This file is indexed.

/usr/include/vigra/rational.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
/************************************************************************/
/*                                                                      */
/*               Copyright 1998-2004 by Ullrich Koethe                  */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    It was adapted from the file boost/rational.hpp of the            */
/*    boost library.                                                    */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */                
/*                                                                      */
/************************************************************************/

// this file is based on work by Paul Moore:
//
//  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
//  distribute this software is granted provided this copyright notice appears
//  in all copies. This software is provided "as is" without express or
//  implied warranty, and with no claim as to its suitability for any purpose.
//
//  See http://www.boost.org/libs/rational for documentation.


#ifndef VIGRA_RATIONAL_HPP
#define VIGRA_RATIONAL_HPP

#include <cmath>
#include <stdexcept>
#include <iosfwd>
#include "config.hxx"
#include "mathutil.hxx"
#include "numerictraits.hxx"
#include "metaprogramming.hxx"

namespace vigra {

/** \addtogroup MathFunctions Mathematical Functions
*/
//@{


/********************************************************/
/*                                                      */
/*                         gcd                          */
/*                                                      */
/********************************************************/

/** Calculate the greatest common divisor.

    This function works for arbitrary integer types, including user-defined
    (e.g. infinite precision) ones.

    <b>\#include</b> \<vigra/rational.hxx\><br>
    Namespace: vigra
*/
template <typename IntType>
IntType gcd(IntType n, IntType m)
{
    // Avoid repeated construction
    IntType zero(0);

    // This is abs() - given the existence of broken compilers with Koenig
    // lookup issues and other problems, I code this explicitly. (Remember,
    // IntType may be a user-defined type).
    if (n < zero)
        n = -n;
    if (m < zero)
        m = -m;

    // As n and m are now positive, we can be sure that %= returns a
    // positive value (the standard guarantees this for built-in types,
    // and we require it of user-defined types).
    for(;;) {
      if(m == zero)
        return n;
      n %= m;
      if(n == zero)
        return m;
      m %= n;
    }
}

/********************************************************/
/*                                                      */
/*                         lcm                          */
/*                                                      */
/********************************************************/

/** Calculate the lowest common multiple.

    This function works for arbitrary integer types, including user-defined
    (e.g. infinite precision) ones.

    <b>\#include</b> \<vigra/rational.hxx\><br>
    Namespace: vigra
*/
template <typename IntType>
IntType lcm(IntType n, IntType m)
{
    // Avoid repeated construction
    IntType zero(0);

    if (n == zero || m == zero)
        return zero;

    n /= gcd(n, m);
    n *= m;

    if (n < zero)
        n = -n;
    return n;
}

//@}

class bad_rational : public std::domain_error
{
public:
    explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
};

template <typename IntType>
class Rational;

template <typename IntType>
Rational<IntType> abs(const Rational<IntType>& r);
template <typename IntType>
Rational<IntType> pow(const Rational<IntType>& r, int n);
template <typename IntType>
Rational<IntType> floor(const Rational<IntType>& r);
template <typename IntType>
Rational<IntType> ceil(const Rational<IntType>& r);

/********************************************************/
/*                                                      */
/*                       Rational                       */
/*                                                      */
/********************************************************/

/** Template for rational numbers.

    This template can make use of arbitrary integer types, including
    user-defined (e.g. infinite precision) ones. Note, however,
    that overflow in either the numerator or denominator is not
    detected during calculations -- the standard behavior of the integer type
    (e.g. wrap around) applies.

    The class can represent and handle positive and negative infinity
    resulting from division by zero. Indeterminate expressions such as 0/0
    are signaled by a <tt>bad_rational</tt> exception which is derived from
    <tt>std::domain_error</tt>.

    <tt>Rational</tt> implements the required interface of an
    \ref AlgebraicField and the required \ref RationalTraits "numeric and
    promotion traits". All arithmetic and comparison operators, as well
    as the relevant algebraic functions are supported .

    <b>See also:</b>
    <ul>
    <li> \ref RationalTraits
    <li> \ref RationalOperations
    </ul>


    <b>\#include</b> \<vigra/rational.hxx\><br>
    Namespace: vigra
*/
template <typename IntType>
class Rational
{
public:
        /** The type of numerator and denominator
        */
    typedef IntType value_type;

        /** Determine whether arguments should be passed as
            <tt>IntType</tt> or <tt>IntType const &</tt>.
        */
    typedef typename If<typename TypeTraits<IntType>::isBuiltinType,
                        IntType, IntType const &>::type param_type;

        /** Default constructor: creates zero (<tt>0/1</tt>)
        */
    Rational()
    : num(0),
      den(1)
    {}

        /** Copy constructor
        */
    template <class U>
    Rational(Rational<U> const & r)
    : num(r.numerator()),
      den(r.denominator())
    {}

        /** Integer constructor: creates <tt>n/1</tt>
        */
    Rational(param_type n)
    : num(n),
      den(IntType(1))
    {}

        /** Ratio constructor: creates <tt>n/d</tt>.

            The ratio will be normalized unless <tt>doNormalize = false</tt>.
            Since the internal representation is assumed to be normalized,
            <tt>doNormalize = false</tt> must only be used as an optimization
            if <tt>n</tt> and <tt>d</tt> are known to be already normalized
            (i.e. have 1 as their greatest common divisor).
        */
    Rational(param_type n, param_type d, bool doNormalize = true)
    : num(n),
      den(d)
    {
        if(doNormalize)
            normalize();
    }

        /** Construct as an approximation of a real number.

            The maximal allowed relative error is given by <tt>epsilon</tt>.
        */
    explicit Rational(double v, double epsilon = 1e-4)
    : num(IntType(v < 0.0 ?
                    v/epsilon - 0.5
                  : v/epsilon + 0.5)),
      den(IntType(1.0/epsilon + 0.5))
    {
        normalize();
    }

    // Default copy constructor and assignment are fine

        /** Assignment from <tt>IntType</tt>.
        */
    Rational& operator=(param_type n) { return assign(n, 1); }

        /** Assignment from <tt>IntType</tt> pair.
        */
    Rational& assign(param_type n, param_type d, bool doNormalize = true);

        /** Access numerator.
        */
    param_type numerator() const { return num; }

        /** Access denominator.
        */
    param_type denominator() const { return den; }

        /** Add-assignment from <tt>Rational</tt>

            <tt>throws bad_rational</tt> if indeterminate expression.
        */
    Rational& operator+= (const Rational & r);

        /** Subtract-assignment from <tt>Rational</tt>

            <tt>throws bad_rational</tt> if indeterminate expression.
        */
    Rational& operator-= (const Rational & r);

        /** Multiply-assignment from <tt>Rational</tt>

            <tt>throws bad_rational</tt> if indeterminate expression.
        */
    Rational& operator*= (const Rational & r);

        /** Divide-assignment from <tt>Rational</tt>

            <tt>throws bad_rational</tt> if indeterminate expression.
        */
    Rational& operator/= (const Rational & r);

        /** Add-assignment from <tt>IntType</tt>

            <tt>throws bad_rational</tt> if indeterminate expression.
        */
    Rational& operator+= (param_type i);

        /** Subtract-assignment from <tt>IntType</tt>

            <tt>throws bad_rational</tt> if indeterminate expression.
        */
    Rational& operator-= (param_type i);

        /** Multiply-assignment from <tt>IntType</tt>

            <tt>throws bad_rational</tt> if indeterminate expression.
        */
    Rational& operator*= (param_type i);

        /** Divide-assignment from <tt>IntType</tt>

            <tt>throws bad_rational</tt> if indeterminate expression.
        */
    Rational& operator/= (param_type i);

        /** Pre-increment.
        */
    Rational& operator++();
        /** Pre-decrement.
        */
    Rational& operator--();

        /** Post-increment.
        */
    Rational operator++(int) { Rational res(*this); operator++(); return res; }
        /** Post-decrement.
        */
    Rational operator--(int) { Rational res(*this); operator--(); return res; }

        /** Check for zero by calling <tt>!numerator()</tt>
        */
    bool operator!() const { return !num; }

        /** Check whether we have positive infinity.
        */
    bool is_pinf() const
    {
        IntType zero(0);
        return den == zero && num > zero;
    }

        /** Check whether we have negative infinity.
        */
    bool is_ninf() const
    {
        IntType zero(0);
        return den == zero && num < zero;
    }

        /** Check whether we have positive or negative infinity.
        */
    bool is_inf() const
    {
        IntType zero(0);
        return den == zero && num != zero;
    }

        /** Check the sign.

            Gives 1 if the number is positive, -1 if negative, and 0 otherwise.
        */
    int sign() const
    {
        IntType zero(0);
        return num == zero ? 0 : num < zero ? -1 : 1;
    }

private:
    // Implementation - numerator and denominator (normalized).
    // Other possibilities - separate whole-part, or sign, fields?
    IntType num;
    IntType den;

    // Representation note: Fractions are kept in normalized form at all
    // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
    // In particular, note that the implementation of abs() below relies
    // on den always being positive.
    void normalize();
};

// Assign in place
template <typename IntType>
inline Rational<IntType>&
Rational<IntType>::assign(param_type n, param_type d, bool doNormalize)
{
    num = n;
    den = d;
    if(doNormalize)
        normalize();
    return *this;
}

// Arithmetic assignment operators
template <typename IntType>
Rational<IntType>& Rational<IntType>::operator+= (const Rational & r)
{
    IntType zero(0);

    // handle the Inf and NaN cases
    if(den == zero)
    {
        if(r.den == zero && sign()*r.sign() < 0)
            throw bad_rational();
        return *this;
    }
    if(r.den == zero)
    {
        assign(r.num, zero, false); // Inf or -Inf
        return *this;
    }

    // This calculation avoids overflow, and minimises the number of expensive
    // calculations. Thanks to Nickolay Mladenov for this algorithm.
    //
    // Proof:
    // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
    // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
    //
    // The result is (a*d1 + c*b1) / (b1*d1*g).
    // Now we have to normalize this ratio.
    // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
    // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
    // But since gcd(a,b1)=1 we have h=1.
    // Similarly h|d1 leads to h=1.
    // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
    // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
    // Which proves that instead of normalizing the result, it is better to
    // divide num and den by gcd((a*d1 + c*b1), g)

    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    IntType g = gcd(den, r_den);
    den /= g;  // = b1 from the calculations above
    num = num * (r_den / g) + r_num * den;
    g = gcd(num, g);
    num /= g;
    den *= r_den/g;

    return *this;
}

template <typename IntType>
Rational<IntType>& Rational<IntType>::operator-= (const Rational & r)
{
    IntType zero(0);

    // handle the Inf and NaN cases
    if(den == zero)
    {
        if(r.den == zero && sign()*r.sign() > 0)
            throw bad_rational();
        return *this;
    }
    if(r.den == zero)
    {
        assign(-r.num, zero, false); // Inf or -Inf
        return *this;
    }

    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    // This calculation avoids overflow, and minimises the number of expensive
    // calculations. It corresponds exactly to the += case above
    IntType g = gcd(den, r_den);
    den /= g;
    num = num * (r_den / g) - r_num * den;
    g = gcd(num, g);
    num /= g;
    den *= r_den/g;

    return *this;
}

template <typename IntType>
Rational<IntType>& Rational<IntType>::operator*= (const Rational & r)
{
    IntType zero(0);

    // handle the Inf and NaN cases
    if(den == zero)
    {
        if(r.num == zero)
            throw bad_rational();
        num *= r.sign();
        return *this;
    }
    if(r.den == zero)
    {
        if(num == zero)
            throw bad_rational();
        num = r.num * sign();
        den = zero;
        return *this;
    }

    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    // Avoid overflow and preserve normalization
    IntType gcd1 = gcd<IntType>(num, r_den);
    IntType gcd2 = gcd<IntType>(r_num, den);
    num = (num/gcd1) * (r_num/gcd2);
    den = (den/gcd2) * (r_den/gcd1);
    return *this;
}

template <typename IntType>
Rational<IntType>& Rational<IntType>::operator/= (const Rational & r)
{
    IntType zero(0);

    // handle the Inf and NaN cases
    if(den == zero)
    {
        if(r.den == zero)
            throw bad_rational();
        if(r.num != zero)
            num *= r.sign();
        return *this;
    }
    if(r.num == zero)
    {
        if(num == zero)
            throw bad_rational();
        num = IntType(sign());  // normalized inf!
        den = zero;
        return *this;
    }

    if (num == zero)
        return *this;

    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    // Avoid overflow and preserve normalization
    IntType gcd1 = gcd<IntType>(num, r_num);
    IntType gcd2 = gcd<IntType>(r_den, den);
    num = (num/gcd1) * (r_den/gcd2);
    den = (den/gcd2) * (r_num/gcd1);

    if (den < zero) {
        num = -num;
        den = -den;
    }
    return *this;
}

// Mixed-mode operators -- implement explicitly to save gcd() calculations
template <typename IntType>
inline Rational<IntType>&
Rational<IntType>::operator+= (param_type i)
{
    num += i * den;
    return *this;
}

template <typename IntType>
inline Rational<IntType>&
Rational<IntType>::operator-= (param_type i)
{
    num -= i * den;
    return *this;
}

template <typename IntType>
Rational<IntType>&
Rational<IntType>::operator*= (param_type i)
{
    if(i == IntType(1))
        return *this;
    IntType zero(0);
    if(i == zero)
    {
        if(den == zero)
        {
            throw bad_rational();
        }
        else
        {
            num = zero;
            den = IntType(1);
            return *this;
        }
    }

    IntType g = gcd(i, den);
    den /= g;
    num *= i / g;
    return *this;
}

template <typename IntType>
Rational<IntType>&
Rational<IntType>::operator/= (param_type i)
{
    if(i == IntType(1))
        return *this;

    IntType zero(0);
    if(i == zero)
    {
        if(num == zero)
            throw bad_rational();
        num = IntType(sign()); // normalized inf!
        den = zero;
        return *this;
    }

    IntType g = gcd(i, num);
    if(i < zero)
    {
        num /= -g;
        den *= -i / g;
    }
    else
    {
        num /= g;
        den *= i / g;
    }
    return *this;
}

// Increment and decrement
template <typename IntType>
inline Rational<IntType>& Rational<IntType>::operator++()
{
    // This can never denormalise the fraction
    num += den;
    return *this;
}

template <typename IntType>
inline Rational<IntType>& Rational<IntType>::operator--()
{
    // This can never denormalise the fraction
    num -= den;
    return *this;
}

// Normalisation
template <typename IntType>
void Rational<IntType>::normalize()
{
    // Avoid repeated construction
    IntType zero(0);

    if (den == zero)
    {
        if(num == zero)
            throw bad_rational();
        if(num < zero)
            num = IntType(-1);
        else
            num = IntType(1);
        return;
    }

    // Handle the case of zero separately, to avoid division by zero
    if (num == zero) {
        den = IntType(1);
        return;
    }

    IntType g = gcd<IntType>(num, den);

    num /= g;
    den /= g;

    // Ensure that the denominator is positive
    if (den < zero) {
        num = -num;
        den = -den;
    }
}

/********************************************************/
/*                                                      */
/*                      Rational-Traits                 */
/*                                                      */
/********************************************************/

/** \page RationalTraits Numeric and Promote Traits of Rational

    The numeric and promote traits for Rational follow
    the general specifications for \ref NumericPromotionTraits and
    \ref AlgebraicField. They are implemented in terms of the traits of the basic types by
    partial template specialization:

    \code

    template <class T>
    struct NumericTraits<Rational<T> >
    {
        typedef Rational<typename NumericTraits<T>::Promote> Promote;
        typedef Rational<typename NumericTraits<T>::RealPromote> RealPromote;

        typedef typename NumericTraits<T>::isIntegral isIntegral;
        typedef VigraTrueType isScalar;
        typedef typename NumericTraits<T>::isSigned isSigned;
        typedef VigraTrueType isOrdered;

        // etc.
    };

    template<class T>
    struct NormTraits<Rational<T> >
    {
        typedef Rational<T>                           Type;
        typedef typename NumericTraits<Type>::Promote SquaredNormType;
        typedef Type                                  NormType;
    };

    template <class T1, class T2>
    struct PromoteTraits<Rational<T1>, Rational<T2> >
    {
        typedef Rational<typename PromoteTraits<T1, T2>::Promote> Promote;
    };
    \endcode

    <b>\#include</b> \<vigra/rational.hxx\><br>
    Namespace: vigra

*/
#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION

template<class T>
struct NumericTraits<Rational<T> >
{
    typedef Rational<T> Type;
    typedef Rational<typename NumericTraits<T>::Promote> Promote;
    typedef Rational<typename NumericTraits<T>::RealPromote> RealPromote;
    typedef std::complex<Rational<RealPromote> > ComplexPromote;
    typedef T ValueType;

    typedef typename NumericTraits<T>::isIntegral isIntegral;
    typedef VigraTrueType isScalar;
    typedef typename NumericTraits<T>::isSigned isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;

    static Type zero() { return Type(0); }
    static Type one() { return Type(1); }
    static Type nonZero() { return one(); }

    static Promote toPromote(Type const & v)
        { return Promote(v.numerator(), v.denominator(), false); }
    static RealPromote toRealPromote(Type const & v)
        { return RealPromote(v.numerator(), v.denominator(), false); }
    static Type fromPromote(Promote const & v)
        { return Type(NumericTraits<T>::fromPromote(v.numerator()),
                      NumericTraits<T>::fromPromote(v.denominator()), false); }
    static Type fromRealPromote(RealPromote const & v)
        { return Type(NumericTraits<T>::fromRealPromote(v.numerator()),
                      NumericTraits<T>::fromRealPromote(v.denominator()), false); }
};

template<class T>
struct NormTraits<Rational<T> >
{
    typedef Rational<T>                           Type;
    typedef typename NumericTraits<Type>::Promote SquaredNormType;
    typedef Type                                  NormType;
};

template <class T>
struct PromoteTraits<Rational<T>, Rational<T> >
{
    typedef Rational<typename PromoteTraits<T, T>::Promote> Promote;
    static Promote toPromote(Rational<T> const & v) { return v; }
};

template <class T1, class T2>
struct PromoteTraits<Rational<T1>, Rational<T2> >
{
    typedef Rational<typename PromoteTraits<T1, T2>::Promote> Promote;
    static Promote toPromote(Rational<T1> const & v) { return v; }
    static Promote toPromote(Rational<T2> const & v) { return v; }
};

template <class T1, class T2>
struct PromoteTraits<Rational<T1>, T2 >
{
    typedef Rational<typename PromoteTraits<T1, T2>::Promote> Promote;
    static Promote toPromote(Rational<T1> const & v) { return v; }
    static Promote toPromote(T2 const & v) { return Promote(v); }
};

template <class T1, class T2>
struct PromoteTraits<T1, Rational<T2> >
{
    typedef Rational<typename PromoteTraits<T1, T2>::Promote> Promote;
    static Promote toPromote(T1 const & v) { return Promote(v); }
    static Promote toPromote(Rational<T2> const & v) { return v; }
};

#endif // NO_PARTIAL_TEMPLATE_SPECIALIZATION

/********************************************************/
/*                                                      */
/*                   RationalOperations                 */
/*                                                      */
/********************************************************/

/** \addtogroup RationalOperations Functions for Rational

    \brief     <b>\#include</b> \<vigra/rational.hxx\><br>

    These functions fulfill the requirements of an \ref AlgebraicField.

    Namespace: vigra
    <p>

 */
//@{

/********************************************************/
/*                                                      */
/*                        arithmetic                    */
/*                                                      */
/********************************************************/

    /// unary plus
template <typename IntType>
inline Rational<IntType> operator+ (const Rational<IntType>& r)
{
    return r;
}

    /// unary minus (negation)
template <typename IntType>
inline Rational<IntType> operator- (const Rational<IntType>& r)
{
    return Rational<IntType>(-r.numerator(), r.denominator(), false);
}

    /// addition
template <typename IntType>
inline Rational<IntType> operator+(Rational<IntType> l, Rational<IntType> const & r)
{
    return l += r;
}

    /// subtraction
template <typename IntType>
inline Rational<IntType> operator-(Rational<IntType> l, Rational<IntType> const & r)
{
    return l -= r;
}

    /// multiplication
template <typename IntType>
inline Rational<IntType> operator*(Rational<IntType> l, Rational<IntType> const & r)
{
    return l *= r;
}

    /// division
template <typename IntType>
inline Rational<IntType> operator/(Rational<IntType> l, Rational<IntType> const & r)
{
    return l /= r;
}

    /// addition of right-hand <tt>IntType</tt> argument
template <typename IntType>
inline Rational<IntType>
operator+(Rational<IntType> l, typename Rational<IntType>::param_type r)
{
    return l += r;
}

    /// subtraction of right-hand <tt>IntType</tt> argument
template <typename IntType>
inline Rational<IntType>
operator-(Rational<IntType> l, typename Rational<IntType>::param_type r)
{
    return l -= r;
}

    /// multiplication with right-hand <tt>IntType</tt> argument
template <typename IntType>
inline Rational<IntType>
operator*(Rational<IntType> l, typename Rational<IntType>::param_type r)
{
    return l *= r;
}

    /// division by right-hand <tt>IntType</tt> argument
template <typename IntType>
inline Rational<IntType>
operator/(Rational<IntType> l, typename Rational<IntType>::param_type r)
{
    return l /= r;
}

    /// addition of left-hand <tt>IntType</tt> argument
template <typename IntType>
inline Rational<IntType>
operator+(typename Rational<IntType>::param_type l, Rational<IntType> r)
{
    return r += l;
}

    /// subtraction from left-hand <tt>IntType</tt> argument
template <typename IntType>
inline Rational<IntType>
operator-(typename Rational<IntType>::param_type l, Rational<IntType> const & r)
{
    return (-r) += l;
}

    /// multiplication with left-hand <tt>IntType</tt> argument
template <typename IntType>
inline Rational<IntType>
operator*(typename Rational<IntType>::param_type l, Rational<IntType> r)
{
    return r *= l;
}

    /// division of left-hand <tt>IntType</tt> argument
template <typename IntType>
inline Rational<IntType>
operator/(typename Rational<IntType>::param_type l, Rational<IntType> const & r)
{
    if(r.numerator() < IntType(0))
        return Rational<IntType>(-r.denominator(), -r.numerator(), false) *= l;
    else
        return Rational<IntType>(r.denominator(), r.numerator(), false) *= l;
}

/********************************************************/
/*                                                      */
/*                        comparison                    */
/*                                                      */
/********************************************************/


    /// equality
template <typename IntType1, typename IntType2>
inline bool
operator== (const Rational<IntType1> & l, const Rational<IntType2>& r)
{
    return l.denominator() == r.denominator() &&
           l.numerator() == r.numerator(); // works since numbers are normalized, even
                                           // if they represent +-infinity
}

    /// equality with right-hand <tt>IntType2</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator== (const Rational<IntType1> & l, IntType2 const & i)
{
    return ((l.denominator() == IntType1(1)) && (l.numerator() == i));
}

    /// equality with left-hand <tt>IntType1</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator==(IntType1 const & l, Rational<IntType2> const & r)
{
    return r == l;
}

    /// inequality
template <typename IntType1, typename IntType2>
inline bool
operator!=(Rational<IntType1> const & l, Rational<IntType2> const & r)
{
    return l.denominator() != r.denominator() ||
           l.numerator() != r.numerator(); // works since numbers are normalized, even
                                           // if they represent +-infinity
}

    /// inequality with right-hand <tt>IntType2</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator!= (const Rational<IntType1> & l, IntType2 const & i)
{
    return ((l.denominator() != IntType1(1)) || (l.numerator() != i));
}

    /// inequality with left-hand <tt>IntType1</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator!=(IntType1 const & l, Rational<IntType2> const & r)
{
    return r != l;
}

    /// less-than
template <typename IntType1, typename IntType2>
bool
operator< (const Rational<IntType1> & l, const Rational<IntType2>& r)
{
    // Avoid repeated construction
    typedef typename PromoteTraits<IntType1, IntType2>::Promote IntType;
    IntType zero(0);

    // Handle the easy cases. Take advantage of the fact
    // that the denominator is never negative.
    if(l.denominator() == zero)
    {
        if(r.denominator() == zero)
            // -inf < inf, !(-inf < -inf), !(inf < -inf), !(inf < inf)
            return l.numerator() < r.numerator();
        else
            // -inf < -1, -inf < 0, -inf < 1
            // !(inf < -1), !(inf < 0), !(inf < 1)
            return l.numerator() < zero;
    }
    if(r.denominator() == zero)
        // -1 < inf, 0 < inf, 1 < inf
        // !(-1 < -inf), !(0 < -inf), !(1 < -inf)
        return r.numerator() > zero;
    // !(1 < -1), !(1 < 0), !(0 < -1), !(0 < 0)
    if(l.numerator() >= zero && r.numerator() <= zero)
        return false;
    // -1 < 0, -1 < 1, 0 < 1 (note: !(0 < 0) was already handled!)
    if(l.numerator() <= zero && r.numerator() >= zero)
        return true;

    // both numbers have the same sign (and are neither zero or +-infinity)
    // => calculate result, avoid overflow
    IntType gcd1 = gcd<IntType>(l.numerator(), r.numerator());
    IntType gcd2 = gcd<IntType>(r.denominator(), l.denominator());
    return (l.numerator()/gcd1) * (r.denominator()/gcd2) <
           (l.denominator()/gcd2) * (r.numerator()/gcd1);
}

    /// less-than with right-hand <tt>IntType2</tt> argument
template <typename IntType1, typename IntType2>
bool
operator< (const Rational<IntType1> & l, IntType2 const & i)
{
    // Avoid repeated construction
    typedef typename PromoteTraits<IntType1, IntType2>::Promote IntType;
    IntType zero(0);

    // Handle the easy cases. Take advantage of the fact
    // that the denominator is never negative.
    if(l.denominator() == zero)
        // -inf < -1, -inf < 0, -inf < 1
        // !(inf < -1), !(inf < 0), !(inf < 1)
        return l.numerator() < zero;
    // !(1 < -1), !(1 < 0), !(0 < -1), !(0 < 0)
    if(l.numerator() >= zero && i <= zero)
        return false;
    // -1 < 0, -1 < 1, 0 < 1 (note: !(0 < 0) was already handled!)
    if(l.numerator() <= zero && i >= zero)
        return true;

    // Now, use the fact that n/d truncates towards zero as long as n and d
    // are both positive.
    // Divide instead of multiplying to avoid overflow issues. Of course,
    // division may be slower, but accuracy is more important than speed...
    if (l.numerator() > zero)
        return (l.numerator()/l.denominator()) < i;
    else
        return -i < (-l.numerator()/l.denominator());
}

    /// less-than with left-hand <tt>IntType1</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator<(IntType1 const & l, Rational<IntType2> const & r)
{
    return r > l;
}

    /// greater-than
template <typename IntType1, typename IntType2>
inline bool
operator>(Rational<IntType1> const & l, Rational<IntType2> const & r)
{
    return r < l;
}

    /// greater-than with right-hand <tt>IntType2</tt> argument
template <typename IntType1, typename IntType2>
bool
operator> (const Rational<IntType1> & l, IntType2 const & i)
{
    // Trap equality first
    if (l.numerator() == i && l.denominator() == IntType1(1))
        return false;

    // Otherwise, we can use operator<
    return !(l < i);
}

    /// greater-than with left-hand <tt>IntType1</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator>(IntType1 const & l, Rational<IntType2> const & r)
{
    return r < l;
}

    /// less-equal
template <typename IntType1, typename IntType2>
inline bool
operator<=(Rational<IntType1> const & l, Rational<IntType2> const & r)
{
    return !(r < l);
}

    /// less-equal with right-hand <tt>IntType2</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator<=(Rational<IntType1> const & l, IntType2 const & r)
{
    return !(l > r);
}

    /// less-equal with left-hand <tt>IntType1</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator<=(IntType1 const & l, Rational<IntType2> const & r)
{
    return r >= l;
}

    /// greater-equal
template <typename IntType1, typename IntType2>
inline bool
operator>=(Rational<IntType1> const & l, Rational<IntType2> const & r)
{
    return !(l < r);
}

    /// greater-equal with right-hand <tt>IntType2</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator>=(Rational<IntType1> const & l, IntType2 const & r)
{
    return !(l < r);
}

    /// greater-equal with left-hand <tt>IntType1</tt> argument
template <typename IntType1, typename IntType2>
inline bool
operator>=(IntType1 const & l, Rational<IntType2> const & r)
{
    return r <= l;
}

/********************************************************/
/*                                                      */
/*                 algebraic functions                  */
/*                                                      */
/********************************************************/

    /// absolute value
template <typename IntType>
inline Rational<IntType>
abs(const Rational<IntType>& r)
{
    if (r.numerator() >= IntType(0))
        return r;

    return Rational<IntType>(-r.numerator(), r.denominator(), false);
}

    /// norm (same as <tt>abs(r)</tt>)
template <typename IntType>
inline Rational<IntType>
norm(const Rational<IntType>& r)
{
    return abs(r);
}

    /// squared norm
template <typename IntType>
inline typename NormTraits<Rational<IntType> >::SquaredNormType
squaredNorm(const Rational<IntType>& r)
{
    return typename NormTraits<Rational<IntType> >::SquaredNormType(sq(r.numerator()), sq(r.denominator()), false);
}

    /** integer powers

        <tt>throws bad_rational</tt> if indeterminate expression.
    */
template <typename IntType>
Rational<IntType>
pow(const Rational<IntType>& r, int e)
{
    IntType zero(0);
    int ae;
    if(e == 0)
    {
        if(r.denominator() == zero)
                throw bad_rational();
        return Rational<IntType>(IntType(1));
    }
    else if(e < 0)
    {
        if(r.numerator() == zero)
            return Rational<IntType>(IntType(1), zero, false);
        if(r.denominator() == zero)
            return Rational<IntType>(zero);
        ae = -e;
    }
    else
    {
        if(r.denominator() == zero || r.numerator() == zero)
            return r;
        ae = e;
    }

    IntType nold = r.numerator(), dold = r.denominator(),
            nnew = IntType(1), dnew = IntType(1);
    for(; ae != 0; ae >>= 1, nold *= nold, dold *= dold)
    {
        if(ae % 2 != 0)
        {
            nnew *= nold;
            dnew *= dold;
        }
    }
    if(e < 0)
    {
        if(nnew < zero)
            return Rational<IntType>(-dnew, -nnew, false);
        else
            return Rational<IntType>(dnew, nnew, false);
    }
    else
        return Rational<IntType>(nnew, dnew, false);
}

    /// largest integer not larger than <tt>r</tt>
template <typename IntType>
Rational<IntType>
floor(const Rational<IntType>& r)
{
    IntType zero(0), one(1);
    if(r.denominator() == zero || r.denominator() == one)
        return r;
    return r.numerator() < zero ?
                   Rational<IntType>(r.numerator() / r.denominator() - one)
                 : Rational<IntType>(r.numerator() / r.denominator());
}

    /// smallest integer not smaller than <tt>r</tt>
template <typename IntType>
Rational<IntType>
ceil(const Rational<IntType>& r)
{
    IntType zero(0), one(1);
    if(r.denominator() == zero || r.denominator() == one)
        return r;
    return r.numerator() < IntType(0) ?
                   Rational<IntType>(r.numerator() / r.denominator())
                 : Rational<IntType>(r.numerator() / r.denominator() + one);
}


    /** Type conversion

        Executes <tt>static_cast<T>(numerator()) / denominator()</tt>.

        <b>Usage:</b>

        \code
        Rational<int> r;
        int i;
        double d;
        i = rational_cast<int>(r);     // round r downwards
        d = rational_cast<double>(r);  // represent rational as a double
        r = rational_cast<Rational<int> >(r);   // no change
        \endcode
    */
template <typename T, typename IntType>
inline T rational_cast(const Rational<IntType>& src)
{
    return static_cast<T>(src.numerator())/src.denominator();
}

template <class T>
inline T const & rational_cast(T const & v)
{
    return v;
}

//@}

template <typename IntType>
std::ostream& operator<< (std::ostream& os, const vigra::Rational<IntType>& r)
{
    os << r.numerator() << '/' << r.denominator();
    return os;
}

} // namespace vigra

#endif  // VIGRA_RATIONAL_HPP