This file is indexed.

/usr/include/vigra/orientedtensorfilters.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
/************************************************************************/
/*                                                                      */
/*               Copyright 2002-2004 by Ullrich Koethe                  */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */                
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_ORIENTEDTENSORFILTERS_HXX
#define VIGRA_ORIENTEDTENSORFILTERS_HXX

#include <cmath>
#include "utilities.hxx"
#include "initimage.hxx"
#include "stdconvolution.hxx"
#include "multi_shape.hxx"

namespace vigra {

/** \addtogroup TensorImaging Tensor Image Processing
*/
//@{

/********************************************************/
/*                                                      */
/*                     hourGlassFilter                  */
/*                                                      */
/********************************************************/

/** \brief Anisotropic tensor smoothing with the hourglass filter.

    This function implements anisotropic tensor smoothing by an
    hourglass-shaped filters as described in
    
    U. K&ouml;the: <a href="http://hci.iwr.uni-heidelberg.de/people/ukoethe/papers/index.php#cite_structureTensor">
    <i>"Edge and Junction Detection with an Improved Structure Tensor"</i></a>, 
     in: Proc. of 25th DAGM Symposium, Magdeburg 2003, Lecture Notes in Computer Science 2781, 
     pp. 25-32, Heidelberg: Springer, 2003
     
    It is closely related to the structure tensor (see \ref structureTensor()), but
    replaces the linear tensor smoothing with a smoothing along edges only. 
    Smoothing across edges is largely suppressed. This means that the
    image structure is preserved much better because nearby features
    such as parallel edges are not blended into each other. 
    
    The hourglass filter is typically applied to a gradient tensor, i.e. the 
    Euclidean product of the gradient with itself, which can be obtained by a
    gradient operator followed with \ref vectorToTensor(), see example below. 
    The hourglass shape of the filter can be interpreted as indicating the likely 
    continuations of a local edge element. The parameter <tt>sigma</tt> determines
    the radius of the hourglass (i.e. how far the influence of the edge element 
    reaches), and <tt>rho</tt> controls its opening angle (i.e. how narrow the 
    edge orientation os followed). Recommended values are <tt>sigma = 1.4</tt>
    (or, more generally, two to three times the scale of the gradient operator
    used in the first step), and <tt>rho = 0.4</tt> which corresponds to an 
    opening angle of 22.5 degrees to either side of the edge.
    
    <b> Declarations:</b>

    pass 2D array views:
    \code
    namespace vigra {
        template <class T1, class S1,
                  class T2, class S2>
        void
        hourGlassFilter(MultiArrayView<2, T1, S1> const & src,
                        MultiArrayView<2, T2, S2> dest,
                        double sigma, double rho);
    }
    \endcode

    \deprecatedAPI{hourGlassFilter}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        void hourGlassFilter(SrcIterator sul, SrcIterator slr, SrcAccessor src,
                             DestIterator dul, DestAccessor dest,
                             double sigma, double rho);
    }
    \endcode
    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        inline
        void hourGlassFilter(triple<SrcIterator, SrcIterator, SrcAccessor> s,
                             pair<DestIterator, DestAccessor> d,
                             double sigma, double rho);
    }
    \endcode
    \deprecatedEnd

    <b> Usage:</b>

    <b>\#include</b> \<vigra/orientedtensorfilters.hxx\><br/>
    Namespace: vigra

    \code
    MultiArray<2, float>                  img(w,h);
    MultiArray<2, TinyVector<float, 2> >  gradient(w,h);
    MultiArray<2, TinyVector<float, 3> >  tensor(w,h), smoothedTensor(w,h);
    
    gaussianGradient(img, gradient, 1.0);
    vectorToTensor(gradient, tensor);
    hourGlassFilter(tensor, smoothedTensor, 2.0, 0.4);
    \endcode

    \deprecatedUsage{hourGlassFilter}
    \code
    FImage img(w,h);
    FVector2Image gradient(w,h);
    FVector3Image tensor(w,h), smoothedTensor(w,h);
    
    gaussianGradient(srcImageRange(img), destImage(gradient), 1.0);
    vectorToTensor(srcImageRange(gradient), destImage(tensor));
    hourGlassFilter(srcImageRange(tensor), destImage(smoothedTensor), 2.0, 0.4);
    \endcode
    \deprecatedEnd
    
    \see vectorToTensor()
*/
doxygen_overloaded_function(template <...> void hourGlassFilter)

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
void hourGlassFilter(SrcIterator sul, SrcIterator slr, SrcAccessor src,
                     DestIterator dul, DestAccessor dest,
                     double sigma, double rho)
{
    vigra_precondition(sigma >= 0.0 && rho >= 0.0,
                       "hourGlassFilter(): sigma and rho must be >= 0.0");
    vigra_precondition(src.size(sul) == 3,
                       "hourGlassFilter(): input image must have 3 bands.");
    vigra_precondition(dest.size(dul) == 3,
                       "hourGlassFilter(): output image must have 3 bands.");

    // TODO: normalization

    int w = slr.x - sul.x;
    int h = slr.y - sul.y;

    double radius = VIGRA_CSTD::floor(3.0*sigma + 0.5);
    double sigma2 = -0.5 / sigma / sigma;
    double rho2 = -0.5 / rho / rho;
    double norm = 1.0 / (2.0 * M_PI * sigma * sigma);

    initImage(dul, dul+Diff2D(w,h), dest, NumericTraits<typename DestAccessor::value_type>::zero());

    for(int y=0; y<h; ++y, ++sul.y, ++dul.y)
    {
        SrcIterator s = sul;
        DestIterator d = dul;
        for(int x=0; x<w; ++x, ++s.x, ++d.x)
        {
            double phi = 0.5 * VIGRA_CSTD::atan2(
                                     2.0*src.getComponent(s,1),
                                     (double)src.getComponent(s,0) - src.getComponent(s,2));
            double u = VIGRA_CSTD::sin(phi);
            double v = VIGRA_CSTD::cos(phi);

            double x0 = x - radius < 0 ? -x : -radius;
            double y0 = y - radius < 0 ? -y : -radius;
            double x1 = x + radius >= w ? w - x - 1 : radius;
            double y1 = y + radius >= h ? h - y - 1 : radius;

            DestIterator dwul = d + Diff2D((int)x0, (int)y0);

            for(double yy=y0; yy <= y1; ++yy, ++dwul.y)
            {
                typename DestIterator::row_iterator dw = dwul.rowIterator();
                for(double xx=x0; xx <= x1; ++xx, ++dw)
                {
                    double r2 = xx*xx + yy*yy;
                    double p  = u*xx - v*yy;
                    double q  = v*xx + u*yy;
                    double kernel = (p == 0.0) ?
                                      (q == 0.0) ?
                                       norm :
                                       0.0 :
                                       norm * VIGRA_CSTD::exp(sigma2*r2 + rho2*q*q/p/p);
                    dest.set(dest(dw) + kernel*src(s), dw);
                }
            }
        }
    }
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline void
hourGlassFilter(triple<SrcIterator, SrcIterator, SrcAccessor> s,
                pair<DestIterator, DestAccessor> d,
                double sigma, double rho)
{
    hourGlassFilter(s.first, s.second, s.third, d.first, d.second, sigma, rho);
}

template <class T1, class S1,
          class T2, class S2>
inline void
hourGlassFilter(MultiArrayView<2, T1, S1> const & src,
                MultiArrayView<2, T2, S2> dest,
                double sigma, double rho)
{
    vigra_precondition(src.shape() == dest.shape(),
        "hourGlassFilter(): shape mismatch between input and output.");
    hourGlassFilter(srcImageRange(src), destImage(dest), sigma, rho);
}

/********************************************************/
/*                                                      */
/*                    ellipticGaussian                  */
/*                                                      */
/********************************************************/

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
void ellipticGaussian(SrcIterator sul, SrcIterator slr, SrcAccessor src,
                      DestIterator dul, DestAccessor dest,
                      double sigmax, double sigmin)
{
    vigra_precondition(sigmax >= sigmin && sigmin >= 0.0,
                       "ellipticGaussian(): "
                       "sigmax >= sigmin and sigmin >= 0.0 required");

    int w = slr.x - sul.x;
    int h = slr.y - sul.y;

    double radius = VIGRA_CSTD::floor(3.0*sigmax + 0.5);
    double sigmin2 = -0.5 / sigmin / sigmin;
    double norm = 1.0 / (2.0 * M_PI * sigmin * sigmax);

    initImage(dul, dul+Diff2D(w,h), dest, NumericTraits<typename DestAccessor::value_type>::zero());

    for(int y=0; y<h; ++y, ++sul.y, ++dul.y)
    {
        SrcIterator s = sul;
        DestIterator d = dul;
        for(int x=0; x<w; ++x, ++s.x, ++d.x)
        {
            typedef typename 
               NumericTraits<typename SrcAccessor::component_type>::RealPromote TmpType;
            TmpType d1 = src.getComponent(s,0) + src.getComponent(s,2);
            TmpType d2 = src.getComponent(s,0) - src.getComponent(s,2);
            TmpType d3 = 2.0 * src.getComponent(s,1);
            TmpType d4 = VIGRA_CSTD::sqrt(sq(d2) + sq(d3));
            TmpType excentricity = 1.0 - (d1 - d4) / (d1 + d4);
            double sigmax2 = -0.5 / sq((sigmax - sigmin)*excentricity + sigmin);
            
            double phi = 0.5 * VIGRA_CSTD::atan2(d3, d2);
            double u = VIGRA_CSTD::sin(phi);
            double v = VIGRA_CSTD::cos(phi);

            double x0 = x - radius < 0 ? -x : -radius;
            double y0 = y - radius < 0 ? -y : -radius;
            double x1 = x + radius >= w ? w - x - 1 : radius;
            double y1 = y + radius >= h ? h - y - 1 : radius;

            DestIterator dwul = d + Diff2D((int)x0, (int)y0);

            for(double yy=y0; yy <= y1; ++yy, ++dwul.y)
            {
                typename DestIterator::row_iterator dw = dwul.rowIterator();
                for(double xx=x0; xx <= x1; ++xx, ++dw)
                {
                    double p  = u*xx - v*yy;
                    double q  = v*xx + u*yy;
                    double kernel = norm * VIGRA_CSTD::exp(sigmax2*p*p + sigmin2*q*q);
                    dest.set(dest(dw) + kernel*src(s), dw);
                }
            }
        }
    }
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline void
ellipticGaussian(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                 pair<DestIterator, DestAccessor> dest,
                 double sigmax, double sigmin)
{
    ellipticGaussian(src.first, src.second, src.third, dest.first, dest.second, sigmax, sigmin);
}

template <class T1, class S1,
          class T2, class S2>
inline void
ellipticGaussian(MultiArrayView<2, T1, S1> const & src,
                 MultiArrayView<2, T2, S2> dest,
                 double sigmax, double sigmin)
{
    vigra_precondition(src.shape() == dest.shape(),
        "ellipticGaussian(): shape mismatch between input and output.");
    ellipticGaussian(srcImageRange(src), destImage(dest), sigmax, sigmin);
}

/********************************************************/
/*                                                      */
/*         kernels for orientedTrigonometricFilter      */
/*                                                      */
/********************************************************/

class FoerstnerKernelBase
{
  public:
    typedef double ResultType;
    typedef double WeightType;
    typedef DVector2Image::value_type VectorType;
    typedef VectorType::value_type    ValueType;
  
    FoerstnerKernelBase(double scale, bool ringShaped = false)
    : radius_((int)(3.0*scale+0.5)),
      weights_(2*radius_+1, 2*radius_+1),
      vectors_(2*radius_+1, 2*radius_+1)
    {
        double norm = 1.0 / (2.0 * M_PI * scale * scale);
        double s2 = -0.5 / scale / scale;
        
        for(int y = -radius_; y <= radius_; ++y)
        {
            for(int x = -radius_; x <= radius_; ++x)
            {
                double d2 = x*x + y*y;
                double d = VIGRA_CSTD::sqrt(d2);
                vectors_(x+radius_,y+radius_) = d != 0.0 ?
                                                  VectorType(x/d, -y/d) :
                                                  VectorType(ValueType(0), ValueType(0));
                weights_(x+radius_,y+radius_) = ringShaped ? 
                                       norm * d2 * VIGRA_CSTD::exp(d2 * s2) :
                                       norm * VIGRA_CSTD::exp(d2 * s2);
            }
        }
    }   
    
    ResultType operator()(int x, int y, VectorType const &) const
    {
        // isotropic filtering
        return weights_(radius_, radius_);
    }

    int radius_;
    DImage weights_;
    DVector2Image vectors_;
};

class FoerstnerRingKernelBase
: public FoerstnerKernelBase
{
  public:
    FoerstnerRingKernelBase(double scale)
    : FoerstnerKernelBase(scale, true)
    {}
};

class Cos2RingKernel
: public FoerstnerKernelBase
{
  public:
    typedef double ResultType;
    typedef double WeightType;
    typedef DVector2Image::value_type VectorType;
  
    Cos2RingKernel(double scale)
    : FoerstnerKernelBase(scale, true)
    {}
    
    ResultType operator()(int x, int y, VectorType const & v) const
    {
        if(x == 0 && y == 0)
            return weights_(radius_, radius_);
        double d = dot(vectors_(x+radius_, y+radius_), v);
        return d * d * weights_(x+radius_, y+radius_);
    }
};

class Cos2Kernel
: public FoerstnerKernelBase
{
  public:
    typedef double ResultType;
    typedef double WeightType;
    typedef DVector2Image::value_type VectorType;
  
    Cos2Kernel(double scale)
    : FoerstnerKernelBase(scale, false)
    {}
    
    ResultType operator()(int x, int y, VectorType const & v) const
    {
        if(x == 0 && y == 0)
            return weights_(radius_, radius_);
        double d = dot(vectors_(x+radius_, y+radius_), v);
        return d * d * weights_(x+radius_, y+radius_);
    }
};

class Sin2RingKernel
: public FoerstnerKernelBase
{
  public:
    typedef double ResultType;
    typedef double WeightType;
    typedef DVector2Image::value_type VectorType;
  
    Sin2RingKernel(double scale)
    : FoerstnerKernelBase(scale, true)
    {}
    
    ResultType operator()(int x, int y, VectorType const & v) const
    {
        if(x == 0 && y == 0)
            return weights_(radius_, radius_);
        double d = dot(vectors_(x+radius_, y+radius_), v);
        return (1.0 - d * d) * weights_(x+radius_, y+radius_);
    }
};

class Sin2Kernel
: public FoerstnerKernelBase
{
  public:
    typedef double ResultType;
    typedef double WeightType;
    typedef DVector2Image::value_type VectorType;
  
    Sin2Kernel(double scale)
    : FoerstnerKernelBase(scale, false)
    {}
    
    ResultType operator()(int x, int y, VectorType const & v) const
    {
        if(x == 0 && y == 0)
            return weights_(radius_, radius_);
        double d = dot(vectors_(x+radius_, y+radius_), v);
        return (1.0 - d * d) * weights_(x+radius_, y+radius_);
    }
};

class Sin6RingKernel
: public FoerstnerKernelBase
{
  public:
    typedef double ResultType;
    typedef double WeightType;
    typedef DVector2Image::value_type VectorType;
  
    Sin6RingKernel(double scale)
    : FoerstnerKernelBase(scale, true)
    {}
    
    ResultType operator()(int x, int y, VectorType const & v) const
    {
        if(x == 0 && y == 0)
            return weights_(radius_, radius_);
        double d = dot(vectors_(x+radius_, y+radius_), v);
        return VIGRA_CSTD::pow(1.0 - d * d, 3) * weights_(x+radius_, y+radius_);
    }
};

class Sin6Kernel
: public FoerstnerKernelBase
{
  public:
    typedef double ResultType;
    typedef double WeightType;
    typedef DVector2Image::value_type VectorType;
  
    Sin6Kernel(double scale)
    : FoerstnerKernelBase(scale, false)
    {}
    
    ResultType operator()(int x, int y, VectorType const & v) const
    {
        if(x == 0 && y == 0)
            return weights_(radius_, radius_);
        double d = dot(vectors_(x+radius_, y+radius_), v);
        return VIGRA_CSTD::pow(1.0 - d * d, 3) * weights_(x+radius_, y+radius_);
    }
};

class Cos6RingKernel
: public FoerstnerKernelBase
{
  public:
    typedef double ResultType;
    typedef double WeightType;
    typedef DVector2Image::value_type VectorType;
  
    Cos6RingKernel(double scale)
    : FoerstnerKernelBase(scale, true)
    {}
    
    ResultType operator()(int x, int y, VectorType const & v) const
    {
        if(x == 0 && y == 0)
            return weights_(radius_, radius_);
        double d = dot(vectors_(x+radius_, y+radius_), v);
        return (1.0 - VIGRA_CSTD::pow(1.0 - d * d, 3)) * weights_(x+radius_, y+radius_);
    }
};

class Cos6Kernel
: public FoerstnerKernelBase
{
  public:
    typedef double ResultType;
    typedef double WeightType;
    typedef DVector2Image::value_type VectorType;
  
    Cos6Kernel(double scale)
    : FoerstnerKernelBase(scale, false)
    {}
    
    ResultType operator()(int x, int y, VectorType const & v) const
    {
        if(x == 0 && y == 0)
            return weights_(radius_, radius_);
        double d = dot(vectors_(x+radius_, y+radius_), v);
        return (1.0 - VIGRA_CSTD::pow(1.0 - d * d, 3)) * weights_(x+radius_, y+radius_);
    }
};

/********************************************************/
/*                                                      */
/*              orientedTrigonometricFilter             */
/*                                                      */
/********************************************************/

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Kernel>
void orientedTrigonometricFilter(SrcIterator sul, SrcIterator slr, SrcAccessor src,
                    DestIterator dul, DestAccessor dest,
                    Kernel const & kernel)
{
    vigra_precondition(src.size(sul) == 2,
                       "orientedTrigonometricFilter(): input image must have 2 bands.");
    vigra_precondition(dest.size(dul) == 3,
                       "orientedTrigonometricFilter(): output image must have 3 bands.");

    int w = slr.x - sul.x;
    int h = slr.y - sul.y;
    int radius = kernel.radius_;
    
    typedef typename SrcAccessor::value_type VectorType;
    typedef typename DestAccessor::value_type TensorType;

    initImage(dul, dul+Diff2D(w,h), dest, NumericTraits<TensorType>::zero());

    for(int y=0; y<h; ++y, ++sul.y, ++dul.y)
    {
        SrcIterator s = sul;
        DestIterator d = dul;
        for(int x=0; x<w; ++x, ++s.x, ++d.x)
        {
            int x0 = x - radius < 0 ? -x : -radius;
            int y0 = y - radius < 0 ? -y : -radius;
            int x1 = x + radius >= w ? w - x - 1 : radius;
            int y1 = y + radius >= h ? h - y - 1 : radius;

            VectorType v(src(s));
            TensorType t(sq(v[0]), v[0]*v[1], sq(v[1]));
            double sqMag = t[0] + t[2];
            double mag = VIGRA_CSTD::sqrt(sqMag);
            if(mag != 0.0)
                v /= mag;
            else
                v *= 0.0;
            Diff2D dd;
            for(dd.y = y0; dd.y <= y1; ++dd.y)
            {
                for(dd.x = x0; dd.x <= x1; ++dd.x)
                {
                    dest.set(dest(d, dd) + kernel(dd.x, dd.y, v) * t, d, dd);
                }
            }
        }
    }
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Kernel>
inline void
orientedTrigonometricFilter(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                            pair<DestIterator, DestAccessor> dest,
                            Kernel const & kernel)
{
    orientedTrigonometricFilter(src.first, src.second, src.third, dest.first, dest.second, kernel);
}

template <class T1, class S1,
          class T2, class S2,
          class Kernel>
inline void
orientedTrigonometricFilter(MultiArrayView<2, T1, S1> const & src,
                            MultiArrayView<2, T2, S2> dest,
                            Kernel const & kernel)
{
    vigra_precondition(src.shape() == dest.shape(),
        "orientedTrigonometricFilter(): shape mismatch between input and output.");
    orientedTrigonometricFilter(srcImageRange(src), destImage(dest), kernel);
}

//@}

} // namespace vigra

#endif /* VIGRA_ORIENTEDTENSORFILTERS_HXX */