This file is indexed.

/usr/include/vigra/threadpool.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/************************************************************************/
/*                                                                      */
/*        Copyright 2014-2015 by Thorsten Beier, Philip Schill          */
/*                               and Ullrich Koethe                     */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/
#ifndef VIGRA_THREADPOOL_HXX
#define VIGRA_THREADPOOL_HXX

#include <vector>
#include <queue>
#include <stdexcept>
#include <cmath>
#include "mathutil.hxx"
#include "counting_iterator.hxx"
#include "threading.hxx"


namespace vigra
{

/** \addtogroup ParallelProcessing Functions and classes for parallel processing.
*/

//@{

    /**\brief Option base class for parallel algorithms.

        <b>\#include</b> \<vigra/threadpool.hxx\><br>
        Namespace: vigra
    */
class ParallelOptions
{
  public:

        /** Constants for special settings.
        */
    enum {
        Auto       = -1, ///< Determine number of threads automatically (from <tt>threading::thread::hardware_concurrency()</tt>)
        Nice       = -2, ///< Use half as many threads as <tt>Auto</tt> would.
        NoThreads  =  0  ///< Switch off multi-threading (i.e. execute tasks sequentially)
    };

    ParallelOptions()
    :   numThreads_(actualNumThreads(Auto))
    {}

        /** \brief Get desired number of threads.

            <b>Note:</b> This function may return 0, which means that multi-threading
            shall be switched off entirely. If an algorithm receives this value,
            it should revert to a sequential implementation. In contrast, if
            <tt>numThread() == 1</tt>, the parallel algorithm version shall be
            executed with a single thread.
        */
    int getNumThreads() const
    {
        return numThreads_;
    }

        /** \brief Get desired number of threads.

            In contrast to <tt>numThread()</tt>, this will always return a value <tt>>=1</tt>.
        */
    int getActualNumThreads() const
    {
        return std::max(1,numThreads_);
    }

        /** \brief Set the number of threads or one of the constants <tt>Auto</tt>,
                   <tt>Nice</tt> and <tt>NoThreads</tt>.

            Default: <tt>ParallelOptions::Auto</tt> (use system default)

            This setting is ignored if the preprocessor flag <tt>VIGRA_SINGLE_THREADED</tt>
            is defined. Then, the number of threads is set to 0 and all tasks revert to
            sequential algorithm implementations. The same can be achieved at runtime
            by passing <tt>n = 0</tt> to this function. In contrast, passing <tt>n = 1</tt>
            causes the parallel algorithm versions to be executed with a single thread.
            Both possibilities are mainly useful for debugging.
        */
    ParallelOptions & numThreads(const int n)
    {
        numThreads_ = actualNumThreads(n);
        return *this;
    }


  private:
        // helper function to compute the actual number of threads
    static size_t actualNumThreads(const int userNThreads)
    {
        #ifdef VIGRA_SINGLE_THREADED
            return 0;
        #else
            return userNThreads >= 0
                       ? userNThreads
                       : userNThreads == Nice
                               ? threading::thread::hardware_concurrency() / 2
                               : threading::thread::hardware_concurrency();
        #endif
    }

    int numThreads_;
};

/********************************************************/
/*                                                      */
/*                      ThreadPool                      */
/*                                                      */
/********************************************************/

    /**\brief Thread pool class to manage a set of parallel workers.

        <b>\#include</b> \<vigra/threadpool.hxx\><br>
        Namespace: vigra
    */
class ThreadPool
{
  public:

    /** Create a thread pool from ParallelOptions. The constructor just launches
        the desired number of workers. If the number of threads is zero,
        no workers are started, and all tasks will be executed in synchronously
        in the present thread.
     */
    ThreadPool(const ParallelOptions & options)
    :   stop(false)
    {
        init(options);
    }

    /** Create a thread pool with n threads. The constructor just launches
        the desired number of workers. If \arg n is <tt>ParallelOptions::Auto</tt>,
        the number of threads is determined by <tt>threading::thread::hardware_concurrency()</tt>.
        <tt>ParallelOptions::Nice</tt> will create half as many threads.
        If <tt>n = 0</tt>, no workers are started, and all tasks will be executed
        synchronously in the present thread. If the preprocessor flag
        <tt>VIGRA_SINGLE_THREADED</tt> is defined, the number of threads is always set
        to zero (i.e. synchronous execution), regardless of the value of \arg n. This
        is useful for debugging.
     */
    ThreadPool(const int n)
    :   stop(false)
    {
        init(ParallelOptions().numThreads(n));
    }

    /**
     * The destructor joins all threads.
     */
    ~ThreadPool();

    /**
     * Enqueue a task that will be executed by the thread pool.
     * The task result can be obtained using the get() function of the returned future.
     * If the task throws an exception, it will be raised on the call to get().
     */
    template<class F>
    auto enqueueReturning(F&& f) -> threading::future<decltype(f(0))>;

    /**
     * Enqueue function for tasks without return value.
     * This is a special case of the enqueueReturning template function, but
     * some compilers fail on <tt>std::result_of<F(int)>::type</tt> for void(int) functions.
     */
    template<class F>
    threading::future<void> enqueue(F&& f) ;

    /**
     * Block until all tasks are finished.
     */
    void waitFinished()
    {
        threading::unique_lock<threading::mutex> lock(queue_mutex);
        finish_condition.wait(lock, [this](){ return tasks.empty() && (busy == 0); });
    }

    /**
     * Return the number of worker threads.
     */
    size_t nThreads() const
    {
        return workers.size();
    }

private:

    // helper function to init the thread pool
    void init(const ParallelOptions & options);

    // need to keep track of threads so we can join them
    std::vector<threading::thread> workers;

    // the task queue
    std::queue<std::function<void(int)> > tasks;

    // synchronization
    threading::mutex queue_mutex;
    threading::condition_variable worker_condition;
    threading::condition_variable finish_condition;
    bool stop;
    threading::atomic_long busy, processed;
};

inline void ThreadPool::init(const ParallelOptions & options)
{
    busy.store(0);
    processed.store(0);

    const size_t actualNThreads = options.getNumThreads();
    for(size_t ti = 0; ti<actualNThreads; ++ti)
    {
        workers.emplace_back(
            [ti,this]
            {
                for(;;)
                {
                    std::function<void(int)> task;
                    {
                        threading::unique_lock<threading::mutex> lock(this->queue_mutex);

                        // will wait if : stop == false  AND queue is empty
                        // if stop == true AND queue is empty thread function will return later
                        //
                        // so the idea of this wait, is : If where are not in the destructor
                        // (which sets stop to true, we wait here for new jobs)
                        this->worker_condition.wait(lock, [this]{ return this->stop || !this->tasks.empty(); });
                        if(!this->tasks.empty())
                        {
                            ++busy;
                            task = std::move(this->tasks.front());
                            this->tasks.pop();
                            lock.unlock();
                            task(ti);
                            ++processed;
                            --busy;
                            finish_condition.notify_one();
                        }
                        else if(stop)
                        {
                            return;
                        }
                    }
                }
            }
        );
    }
}

inline ThreadPool::~ThreadPool()
{
    {
        threading::unique_lock<threading::mutex> lock(queue_mutex);
        stop = true;
    }
    worker_condition.notify_all();
    for(threading::thread &worker: workers)
        worker.join();
}

template<class F>
inline auto
ThreadPool::enqueueReturning(F&& f) -> threading::future<decltype(f(0))>
{
    typedef decltype(f(0)) result_type;
    typedef threading::packaged_task<result_type(int)> PackageType;

    auto task = std::make_shared<PackageType>(f);
    auto res = task->get_future();

    if(workers.size()>0){
        {
            threading::unique_lock<threading::mutex> lock(queue_mutex);

            // don't allow enqueueing after stopping the pool
            if(stop)
                throw std::runtime_error("enqueue on stopped ThreadPool");

            tasks.emplace(
                [task](int tid)
                {
                    (*task)(std::move(tid));
                }
            );
        }
        worker_condition.notify_one();
    }
    else{
        (*task)(0);
    }

    return res;
}

template<class F>
inline threading::future<void>
ThreadPool::enqueue(F&& f)
{
#if defined(USE_BOOST_THREAD) && \
    !defined(BOOST_THREAD_PROVIDES_VARIADIC_THREAD)
    // Without variadic templates, boost:thread::packaged_task only
    // supports the signature 'R()' (functions with no arguments).
    // We bind the thread_id parameter to 0, so this parameter
    // must NOT be used in function f (fortunately, this is the case
    // for the blockwise versions of convolution, labeling and
    // watersheds).
    typedef threading::packaged_task<void()> PackageType;
    auto task = std::make_shared<PackageType>(std::bind(f, 0));
#else
    typedef threading::packaged_task<void(int)> PackageType;
    auto task = std::make_shared<PackageType>(f);
#endif

    auto res = task->get_future();
    if(workers.size()>0){
        {
            threading::unique_lock<threading::mutex> lock(queue_mutex);

            // don't allow enqueueing after stopping the pool
            if(stop)
                throw std::runtime_error("enqueue on stopped ThreadPool");

            tasks.emplace(
               [task](int tid)
               {
#if defined(USE_BOOST_THREAD) && \
    !defined(BOOST_THREAD_PROVIDES_VARIADIC_THREAD)
                    (*task)();
#else
                    (*task)(std::move(tid));
#endif
               }
            );
        }
        worker_condition.notify_one();
    }
    else{
#if defined(USE_BOOST_THREAD) && \
    !defined(BOOST_THREAD_PROVIDES_VARIADIC_THREAD)
        (*task)();
#else
        (*task)(0);
#endif
    }
    return res;
}

/********************************************************/
/*                                                      */
/*                   parallel_foreach                   */
/*                                                      */
/********************************************************/

// nItems must be either zero or std::distance(iter, end).
template<class ITER, class F>
inline void parallel_foreach_impl(
    ThreadPool & pool,
    const std::ptrdiff_t nItems,
    ITER iter,
    ITER end,
    F && f,
    std::random_access_iterator_tag
){
    std::ptrdiff_t workload = std::distance(iter, end);
    vigra_precondition(workload == nItems || nItems == 0, "parallel_foreach(): Mismatch between num items and begin/end.");
    const float workPerThread = float(workload)/pool.nThreads();
    const std::ptrdiff_t chunkedWorkPerThread = std::max<std::ptrdiff_t>(roundi(workPerThread/3.0), 1);

    std::vector<threading::future<void> > futures;
    for( ;iter<end; iter+=chunkedWorkPerThread)
    {
        const size_t lc = std::min(workload, chunkedWorkPerThread);
        workload-=lc;
        futures.emplace_back(
            pool.enqueue(
                [&f, iter, lc]
                (int id)
                {
                    for(size_t i=0; i<lc; ++i)
                        f(id, iter[i]);
                }
            )
        );
    }
    for (auto & fut : futures)
    {
        fut.get();
    }
}



// nItems must be either zero or std::distance(iter, end).
template<class ITER, class F>
inline void parallel_foreach_impl(
    ThreadPool & pool,
    const std::ptrdiff_t nItems,
    ITER iter,
    ITER end,
    F && f,
    std::forward_iterator_tag
){
    if (nItems == 0)
        nItems = std::distance(iter, end);

    std::ptrdiff_t workload = nItems;
    const float workPerThread = float(workload)/pool.nThreads();
    const std::ptrdiff_t chunkedWorkPerThread = std::max<std::ptrdiff_t>(roundi(workPerThread/3.0), 1);

    std::vector<threading::future<void> > futures;
    for(;;)
    {
        const size_t lc = std::min(chunkedWorkPerThread, workload);
        workload -= lc;
        futures.emplace_back(
            pool.enqueue(
                [&f, iter, lc]
                (int id)
                {
                    auto iterCopy = iter;
                    for(size_t i=0; i<lc; ++i){
                        f(id, *iterCopy);
                        ++iterCopy;
                    }
                }
            )
        );
        for (size_t i = 0; i < lc; ++i)
        {
            ++iter;
            if (iter == end)
            {
                vigra_postcondition(workload == 0, "parallel_foreach(): Mismatch between num items and begin/end.");
                break;
            }
        }
        if(workload==0)
            break;
    }
    for (auto & fut : futures)
        fut.get();
}



// nItems must be either zero or std::distance(iter, end).
template<class ITER, class F>
inline void parallel_foreach_impl(
    ThreadPool & pool,
    const std::ptrdiff_t nItems,
    ITER iter,
    ITER end,
    F && f,
    std::input_iterator_tag
){
    size_t num_items = 0;
    std::vector<threading::future<void> > futures;
    for (; iter != end; ++iter)
    {
        auto item = *iter;
        futures.emplace_back(
            pool.enqueue(
                [&f, &item](int id){
                    f(id, item);
                }
            )
        );
        ++num_items;
    }
    vigra_postcondition(num_items == nItems || nItems == 0, "parallel_foreach(): Mismatch between num items and begin/end.");
    for (auto & fut : futures)
        fut.get();
}

// Runs foreach on a single thread.
// Used for API compatibility when the numbe of threads is 0.
template<class ITER, class F>
inline void parallel_foreach_single_thread(
    ITER begin,
    ITER end,
    F && f,
    const std::ptrdiff_t nItems = 0
){
    size_t n = 0;
    for (; begin != end; ++begin)
    {
        f(0, *begin);
        ++n;
    }
    vigra_postcondition(n == nItems || nItems == 0, "parallel_foreach(): Mismatch between num items and begin/end.");
}

/** \brief Apply a functor to all items in a range in parallel.

    Create a thread pool (or use an existing one) to apply the functor \arg f
    to all items in the range <tt>[begin, end)</tt> in parallel. \arg f must
    be callable with two arguments of type <tt>size_t</tt> and <tt>T</tt>, where
    the first argument is the thread index (starting at 0) and T is convertible
    from the iterator's <tt>reference_type</tt> (i.e. the result of <tt>*begin</tt>).

    If the iterators are forward iterators (<tt>std::forward_iterator_tag</tt>), you
    can provide the optional argument <tt>nItems</tt> to avoid the a
    <tt>std::distance(begin, end)</tt> call to compute the range's length.

    Parameter <tt>nThreads</tt> controls the number of threads. <tt>parallel_foreach</tt>
    will split the work into about three times as many parallel tasks.
    If <tt>nThreads = ParallelOptions::Auto</tt>, the number of threads is set to
    the machine default (<tt>std::thread::hardware_concurrency()</tt>).

    If <tt>nThreads = 0</tt>, the function will not use threads,
    but will call the functor sequentially. This can also be enforced by setting the
    preprocessor flag <tt>VIGRA_SINGLE_THREADED</tt>, ignoring the value of
    <tt>nThreads</tt> (useful for debugging).

    <b> Declarations:</b>

    \code
    namespace vigra {
        // pass the desired number of threads or ParallelOptions::Auto
        // (creates an internal thread pool accordingly)
        template<class ITER, class F>
        void parallel_foreach(int64_t nThreads,
                              ITER begin, ITER end,
                              F && f,
                              const uint64_t nItems = 0);

        // use an existing thread pool
        template<class ITER, class F>
        void parallel_foreach(ThreadPool & pool,
                              ITER begin, ITER end,
                              F && f,
                              const uint64_t nItems = 0);

        // pass the integers from 0 ... (nItems-1) to the functor f,
        // using the given number of threads or ParallelOptions::Auto
        template<class F>
        void parallel_foreach(int64_t nThreads,
                              uint64_t nItems,
                              F && f);

        // likewise with an existing thread pool
        template<class F>
        void parallel_foreach(ThreadPool & threadpool,
                              uint64_t nItems,
                              F && f);
    }
    \endcode

    <b>Usage:</b>

    \code
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <vigra/threadpool.hxx>

    using namespace std;
    using namespace vigra;

    int main()
    {
        size_t const n_threads = 4;
        size_t const n = 2000;
        vector<int> input(n);

        auto iter = input.begin(),
             end  = input.end();

        // fill input with 0, 1, 2, ...
        iota(iter, end, 0);

        // compute the sum of the elements in the input vector.
        // (each thread computes the partial sum of the items it sees
        //  and stores the sum at the appropriate index of 'results')
        vector<int> results(n_threads, 0);
        parallel_foreach(n_threads, iter, end,
            // the functor to be executed, defined as a lambda function
            // (first argument: thread ID, second argument: result of *iter)
            [&results](size_t thread_id, int items)
            {
                results[thread_id] += items;
            }
        );

        // collect the partial sums of all threads
        int sum = accumulate(results.begin(), results.end(), 0);

        cout << "The sum " << sum << " should be equal to " << (n*(n-1))/2 << endl;
    }
    \endcode
 */
doxygen_overloaded_function(template <...> void parallel_foreach)

template<class ITER, class F>
inline void parallel_foreach(
    ThreadPool & pool,
    ITER begin,
    ITER end,
    F && f,
    const std::ptrdiff_t nItems = 0)
{
    if(pool.nThreads()>1)
    {
        parallel_foreach_impl(pool,nItems, begin, end, f,
            typename std::iterator_traits<ITER>::iterator_category());
    }
    else
    {
        parallel_foreach_single_thread(begin, end, f, nItems);
    }
}

template<class ITER, class F>
inline void parallel_foreach(
    int64_t nThreads,
    ITER begin,
    ITER end,
    F && f,
    const std::ptrdiff_t nItems = 0)
{

    ThreadPool pool(nThreads);
    parallel_foreach(pool, begin, end, f, nItems);
}

template<class F>
inline void parallel_foreach(
    int64_t nThreads,
    std::ptrdiff_t nItems,
    F && f)
{
    auto iter = range(nItems);
    parallel_foreach(nThreads, iter, iter.end(), f, nItems);
}


template<class F>
inline void parallel_foreach(
    ThreadPool & threadpool,
    std::ptrdiff_t nItems,
    F && f)
{
    auto iter = range(nItems);
    parallel_foreach(threadpool, iter, iter.end(), f, nItems);
}

//@}

} // namespace vigra

#endif // VIGRA_THREADPOOL_HXX