor.hxx"
#include "numerictraits.hxx"
#include "navigator.hxx"
#include "metaprogramming.hxx"
#include "multi_pointoperators.hxx"
#include "functorexpression.hxx"
#include "multi_distance.hxx"

#undef VECTORIAL_DIST_DEBUG

namespace vigra
{

namespace detail
{

template <class Vector, class Value>
struct VectorialDistParabolaStackEntry
{
    double left, center, right;
    Value apex_height;
    Vector point;

    VectorialDistParabolaStackEntry(const Vector& vec, Value prev, double l, double c, double r)
    : left(l), center(c), right(r), apex_height(prev), point(vec)
    {}
};

#ifdef VECTORIAL_DIST_DEBUG
template <class Vector, class Value>
std::ostream& operator<<(std::ostream&o, const VectorialDistParabolaStackEntry<Vector, Value>& e) {
    o << "l=" << e.left << ", c=" << e.center << ", r=" << e.right << ", pV=" << e.apex_height << ", pVec=" << e.point;
    return o;
}
#endif

/********************************************************/
/*                                                      */
/*               vectorialDistParabola                  */
/*                                                      */
/********************************************************/

template <class VEC, class ARRAY>
inline double
partialSquaredMagnitude(const VEC& vec, MultiArrayIndex dim, ARRAY const & pixel_pitch)
{
    //computes the squared magnitude of vec
    //considering only the first dim dimensions
    double sqMag = 0.0;
    for(MultiArrayIndex i=0; i<=dim; ++i)
    {
        sqMag += sq(pixel_pitch[i]*vec[i]);
    }
    return sqMag;
}

template <class SrcIterator,
          class Array>
void
vectorialDistParabola(MultiArrayIndex dimension,
                      SrcIterator is, SrcIterator iend,
                      Array const & pixel_pitch )
{
    typedef typename SrcIterator::value_type SrcType;
    typedef VectorialDistParabolaStackEntry<SrcType, double> Influence;

    double sigma = pixel_pitch[dimension],
           sigma2 = sq(sigma);
    double w = iend - is; //width of the scanline

    SrcIterator id = is;

    std::vector<Influence> _stack; //stack of influence parabolas
    double apex_height = partialSquaredMagnitude(*is, dimension, pixel_pitch);
    _stack.push_back(Influence(*is, apex_height, 0.0, 0.0, w));
    ++is;
    double current = 1.0;
    while(current < w)
    {
        apex_height = partialSquaredMagnitude(*is, dimension, pixel_pitch);
        Influence & s = _stack.back();
        double diff = current - s.center;
        double intersection = current + (apex_height - s.apex_height - sq(sigma*diff)) / (2.0*sigma2 * diff);

        if( intersection < s.left) // previous point has no influence
        {
            _stack.pop_back();
            if(_stack.empty())
                _stack.push_back(Influence(*is, apex_height, 0.0, current, w));
            else
                continue; // try new top of stack without advancing current
        }
        else if(intersection < s.right)
        {
            s.right = intersection;
            _stack.push_back(Influence(*is, apex_height, intersection, current, w));
        }
        ++is;
        ++current;
    }

    // Now we have the stack indicating which rows are influenced by (and therefore
    // closest to) which row. We can go through the stack and calculate the
    // distance squared for each element of the column.
    typename std::vector<Influence>::iterator it = _stack.begin();
    for(current = 0.0; current < w; ++current, ++id)
    {
        while( current >= it->right)
            ++it;

        *id = it->point;
        (*id)[dimension] = it->center - current;
    }
}

template <class DestIterator,
          class LabelIterator,
          class Array1, class Array2>
void
boundaryVectorDistParabola(MultiArrayIndex dimension,
                           DestIterator is, DestIterator iend,
                           LabelIterator ilabels,
                           Array1 const & pixel_pitch,
                           Array2 const & dmax,
                           bool array_border_is_active=false)
{
    double w = iend - is;
    if(w <= 0)
        return;

    typedef typename LabelIterator::value_type LabelType;
    typedef typename DestIterator::value_type DestType;
    typedef VectorialDistParabolaStackEntry<DestType, double> Influence;
    typedef std::vector<Influence> Stack;

    DestIterator id = is;
    DestType border_point = array_border_is_active
                                ? DestType(0)
                                : dmax;
    double apex_height = partialSquaredMagnitude(border_point, dimension, pixel_pitch);
    Stack _stack(1, Influence(border_point, apex_height, 0.0, -1.0, w));
    LabelType current_label = *ilabels;
    for(double begin = 0.0, current = 0.0; current <= w; ++ilabels, ++is, ++current)
    {
        DestType point = (current < w)
                             ? (current_label == *ilabels)
                                 ? *is
                                 : DestType(0)
                             : border_point;
        apex_height = partialSquaredMagnitude(point, dimension, pixel_pitch);
        while(true)
        {
            Influence & s = _stack.back();
            double diff = (current - s.center)*pixel_pitch[dimension];
            double intersection = current + (apex_height - s.apex_height - sq(diff)) / (2.0 * diff);

            if(intersection < s.left) // previous parabola has no influence
            {
                _stack.pop_back();
                if(_stack.empty())
                    intersection = begin; // new parabola is valid for entire present segment
                else
                    continue;  // try new top of stack without advancing to next pixel
            }
            else if(intersection < s.right)
            {
                s.right = intersection;
            }
            if(intersection < w)
                _stack.push_back(Influence(point, apex_height, intersection, current, w));
            if(current < w && current_label == *ilabels)
                break; // finished present pixel, advance to next one

            // label changed => finalize the current segment
            typename Stack::iterator it = _stack.begin();
            for(double c = begin; c < current; ++c, ++id)
            {
                while(c >= it->right)
                    ++it;
                *id = it->point;
                (*id)[dimension] = it->center - c;
            }
            if(current == w)
                break;  // stop when this was the last segment

            // initialize the new segment
            begin = current;
            current_label = *ilabels;
            point = *is;
            apex_height = partialSquaredMagnitude(point, dimension, pixel_pitch);
            Stack(1, Influence(DestType(0), 0.0, begin-1.0, begin-1.0, w)).swap(_stack);
            // don't advance to next pixel here, because the present pixel must also
            // be analysed in the context of the new segment
        }
    }
}

template <unsigned int N, class T1, class S1,
                          class T2, class S2,
          class Array>
void
interpixelBoundaryVectorDistance(MultiArrayView<N, T1, S1> const & labels,
                                 MultiArrayView<N, T2, S2> dest,
                                 Array const & pixelPitch)
{
    typedef typename MultiArrayShape<N>::type  Shape;
    typedef GridGraph<N>                       Graph;
    typedef typename Graph::Node               Node;
    typedef typename Graph::NodeIt             graph_scanner;
    typedef typename Graph::OutArcIt           neighbor_iterator;

    Graph g(labels.shape());
    for (graph_scanner node(g); node != lemon_graph::INVALID; ++node)
    {
        T1 label = labels[*node];
        double min_dist = NumericTraits<double>::max();
        Node point    = *node,
             boundary = point + Node(dest[point]),
             min_pos  = lemon::INVALID;
        T2 min_diff;

        //go to adjacent neighbour with same label as origin pixel with smallest distance
        if(labels.isInside(boundary))
        {
            for (neighbor_iterator arc(g, boundary); arc != lemon_graph::INVALID; ++arc)
            {
                if(label == labels[g.target(*arc)])
                {
                    double dist = squaredNorm(pixelPitch*(g.target(*arc) - point));
                    if (dist < min_dist)
                    {
                        min_dist = dist;
                        min_pos = g.target(*arc);
                    }
                }
            }
            if(min_pos == lemon::INVALID)
                continue;
            min_dist = NumericTraits<double>::max();
        }
        else
        {
            min_pos = clip(boundary, Shape(0), labels.shape()-Shape(1));
            min_diff = 0.5*(boundary + min_pos) - point;
            min_dist = squaredNorm(pixelPitch*min_diff);
        }

        //from this pixel look for the vector which points to the nearest interpixel between two label
        for (neighbor_iterator arc(g, min_pos); arc != lemon_graph::INVALID; ++arc)
        {
            if(label != labels[g.target(*arc)])
            {
                T2 diff = 0.5*(g.target(*arc) + min_pos) - point;
                double dist = squaredNorm(pixelPitch*diff);
                if (dist < min_dist)
                {
                    min_dist = dist;
                    min_diff = diff;
                }
            }
        }
        dest[point] = min_diff;
    }
}

} // namespace detail

/** \addtogroup MultiArrayDistanceTransform
*/
//@{

template<bool PRED>
struct Error_output_pixel_type_must_be_TinyVector_of_appropriate_length
: vigra::staticAssert::AssertBool<PRED> {};

/********************************************************/
/*                                                      */
/*               separableVectorDistance                */
/*                                                      */
/********************************************************/

    /** \brief Compute the vector distance transform of a N-dimensional binary array.

        <b> Declarations:</b>

        \code
        namespace vigra {
            template <unsigned int N, class T1, class S1,
                      class T2, class S2, class Array>
            void
            separableVectorDistance(MultiArrayView<N, T1, S1> const & source,
                                    MultiArrayView<N, T2, S2> dest,
                                    bool background,
                                    Array const & pixelPitch=TinyVector<double, N>(1));
        }
        \endcode

        This function works like \ref separableMultiDistance() (see there for details),
        but returns in each pixel the <i>vector</i> to the nearest background pixel
        rather than the scalar distance. This enables much more powerful applications.

        <b> Usage:</b>

        <b>\#include</b> \<vigra/vector_distance.hxx\><br/>
        Namespace: vigra

        \code
        Shape3 shape(width, height, depth);
        MultiArray<3, unsigned char> source(shape);
        MultiArray<3, Shape3> dest(shape);
        ...

        // For each background pixel, find the vector to the nearest foreground pixel.
        separableVectorDistance(source, dest, true);
        \endcode

        \see vigra::separableMultiDistance(), vigra::boundaryVectorDistance()
    */
doxygen_overloaded_function(template <...> void separableVectorDistance)

template <unsigned int N, class T1, class S1,
          class T2, class S2, class Array>
void
separableVectorDistance(MultiArrayView<N, T1, S1> const & source,
                        MultiArrayView<N, T2, S2> dest,
                        bool background,
                        Array const & pixelPitch)
{
    using namespace vigra::functor;
    typedef typename MultiArrayView<N, T2, S2>::traverser Traverser;
    typedef MultiArrayNavigator<Traverser, N> Navigator;

    VIGRA_STATIC_ASSERT((Error_output_pixel_type_must_be_TinyVector_of_appropriate_length<N == T2::static_size>));
    vigra_precondition(source.shape() == dest.shape(),
        "separableVectorDistance(): shape mismatch between input and output.");
    vigra_precondition(pixelPitch.size() == N,
        "separableVectorDistance(): pixelPitch has wrong length.");

    T2 maxDist(2*sum(source.shape()*pixelPitch)), rzero;
    if(background == true)
        transformMultiArray( source, dest,
                                ifThenElse( Arg1() == Param(0), Param(maxDist), Param(rzero) ));
    else
        transformMultiArray( source, dest,
                                ifThenElse( Arg1() != Param(0), Param(maxDist), Param(rzero) ));

    for(int d = 0; d < N; ++d )
    {
        Navigator nav( dest.traverser_begin(), dest.shape(), d);
        for( ; nav.hasMore(); nav++ )
        {
             detail::vectorialDistParabola(d, nav.begin(), nav.end(), pixelPitch);
        }
    }
}

template <unsigned int N, class T1, class S1,
          class T2, class S2>
inline void
separableVectorDistance(MultiArrayView<N, T1, S1> const & source,
                        MultiArrayView<N, T2, S2> dest,
                        bool background=true)
{
    TinyVector<double, N> pixelPitch(1.0);
    separableVectorDistance(source, dest, background, pixelPitch);
}


    /** \brief Compute the vector distance transform to the implicit boundaries of a
               multi-dimensional label array.

        <b> Declarations:</b>

        \code
        namespace vigra {
            template <unsigned int N, class T1, class S1,
                                      class T2, class S2,
                      class Array>
            void
            boundaryVectorDistance(MultiArrayView<N, T1, S1> const & labels,
                                   MultiArrayView<N, T2, S2> dest,
                                   bool array_border_is_active=false,
                                   BoundaryDistanceTag boundary=OuterBoundary,
                                   Array const & pixelPitch=TinyVector<double, N>(1));
        }
        \endcode

        This function works like \ref boundaryMultiDistance() (see there for details),
        but returns in each pixel the <i>vector</i> to the nearest boundary pixel
        rather than the scalar distance. This enables much more powerful applications.
        Additionally, it support a <tt>pixelPitch</tt> parameter which allows to adjust
        the distance calculations for anisotropic grid resolution.

        <b> Usage:</b>

        <b>\#include</b> \<vigra/vector_distance.hxx\><br/>
        Namespace: vigra

        \code
        Shape3 shape(width, height, depth);
        MultiArray<3, UInt32> labels(shape);
        MultiArray<3, Shape3> dest(shape);
        ...

        // For each region, find the vectors to the nearest boundary pixel, including the
        // outer border of the array.
        boundaryVectorDistance(labels, dest, true);
        \endcode

        \see vigra::boundaryMultiDistance(), vigra::separableVectorDistance()
    */
doxygen_overloaded_function(template <...> void boundaryVectorDistance)

template <unsigned int N, class T1, class S1,
                          class T2, class S2,
          class Array>
void
boundaryVectorDistance(MultiArrayView<N, T1, S1> const & labels,
                       MultiArrayView<N, T2, S2> dest,
                       bool array_border_is_active,
                       BoundaryDistanceTag boundary,
                       Array const & pixelPitch)
{
    VIGRA_STATIC_ASSERT((Error_output_pixel_type_must_be_TinyVector_of_appropriate_length<N == T2::static_size>));
    vigra_precondition(labels.shape() == dest.shape(),
        "boundaryVectorDistance(): shape mismatch between input and output.");
    vigra_precondition(pixelPitch.size() == N,
        "boundaryVectorDistance(): pixelPitch has wrong length.");

    using namespace vigra::functor;

    if(boundary == InnerBoundary)
    {
        MultiArray<N, unsigned char> boundaries(labels.shape());

        markRegionBoundaries(labels, boundaries, IndirectNeighborhood);
        if(array_border_is_active)
            initMultiArrayBorder(boundaries, 1, 1);
        separableVectorDistance(boundaries, dest, true, pixelPitch);
    }
    else
    {
        if(boundary == InterpixelBoundary)
        {
            vigra_precondition(!NumericTraits<T2>::isIntegral::value,
                "boundaryVectorDistance(..., InterpixelBoundary): output pixel type must be float or double.");
        }

        typedef typename MultiArrayView<N, T1, S1>::const_traverser LabelIterator;
        typedef typename MultiArrayView<N, T2, S2>::traverser DestIterator;
        typedef MultiArrayNavigator<LabelIterator, N> LabelNavigator;
        typedef MultiArrayNavigator<DestIterator, N> DNavigator;

        T2 maxDist(2*sum(labels.shape()*pixelPitch));
        dest = maxDist;
        for( int d = 0; d < N; ++d )
        {
            LabelNavigator lnav( labels.traverser_begin(), labels.shape(), d );
            DNavigator dnav( dest.traverser_begin(), dest.shape(), d );

            for( ; dnav.hasMore(); dnav++, lnav++ )
            {
                detail::boundaryVectorDistParabola(d, dnav.begin(), dnav.end(), lnav.begin(),
                                                   pixelPitch, maxDist, array_border_is_active);
            }
        }

        if(boundary == InterpixelBoundary)
        {
           detail::interpixelBoundaryVectorDistance(labels, dest, pixelPitch);
        }
    }
}

template <unsigned int N, class T1, class S1,
                          class T2, class S2>
void
boundaryVectorDistance(MultiArrayView<N, T1, S1> const & labels,
                       MultiArrayView<N, T2, S2> dest,
                       bool array_border_is_active=false,
                       BoundaryDistanceTag boundary=OuterBoundary)
{
    TinyVector<double, N> pixelPitch(1.0);
    boundaryVectorDistance(labels, dest, array_border_is_active, boundary, pixelPitch);
}

//@}

} //-- namespace vigra

#endif        //-- VIGRA_VECTOR_DISTANCE_HXX