This file is indexed.

/usr/include/vigra/random_forest/rf_ridge_split.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
//
// C++ Interface: rf_ridge_split
//
// Description: 
//
//
// Author: Nico Splitthoff <splitthoff@zg00103>, (C) 2009
//
// Copyright: See COPYING file that comes with this distribution
//
//
#ifndef VIGRA_RANDOM_FOREST_RIDGE_SPLIT_H
#define VIGRA_RANDOM_FOREST_RIDGE_SPLIT_H
//#include "rf_sampling.hxx"
#include "../sampling.hxx"
#include "rf_split.hxx"
#include "rf_nodeproxy.hxx"
#include "../regression.hxx"

#define outm(v) std::cout << (#v) << ": " << (v) << std::endl;
#define outm2(v) std::cout << (#v) << ": " << (v) << ", ";

namespace vigra
{

/*template<>
class Node<i_RegrNode>
: public NodeBase
{
public:
    typedef NodeBase BT;


    Node(   BT::T_Container_type &   topology,
        BT::P_Container_type &   param,
            int nNumCols)
    :   BT(5+nNumCols,2+nNumCols,topology, param)
    {
        BT::typeID() = i_RegrNode;
    }

    Node(   BT::T_Container_type     &   topology,
        BT::P_Container_type     &   param,
        INT                   n             )
    :   BT(5,2,topology, param, n)
    {}

    Node( BT & node_)
    :   BT(5, 2, node_) 
    {}

    double& threshold()
    {
        return BT::parameters_begin()[1];
    }

    BT::INT& column()
    {
        return BT::column_data()[0];
    }

    template<class U, class C>
            BT::INT& next(MultiArrayView<2,U,C> const & feature)
            {
                return (feature(0, column()) < threshold())? child(0):child(1);
            }
};*/


template<class ColumnDecisionFunctor, class Tag = ClassificationTag>
class RidgeSplit: public SplitBase<Tag>
{
  public:


    typedef SplitBase<Tag> SB;

    ArrayVector<Int32>          splitColumns;
    ColumnDecisionFunctor       bgfunc;

    double                      region_gini_;
    ArrayVector<double>         min_gini_;
    ArrayVector<std::ptrdiff_t> min_indices_;
    ArrayVector<double>         min_thresholds_;

    int                         bestSplitIndex;
    
    //dns
    bool            m_bDoScalingInTraining;
    bool            m_bDoBestLambdaBasedOnGini;
    
    RidgeSplit()
    :m_bDoScalingInTraining(true),
    m_bDoBestLambdaBasedOnGini(true)
    {
    }

    double minGini() const
    {
        return min_gini_[bestSplitIndex];
    }
    
    int bestSplitColumn() const
    {
        return splitColumns[bestSplitIndex];
    }
    
    bool& doScalingInTraining()
    { return m_bDoScalingInTraining; }

    bool& doBestLambdaBasedOnGini()
    { return m_bDoBestLambdaBasedOnGini; }

    template<class T>
            void set_external_parameters(ProblemSpec<T> const & in)
    {
        SB::set_external_parameters(in);        
        bgfunc.set_external_parameters(in);
        int featureCount_ = in.column_count_;
        splitColumns.resize(featureCount_);
        for(int k=0; k<featureCount_; ++k)
            splitColumns[k] = k;
        min_gini_.resize(featureCount_);
        min_indices_.resize(featureCount_);
        min_thresholds_.resize(featureCount_);
    }

    
    template<class T, class C, class T2, class C2, class Region, class Random>
    int findBestSplit(MultiArrayView<2, T, C> features,
                      MultiArrayView<2, T2, C2>  multiClassLabels,
                      Region & region,
                      ArrayVector<Region>& childRegions,
                      Random & randint)
    {

    //std::cerr << "Split called" << std::endl;
    typedef typename MultiArrayView <2, T, C>::difference_type fShape;
    typedef typename MultiArrayView <2, T2, C2>::difference_type lShape;
    typedef typename MultiArrayView <2, double>::difference_type dShape;
        
        // calculate things that haven't been calculated yet. 
//    std::cout << "start" << std::endl;
        if(std::accumulate(region.classCounts().begin(),
                           region.classCounts().end(), 0) != region.size())
        {
            RandomForestClassCounter<   MultiArrayView<2,T2, C2>, 
                                        ArrayVector<double> >
                counter(multiClassLabels, region.classCounts());
            std::for_each(  region.begin(), region.end(), counter);
            region.classCountsIsValid = true;
        }


        // Is the region pure already?
        region_gini_ = GiniCriterion::impurity(region.classCounts(),
                region.size());
        if(region_gini_ == 0 || region.size() < SB::ext_param_.actual_mtry_ || region.oob_size() < 2)
            return  SB::makeTerminalNode(features, multiClassLabels, region, randint);

        // select columns  to be tried.
    for(int ii = 0; ii < SB::ext_param_.actual_mtry_; ++ii)
        std::swap(splitColumns[ii], 
            splitColumns[ii+ randint(features.shape(1) - ii)]);

    //do implicit binary case
    MultiArray<2, T2> labels(lShape(multiClassLabels.shape(0),1));
      //number of classes should be >1, otherwise makeTerminalNode would have been called
      int nNumClasses=0;
      for(int n=0; n<static_cast<int>(region.classCounts().size()); n++)
        nNumClasses+=((region.classCounts()[n]>0) ? 1:0);
      
      //convert to binary case
      if(nNumClasses>2)
      {
        int nMaxClass=0;
        int nMaxClassCounts=0;
        for(int n=0; n<static_cast<int>(region.classCounts().size()); n++)
        {
          //this should occur in any case:
          //we had more than two non-zero classes in order to get here
          if(region.classCounts()[n]>nMaxClassCounts)
          {
        nMaxClassCounts=region.classCounts()[n];
        nMaxClass=n;
          }
        }
        
        //create binary labels
        for(int n=0; n<multiClassLabels.shape(0); n++)
          labels(n,0)=((multiClassLabels(n,0)==nMaxClass) ? 1:0);
      }
      else
        labels=multiClassLabels;

    //_do implicit binary case
    
    //uncomment this for some debugging
/*  int nNumCases=features.shape(0);

    typedef typename MultiArrayView <2, int>::difference_type nShape;
    MultiArray<2, int> elementCounterArray(nShape(nNumCases,1),(int)0);
    int nUniqueElements=0;
    for(int n=0; n<region.size(); n++)
        elementCounterArray[region[n]]++;
    
    for(int n=0; n<nNumCases; n++)
        nUniqueElements+=((elementCounterArray[n]>0) ? 1:0);
    
    outm(nUniqueElements);
    nUniqueElements=0;
    MultiArray<2, int> elementCounterArray_oob(nShape(nNumCases,1),(int)0);
    for(int n=0; n<region.oob_size(); n++)
        elementCounterArray_oob[region.oob_begin()[n]]++;
    for(int n=0; n<nNumCases; n++)
        nUniqueElements+=((elementCounterArray_oob[n]>0) ? 1:0);
    outm(nUniqueElements);
    
    int notUniqueElements=0;
    for(int n=0; n<nNumCases; n++)
        notUniqueElements+=(((elementCounterArray_oob[n]>0) && (elementCounterArray[n]>0)) ? 1:0);
    outm(notUniqueElements);*/
    
    //outm(SB::ext_param_.actual_mtry_);
    
    
//select submatrix of features for regression calculation
    MultiArrayView<2, T, C> cVector;
    MultiArray<2, T> xtrain(fShape(region.size(),SB::ext_param_.actual_mtry_));
    //we only want -1 and 1 for this
    MultiArray<2, double> regrLabels(dShape(region.size(),1));

    //copy data into a vigra data structure and centre and scale while doing so
    MultiArray<2, double> meanMatrix(dShape(SB::ext_param_.actual_mtry_,1));
    MultiArray<2, double> stdMatrix(dShape(SB::ext_param_.actual_mtry_,1));
    for(int m=0; m<SB::ext_param_.actual_mtry_; m++)
    {
        cVector=columnVector(features, splitColumns[m]);
        
        //centre and scale the data
        double dCurrFeatureColumnMean=0.0;
        double dCurrFeatureColumnStd=1.0; //default value
        
        //calc mean on bootstrap data
        for(int n=0; n<region.size(); n++)
          dCurrFeatureColumnMean+=cVector[region[n]];
        dCurrFeatureColumnMean/=region.size();
        //calc scaling
        if(m_bDoScalingInTraining)
        {
          for(int n=0; n<region.size(); n++)
          {
              dCurrFeatureColumnStd+=
            (cVector[region[n]]-dCurrFeatureColumnMean)*(cVector[region[n]]-dCurrFeatureColumnMean);
          }
          //unbiased std estimator:
          dCurrFeatureColumnStd=sqrt(dCurrFeatureColumnStd/(region.size()-1));
        }
        //dCurrFeatureColumnStd is still 1.0 if we didn't want scaling
        stdMatrix(m,0)=dCurrFeatureColumnStd;
        
        meanMatrix(m,0)=dCurrFeatureColumnMean;
        
        //get feature matrix, i.e. A (note that weighting is done automatically
        //since rows can occur multiple times -> bagging)
        for(int n=0; n<region.size(); n++)
            xtrain(n,m)=(cVector[region[n]]-dCurrFeatureColumnMean)/dCurrFeatureColumnStd;
    }
    
//    std::cout << "middle" << std::endl;
    //get label vector (i.e. b)
    for(int n=0; n<region.size(); n++)
    {
        //we checked for/built binary case further up.
        //class labels should thus be either 0 or 1
        //-> convert to -1 and 1 for regression
        regrLabels(n,0)=((labels[region[n]]==0) ? -1:1);
    }

    MultiArray<2, double> dLambdas(dShape(11,1));
    int nCounter=0;
    for(int nLambda=-5; nLambda<=5; nLambda++)
        dLambdas[nCounter++]=pow(10.0,nLambda);
    //destination vector for regression coefficients; use same type as for xtrain
    MultiArray<2, double> regrCoef(dShape(SB::ext_param_.actual_mtry_,11));
    ridgeRegressionSeries(xtrain,regrLabels,regrCoef,dLambdas);
    
    double dMaxRidgeSum=NumericTraits<double>::min();
    double dCurrRidgeSum;
    int nMaxRidgeSumAtLambdaInd=0;

    for(int nLambdaInd=0; nLambdaInd<11; nLambdaInd++)
    {
        //just sum up the correct answers
        //(correct means >=intercept for class 1, <intercept for class 0)
        //(intercept=0 or intercept=threshold based on gini)
        dCurrRidgeSum=0.0;
        
        //assemble projection vector
        MultiArray<2, double> dDistanceFromHyperplane(dShape(features.shape(0),1));
        
        for(int n=0; n<region.oob_size(); n++)
        {
          dDistanceFromHyperplane(region.oob_begin()[n],0)=0.0;
          for (int m=0; m<SB::ext_param_.actual_mtry_; m++)
          {
            dDistanceFromHyperplane(region.oob_begin()[n],0)+=
              features(region.oob_begin()[n],splitColumns[m])*regrCoef(m,nLambdaInd);
          }
        }

        double dCurrIntercept=0.0;
        if(m_bDoBestLambdaBasedOnGini)
        {
          //calculate gini index
          bgfunc(dDistanceFromHyperplane,
              labels, 
              region.oob_begin(), region.oob_end(), 
              region.classCounts());
          dCurrIntercept=bgfunc.min_threshold_;
        }
        else
        {
          for (int m=0; m<SB::ext_param_.actual_mtry_; m++)
            dCurrIntercept+=meanMatrix(m,0)*regrCoef(m,nLambdaInd);
        }
        
        for(int n=0; n<region.oob_size(); n++)
        {
            //check what lambda performs best on oob data
            int nClassPrediction=((dDistanceFromHyperplane(region.oob_begin()[n],0) >=dCurrIntercept) ? 1:0);
            dCurrRidgeSum+=((nClassPrediction == labels(region.oob_begin()[n],0)) ? 1:0);
        }
        if(dCurrRidgeSum>dMaxRidgeSum)
        {
            dMaxRidgeSum=dCurrRidgeSum;
            nMaxRidgeSumAtLambdaInd=nLambdaInd;
        }
    }

//    std::cout << "middle2" << std::endl;
        //create a Node for output
        Node<i_HyperplaneNode>   node(SB::ext_param_.actual_mtry_, SB::t_data, SB::p_data);

    //normalise coeffs
        //data was scaled (by 1.0 or by std) -> take into account
        MultiArray<2, double> dCoeffVector(dShape(SB::ext_param_.actual_mtry_,1));
        for(int n=0; n<SB::ext_param_.actual_mtry_; n++)
          dCoeffVector(n,0)=regrCoef(n,nMaxRidgeSumAtLambdaInd)*stdMatrix(n,0);
        
        //calc norm
        double dVnorm=columnVector(regrCoef,nMaxRidgeSumAtLambdaInd).norm();

        for(int n=0; n<SB::ext_param_.actual_mtry_; n++)
            node.weights()[n]=dCoeffVector(n,0)/dVnorm;
    //_normalise coeffs
    
    //save the columns
        node.column_data()[0]=SB::ext_param_.actual_mtry_;
        for(int n=0; n<SB::ext_param_.actual_mtry_; n++)
            node.column_data()[n+1]=splitColumns[n];

    //assemble projection vector
        //careful here: "region" is a pointer to indices...
        //all the indices in "region" need to have valid data
        //convert from "region" space to original "feature" space
        MultiArray<2, double> dDistanceFromHyperplane(dShape(features.shape(0),1));
        
        for(int n=0; n<region.size(); n++)
        {
            dDistanceFromHyperplane(region[n],0)=0.0;
            for (int m=0; m<SB::ext_param_.actual_mtry_; m++)
            {
              dDistanceFromHyperplane(region[n],0)+=
               features(region[n],m)*node.weights()[m];
            }
        }
        for(int n=0; n<region.oob_size(); n++)
        {
            dDistanceFromHyperplane(region.oob_begin()[n],0)=0.0;
            for (int m=0; m<SB::ext_param_.actual_mtry_; m++)
            {
              dDistanceFromHyperplane(region.oob_begin()[n],0)+=
            features(region.oob_begin()[n],m)*node.weights()[m];
            }
        }
        
    //calculate gini index
        bgfunc(dDistanceFromHyperplane,
            labels, 
            region.begin(), region.end(), 
            region.classCounts());
    
        // did not find any suitable split
    if(closeAtTolerance(bgfunc.min_gini_, NumericTraits<double>::max()))
        return  SB::makeTerminalNode(features, multiClassLabels, region, randint);
    
    //take gini threshold here due to scaling, normalisation, etc. of the coefficients
    node.intercept()    = bgfunc.min_threshold_;
    SB::node_ = node;
    
    childRegions[0].classCounts() = bgfunc.bestCurrentCounts[0];
    childRegions[1].classCounts() = bgfunc.bestCurrentCounts[1];
    childRegions[0].classCountsIsValid = true;
    childRegions[1].classCountsIsValid = true;
    
        // Save the ranges of the child stack entries.
    childRegions[0].setRange(   region.begin()  , region.begin() + bgfunc.min_index_   );
    childRegions[0].rule = region.rule;
    childRegions[0].rule.push_back(std::make_pair(1, 1.0));
    childRegions[1].setRange(   region.begin() + bgfunc.min_index_       , region.end()    );
    childRegions[1].rule = region.rule;
    childRegions[1].rule.push_back(std::make_pair(1, 1.0));
    
    //adjust oob ranges
//    std::cout << "adjust oob" << std::endl;
    //sort the oobs
      std::sort(region.oob_begin(), region.oob_end(), 
            SortSamplesByDimensions< MultiArray<2, double> > (dDistanceFromHyperplane, 0));
            
      //find split index
      int nOOBindx;
      for(nOOBindx=0; nOOBindx<region.oob_size(); nOOBindx++)
      {
        if(dDistanceFromHyperplane(region.oob_begin()[nOOBindx],0)>=node.intercept())
          break;
      }

      childRegions[0].set_oob_range(   region.oob_begin()  , region.oob_begin() + nOOBindx   );
      childRegions[1].set_oob_range(   region.oob_begin() + nOOBindx , region.oob_end() );

//    std::cout << "end" << std::endl;
//    outm2(region.oob_begin());outm2(nOOBindx);outm(region.oob_begin() + nOOBindx);
    //_adjust oob ranges

    return i_HyperplaneNode;
    }
};

/** Standard ridge regression split
 */
typedef RidgeSplit<BestGiniOfColumn<GiniCriterion> >  GiniRidgeSplit;


} //namespace vigra
#endif // VIGRA_RANDOM_FOREST_RIDGE_SPLIT_H