This file is indexed.

/usr/include/vigra/multi_gridgraph.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
/************************************************************************/
/*                                                                      */
/*     Copyright 2011-2012 by Stefan Schmidt and Ullrich Koethe         */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_MULTI_GRIDGRAPH_HXX
#define VIGRA_MULTI_GRIDGRAPH_HXX

#include "multi_fwd.hxx"
#include "multi_iterator.hxx"
#include "multi_array.hxx"
#include "graphs.hxx"

template <unsigned int N>
struct NeighborhoodTests;

namespace vigra {

template<unsigned int N, class T, class Stride>
inline
typename vigra::MultiArrayView<N, T, Stride>::const_reference 
get(vigra::MultiArrayView<N, T, Stride> const & pmap,
    typename vigra::MultiArrayView<N, T, Stride>::difference_type const & k)
{ 
    return pmap[k]; 
}

/** \addtogroup GraphDataStructures Graph Data Structures and Algorithms
        
        Graph algorithms and the underlying graph data structures (e.g. GridGraph and AdjacencyListGraph)
        implementing the APIs of the 
        <a href="http://www.boost.org/doc/libs/release/libs/graph/">boost::graph</a> and
        <a href="http://lemon.cs.elte.hu/">LEMON</a> libraries. 
        
        See also the \ref BoostGraphExtensions.
*/
//@{

/*
undirected edge_descriptor derived from TinyVector, 
including flag for original edge orientation, 
as necessary for source(), target() functions;
This edge_descriptor allows to directly (without adapter object)
index a MultiArrayView with one dimension more than the gridgraph, 
the last coordinate indexing the edge number
(missing edges at the border are just ignored) 

The gridgraph class is able to convert/construct these edge_descriptors
and to reconstruct the corresponding source/target nodes.

FIXME: store edge index in (*this)[0] ??
*/
template<unsigned int N>
class GridGraphArcDescriptor
    : public MultiArrayShape<N+1>::type
{
  public:
    typedef typename MultiArrayShape<N+1>::type  base_type;
    typedef typename base_type::value_type       value_type;
    typedef base_type                            edge_coord_type;
    typedef value_type                           index_type;
    typedef typename MultiArrayShape<N>::type    shape_type;
    typedef TinyVectorView<value_type, N>        vertex_descriptor_view;

    GridGraphArcDescriptor()
    : is_reversed_(false)
    {}

    GridGraphArcDescriptor(lemon::Invalid)
    : base_type(-1),
      is_reversed_(false)
    {}

    GridGraphArcDescriptor(base_type const & b, bool reversed)
    : base_type(b),
      is_reversed_(reversed)
    {}

    GridGraphArcDescriptor(shape_type const &vertex,
                           index_type edge_index,
                           bool reversed=false)
    : base_type(detail::DontInit())
    {
        set(vertex, edge_index, reversed);
    }
                                      
    void set(shape_type const &vertex, index_type edge_index, bool reversed) 
    {
        this->template subarray<0,N>() = vertex;
        (*this)[N] = edge_index;
        is_reversed_ = reversed;
    }
        
    void increment(GridGraphArcDescriptor const & diff, bool opposite=false) 
    {
        if(diff.is_reversed_)
        {
            is_reversed_ = !opposite;
            this->template subarray<0,N>() += diff.template subarray<0,N>();
        }
        else
        {
            is_reversed_ = opposite;
        }
        (*this)[N] = diff[N];
    }
        
    bool isReversed() const 
    {
        return is_reversed_;
    }
    
    vertex_descriptor_view vertexDescriptor() const
    {
        return this->template subarray<0,N>();
    }
    
    value_type edgeIndex() const
    {
        return (*this)[N];
    }

  protected:
    bool is_reversed_;
};

inline MultiArrayIndex 
gridGraphMaxDegree(unsigned int N, NeighborhoodType t)
{
    return t == DirectNeighborhood
                ? 2*N
                : pow(3.0, (int)N) - 1;
}

template <unsigned int N, NeighborhoodType>
struct GridGraphMaxDegree;

template <unsigned int N>
struct GridGraphMaxDegree<N, DirectNeighborhood>
{
    static const MultiArrayIndex value = 2*N;
};

template <unsigned int N>
struct GridGraphMaxDegree<N, IndirectNeighborhood>
{
    static const MultiArrayIndex value = MetaPow<3, N>::value - 1;
};

template <class Shape>
MultiArrayIndex 
gridGraphEdgeCount(Shape const & shape, NeighborhoodType t, bool directed)
{
    int res = 0;
    if(t == DirectNeighborhood)
    {
        for(unsigned int k=0; k<shape.size(); ++k)
            res += 2*prod(shape - Shape::unitVector(k));
    }
    else
    {
        res = prod(3*shape - Shape(2)) - prod(shape);
    }
    return directed
               ? res
               : res / 2;
}

namespace detail {

template <class Shape>
void
computeNeighborOffsets(ArrayVector<Shape> const & neighborOffsets, 
                       ArrayVector<ArrayVector<bool> > const & neighborExists,
                       ArrayVector<ArrayVector<Shape> > & incrementOffsets,
                       ArrayVector<ArrayVector<GridGraphArcDescriptor<Shape::static_size> > > & edgeDescriptorOffsets,
                       ArrayVector<ArrayVector<MultiArrayIndex> > & indices,
                       ArrayVector<ArrayVector<MultiArrayIndex> > & backIndices,
                       bool directed)
{
    typedef GridGraphArcDescriptor<Shape::static_size> EdgeDescriptor;
    
    unsigned int borderTypeCount = neighborExists.size();
    incrementOffsets.resize(borderTypeCount);
    edgeDescriptorOffsets.resize(borderTypeCount);
    indices.resize(borderTypeCount);
    backIndices.resize(borderTypeCount);
    
    for(unsigned int k=0; k<borderTypeCount; ++k)
    {
        incrementOffsets[k].clear();
        edgeDescriptorOffsets[k].clear();
        indices[k].clear();
        backIndices[k].clear();
        
        for(unsigned int j=0; j < neighborOffsets.size(); ++j)
        {
            if(neighborExists[k][j])
            {
                if(incrementOffsets[k].size() == 0)
                {
                    incrementOffsets[k].push_back(neighborOffsets[j]);
                }
                else
                {
                    incrementOffsets[k].push_back(neighborOffsets[j] - neighborOffsets[indices[k].back()]);
                }
                
                if(directed || j < neighborOffsets.size() / 2) // directed or backward edge
                {
                    edgeDescriptorOffsets[k].push_back(EdgeDescriptor(Shape(), j));
                }
                else if(edgeDescriptorOffsets[k].size() == 0 || !edgeDescriptorOffsets[k].back().isReversed()) // the first forward edge
                {
                    edgeDescriptorOffsets[k].push_back(EdgeDescriptor(neighborOffsets[j], neighborOffsets.size()-j-1, true));
                }       
                else // second or higher forward edge
                {
                    edgeDescriptorOffsets[k].push_back(EdgeDescriptor(neighborOffsets[j] - neighborOffsets[indices[k].back()], 
                                                                      neighborOffsets.size()-j-1, true));
                }
                
                indices[k].push_back(j);
                if(j < neighborOffsets.size() / 2)
                    backIndices[k].push_back(j);
            }
        }
    }
}

} // namespace detail

template<unsigned int N, bool BackEdgesOnly>
class GridGraphNeighborIterator
{
public:
    typedef typename MultiArrayShape<N>::type          shape_type;
    typedef MultiCoordinateIterator<N>                 vertex_iterator;
    typedef typename vertex_iterator::value_type       vertex_descriptor;
    typedef vertex_descriptor                          value_type;
    typedef typename vertex_iterator::pointer          pointer;
    typedef typename vertex_iterator::const_pointer    const_pointer;
    typedef typename vertex_iterator::reference        reference;
    typedef typename vertex_iterator::const_reference  const_reference;
    typedef MultiArrayIndex                            difference_type;
    typedef MultiArrayIndex                            index_type;
    typedef std::forward_iterator_tag                  iterator_category;
    
    friend struct NeighborhoodTests<N>;

    GridGraphNeighborIterator() 
    : neighborOffsets_(0),
      neighborIndices_(0),
      index_(0)
    {}

    template <class DirectedTag>
    GridGraphNeighborIterator(GridGraph<N, DirectedTag> const & g, typename GridGraph<N, DirectedTag>::Node const & v)
    : neighborOffsets_(0),
      neighborIndices_(0),
      target_(v),
      index_(0)
    {
        unsigned int nbtype = g.get_border_type(v);
        neighborOffsets_ = &(*g.neighborIncrementArray())[nbtype];
        neighborIndices_ = &(*g.neighborIndexArray(BackEdgesOnly))[nbtype];
        updateTarget();
    }

    template <class DirectedTag>
    GridGraphNeighborIterator(GridGraph<N, DirectedTag> const & g, typename GridGraph<N, DirectedTag>::NodeIt const & v)
    : neighborOffsets_(0),
      neighborIndices_(0),
      target_(v),
      index_(0)
    {
        unsigned int nbtype = g.get_border_type(v);
        neighborOffsets_ = &(*g.neighborIncrementArray())[nbtype];
        neighborIndices_ = &(*g.neighborIndexArray(BackEdgesOnly))[nbtype];
        updateTarget();
    }

    // TODO: implement a "goto-neighbor" operation
    // yielding a vertex_iterator! -> useful for 
    // watershed algo.

    GridGraphNeighborIterator & operator++()
    {
        ++index_;
        updateTarget();
        return *this;
    }

    GridGraphNeighborIterator operator++(int)
    {
        GridGraphNeighborIterator ret(*this);
        ++*this;
        return ret;
    }

    const_reference operator*() const
    {
        return target_;
    }

    const_pointer operator->() const
    {
        return &target_;
    }
    
    operator const_reference() const
    {
        return target_;
    }

    const_reference target() const
    {
        return target_;
    }

    MultiArrayIndex index() const
    {
        return index_;
    }

    MultiArrayIndex neighborIndex() const
    {
        return (*neighborIndices_)[index_];
    }

    bool operator==(GridGraphNeighborIterator const & other) const
    {
        return index_ == other.index_;
    }

    bool operator!=(GridGraphNeighborIterator const & other) const
    {
        return index_ != other.index_;
    }

    bool isValid() const
    {
        return index_ < (MultiArrayIndex)neighborIndices_->size();
    }
    
    bool atEnd() const
    {
        return index_ >= (MultiArrayIndex)neighborIndices_->size();
    }
    
    GridGraphNeighborIterator getEndIterator() const
    {
        GridGraphNeighborIterator res(*this);
        res.index_ = (MultiArrayIndex)neighborIndices_->size();
        return res;
    }

  protected:

        // for testing only
    GridGraphNeighborIterator(ArrayVector<shape_type> const & neighborOffsets,
                              ArrayVector<index_type> const & neighborIndices,
                              ArrayVector<index_type> const & backIndices,
                              vertex_descriptor source)
    : neighborOffsets_(&neighborOffsets),
      neighborIndices_(BackEdgesOnly ? &backIndices : &neighborIndices),
      target_(source),
      index_(0)
    {
        updateTarget();
    }
  
    void updateTarget()
    {
        if(isValid())
            target_ += (*neighborOffsets_)[index_];
    }

    ArrayVector<shape_type> const * neighborOffsets_;
    ArrayVector<index_type> const * neighborIndices_;
    vertex_descriptor target_;
    MultiArrayIndex index_;
};

template<unsigned int N, bool BackEdgesOnly>
class GridGraphOutEdgeIterator
{
  public:
    typedef typename MultiArrayShape<N>::type    shape_type;
    typedef MultiArrayIndex                      index_type;
    typedef GridGraphArcDescriptor<N>            arc_descriptor;
    typedef typename MultiArrayShape<N+1>::type  value_type;
    typedef value_type const &                   reference;
    typedef value_type const &                   const_reference;
    typedef value_type const *                   pointer;
    typedef value_type const *                   const_pointer;
    typedef MultiArrayIndex                      difference_type;
    typedef std::forward_iterator_tag            iterator_category;

    friend struct NeighborhoodTests<N>;
    friend class GridGraphEdgeIterator<N, BackEdgesOnly>;

    GridGraphOutEdgeIterator() 
    : neighborOffsets_(0),
      neighborIndices_(0),
      index_(0)
    {}

    template <class DirectedTag>
    GridGraphOutEdgeIterator(GridGraph<N, DirectedTag> const & g, 
                             typename GridGraph<N, DirectedTag>::NodeIt const & v,
                             bool opposite=false)
    : neighborOffsets_(0),
      neighborIndices_(0),
      edge_descriptor_(),
      index_(0)
    {
        if(v.isValid()){
            unsigned int nbtype = g.get_border_type(v);
            init(&(*g.edgeIncrementArray())[nbtype], &(*g.neighborIndexArray(BackEdgesOnly))[nbtype], *v, opposite);
        }
        else{
            index_ = (index_type)neighborIndices_->size();
        }
    }

    template <class DirectedTag>
    GridGraphOutEdgeIterator(GridGraph<N, DirectedTag> const & g, 
                             typename GridGraph<N, DirectedTag>::Node const & v,
                             bool opposite=false)
    : neighborOffsets_(0),
      neighborIndices_(0),
      edge_descriptor_(),
      index_(0)
    {
        if(isInside(g, v)){
            unsigned int nbtype = g.get_border_type(v);
            init(&(*g.edgeIncrementArray())[nbtype], &(*g.neighborIndexArray(BackEdgesOnly))[nbtype], v, opposite);
        }
        else{
            index_ = (index_type)neighborIndices_->size();
        }
    }
    
    GridGraphOutEdgeIterator & operator++()
    {
        increment(false);
        return *this;
    }

    GridGraphOutEdgeIterator  operator++(int)
    {
        GridGraphOutEdgeIterator ret(*this);
        ++*this;
        return ret;
    }

    const_reference operator*() const
    {
        return edge_descriptor_;
    }

    operator const_reference() const
    {
        return edge_descriptor_;
    }

    const_pointer operator->() const
    {
        return &edge_descriptor_;
    }

    index_type index() const
    {
        return index_;
    }

    index_type neighborIndex() const
    {
        return (*neighborIndices_)[index_];
    }

    arc_descriptor const & arcDescriptor() const
    {
        return edge_descriptor_;
    }

    bool operator==(GridGraphOutEdgeIterator const & other) const
    {
        return index_ == other.index();
    }

    bool operator!=(GridGraphOutEdgeIterator const & other) const
    {
        return index_ != other.index();
    }

    bool isValid() const 
    {
        return index_ < (index_type)neighborIndices_->size();
    }

    bool atEnd() const 
    {
        return index_ >= (index_type)neighborIndices_->size();
    }

    GridGraphOutEdgeIterator getEndIterator() const
    {
        GridGraphOutEdgeIterator res(*this);
        res.index_ = (index_type)neighborIndices_->size();
        return res;
    }

  protected:
  
        // for testing only
    GridGraphOutEdgeIterator(ArrayVector<arc_descriptor> const & neighborOffsets,
                             ArrayVector<index_type> const & neighborIndices,
                             ArrayVector<index_type> const & backIndices,
                             shape_type const & source)
    : neighborOffsets_(0),
      neighborIndices_(0),
      edge_descriptor_(),
      index_(0)
    {
        init(&neighborOffsets, BackEdgesOnly ? &backIndices : &neighborIndices, source);
    }

    void init(ArrayVector<arc_descriptor> const * neighborOffsets,
              ArrayVector<index_type> const * neighborIndices,
              shape_type const & source,
              bool opposite=false)
    {
        neighborOffsets_ = neighborOffsets;
        neighborIndices_ = neighborIndices;
        edge_descriptor_ = arc_descriptor(source, 0);
        index_ = 0;
        updateEdgeDescriptor(opposite);
    }

    void increment(bool opposite)
    {
        ++index_;
        updateEdgeDescriptor(opposite);
    }

    void updateEdgeDescriptor(bool opposite)
    {
        if(isValid())
            edge_descriptor_.increment((*neighborOffsets_)[index_], opposite);
    }
  
    ArrayVector<arc_descriptor> const * neighborOffsets_;
    ArrayVector<index_type> const * neighborIndices_;
    arc_descriptor edge_descriptor_;
    index_type index_;
};

template<unsigned int N, bool BackEdgesOnly>
class GridGraphOutArcIterator
: public GridGraphOutEdgeIterator<N, BackEdgesOnly>
{
  public:
    typedef GridGraphOutEdgeIterator<N, BackEdgesOnly>        base_type;
    typedef typename MultiArrayShape<N>::type  shape_type;
    typedef MultiArrayIndex                    index_type;
    typedef GridGraphArcDescriptor<N>          value_type;
    typedef value_type const &                 reference;
    typedef value_type const &                 const_reference;
    typedef value_type const *                 pointer;
    typedef value_type const *                 const_pointer;
    typedef MultiArrayIndex                    difference_type;
    typedef std::forward_iterator_tag          iterator_category;

    friend struct NeighborhoodTests<N>;
    friend class GridGraphEdgeIterator<N, BackEdgesOnly>;

    GridGraphOutArcIterator() 
    : base_type()
    {}

    explicit GridGraphOutArcIterator(base_type const & b) 
    : base_type(b)
    {}

    template <class DirectedTag>
    GridGraphOutArcIterator(GridGraph<N, DirectedTag> const & g, typename GridGraph<N, DirectedTag>::NodeIt const & v)
    : base_type(g, v)
    {}

    template <class DirectedTag>
    GridGraphOutArcIterator(GridGraph<N, DirectedTag> const & g, typename GridGraph<N, DirectedTag>::Node const & v)
    : base_type(g, v)
    {}

    GridGraphOutArcIterator & operator++()
    {
        base_type::operator++();
        return *this;
    }

    GridGraphOutArcIterator  operator++(int)
    {
        GridGraphOutArcIterator ret(*this);
        ++*this;
        return ret;
    }

    const_reference operator*() const
    {
        return this->edge_descriptor_;
    }

    operator const_reference() const
    {
        return this->edge_descriptor_;
    }

    const_pointer operator->() const
    {
        return &this->edge_descriptor_;
    }

    GridGraphOutArcIterator getEndIterator() const
    {
        return GridGraphOutArcIterator(base_type::getEndIterator());
    }
    
  protected:

        // for testing only
    GridGraphOutArcIterator(ArrayVector<value_type> const & neighborOffsets,
                            ArrayVector<index_type> const & neighborIndices,
                            ArrayVector<index_type> const & backIndices,
                            shape_type const & source)
    : base_type(neighborOffsets, neighborIndices, backIndices, source)
    {}
};

template<unsigned int N, bool BackEdgesOnly>
class GridGraphInArcIterator
: public GridGraphOutEdgeIterator<N, BackEdgesOnly>
{
  public:
    typedef GridGraphOutEdgeIterator<N, BackEdgesOnly>        base_type;
    typedef typename MultiArrayShape<N>::type  shape_type;
    typedef MultiArrayIndex                    index_type;
    typedef GridGraphArcDescriptor<N>          value_type;
    typedef value_type const &                 reference;
    typedef value_type const &                 const_reference;
    typedef value_type const *                 pointer;
    typedef value_type const *                 const_pointer;
    typedef MultiArrayIndex                    difference_type;
    typedef std::forward_iterator_tag          iterator_category;

    friend struct NeighborhoodTests<N>;

    GridGraphInArcIterator() 
    : base_type()
    {}

    explicit GridGraphInArcIterator(base_type const & b) 
    : base_type(b)
    {}

    template <class DirectedTag>
    GridGraphInArcIterator(GridGraph<N, DirectedTag> const & g, typename GridGraph<N, DirectedTag>::NodeIt const & v)
    : base_type(g, v, true)
    {}

    template <class DirectedTag>
    GridGraphInArcIterator(GridGraph<N, DirectedTag> const & g, typename GridGraph<N, DirectedTag>::Node const & v)
    : base_type(g, v, true)
    {}

    GridGraphInArcIterator & operator++()
    {
        base_type::increment(true);
        return *this;
    }

    GridGraphInArcIterator  operator++(int)
    {
        GridGraphInArcIterator ret(*this);
        ++*this;
        return ret;
    }

    const_reference operator*() const
    {
        return this->edge_descriptor_;
    }

    operator const_reference() const
    {
        return this->edge_descriptor_;
    }

    const_pointer operator->() const
    {
        return &this->edge_descriptor_;
    }

    GridGraphInArcIterator getEndIterator() const
    {
        return GridGraphInArcIterator(base_type::getEndIterator());
    }
};

    // Edge iterator for directed and undirected graphs. 
    // Composed of a vertex_iterator and an out_edge_iterator.
template<unsigned int N, bool BackEdgesOnly>
class GridGraphEdgeIterator
{
public:
    typedef GridGraphEdgeIterator<N, BackEdgesOnly>      self_type;
    typedef MultiCoordinateIterator<N>                   vertex_iterator;
    typedef typename vertex_iterator::value_type         vertex_descriptor;
    typedef GridGraphOutArcIterator<N, BackEdgesOnly>    out_edge_iterator;
    typedef typename MultiArrayShape<N+1>::type          edge_descriptor;
    typedef edge_descriptor                              value_type;
    typedef value_type const *                           pointer;
    typedef value_type const *                           const_pointer;
    typedef value_type const &                           reference;
    typedef value_type const &                           const_reference;
    typedef typename MultiArrayShape<N>::type            shape_type;
    typedef MultiArrayIndex                              difference_type;
    typedef MultiArrayIndex                              index_type;
    typedef std::forward_iterator_tag                    iterator_category;

    friend struct NeighborhoodTests<N>;

    GridGraphEdgeIterator() 
    : neighborOffsets_(0),
      neighborIndices_(0)
    {}
    
    template <class DirectedTag>
    GridGraphEdgeIterator(GridGraph<N, DirectedTag> const & g)
    : neighborOffsets_(g.edgeIncrementArray()),
      neighborIndices_(g.neighborIndexArray(BackEdgesOnly)),
      vertexIterator_(g),
      outEdgeIterator_(g, vertexIterator_)
    {
        if(outEdgeIterator_.atEnd()) // in a undirected graph, the first point stores no edges
        {
            ++vertexIterator_;
            if(vertexIterator_.isValid())
                outEdgeIterator_ = out_edge_iterator(g, vertexIterator_);
        }
    }



    template <class DirectedTag>
    GridGraphEdgeIterator(GridGraph<N, DirectedTag> const & g, const typename  GridGraph<N, DirectedTag>::Edge & edge)
    : neighborOffsets_(g.edgeIncrementArray()),
      neighborIndices_(g.neighborIndexArray(BackEdgesOnly)),
      vertexIterator_(g,g.u(edge)),
      outEdgeIterator_(g, vertexIterator_)
    {
        if(vertexIterator_.isValid()){
            // vigra_precondition(edge!=lemon::INVALID,"no invalid edges here");
            // vigra_precondition( allLess(*vertexIterator_,g.shape()), "fixme1");
            // vigra_precondition( allGreaterEqual(*vertexIterator_,shape_type() ), "fixme2");


            if(edge[N] >= 0  && edge[N] < g.maxUniqueDegree( ) && 
                (*( g.neighborExistsArray()))[vertexIterator_.borderType()][edge[N]] ){
                while(*outEdgeIterator_!=edge){
                    ++outEdgeIterator_;
                }
            }
            else{
                vertexIterator_ = vertexIterator_.getEndIterator();
            }

            // vigra_precondition(edge[N] >= 0 && edge[N] < g.maxUniqueDegree(),"fixme3");
            // vigra_precondition(    ,"fixme4");
            // vigra_precondition(!outEdgeIterator_.atEnd(),"fixme5");


        }
    }




    GridGraphEdgeIterator & operator++()
    {
        ++outEdgeIterator_;
        if(outEdgeIterator_.atEnd())
        {
            ++vertexIterator_;
            if(vertexIterator_.isValid())
            {
                unsigned int borderType = vertexIterator_.borderType();
                outEdgeIterator_.init(&(*neighborOffsets_)[borderType], &(*neighborIndices_)[borderType], *vertexIterator_);
            }
        }
        return *this;
    }

    GridGraphEdgeIterator  operator++(int)
    {
        GridGraphEdgeIterator ret(*this);
        ++*this;
        return ret;
    }

    const_reference operator*() const
    {
        return *outEdgeIterator_;
    }

    operator const_reference() const
    {
        return *outEdgeIterator_;
    }

    const_pointer operator->() const
    {
        return outEdgeIterator_.operator->();
    }
    
    MultiArrayIndex neighborIndex() const
    {
        return outEdgeIterator_.neighborIndex();
    }


    bool operator==(GridGraphEdgeIterator const & other) const
    {
        return (vertexIterator_ == other.vertexIterator_ && outEdgeIterator_ == other.outEdgeIterator_);
    }

    bool operator!=(GridGraphEdgeIterator const & other) const
    {
        return !operator==(other);
    }
    
    bool isValid() const
    {
        return vertexIterator_.isValid();
    }
    
    bool atEnd() const
    {
        return !isValid();
    }
    
    GridGraphEdgeIterator getEndIterator() const
    {
        GridGraphEdgeIterator ret(*this);
        ret.vertexIterator_ = vertexIterator_.getEndIterator();
        vertex_iterator lastVertex = ret.vertexIterator_ - 1;
        unsigned int borderType = lastVertex.borderType();
        ret.outEdgeIterator_.init(&(*neighborOffsets_)[borderType], &(*neighborIndices_)[borderType], *lastVertex);
        ret.outEdgeIterator_ = ret.outEdgeIterator_.getEndIterator();
        return ret;
    }

   protected:
   
        // for testing only
    GridGraphEdgeIterator(ArrayVector<ArrayVector<typename out_edge_iterator::value_type> > const & neighborOffsets,
                          ArrayVector<ArrayVector<index_type> > const & neighborIndices,
                          ArrayVector<ArrayVector<index_type> > const & backIndices,
                          shape_type const & shape)
    : neighborOffsets_(&neighborOffsets),
      neighborIndices_(BackEdgesOnly ? &backIndices : &neighborIndices),
      vertexIterator_(shape),
      outEdgeIterator_(neighborOffsets[vertexIterator_.borderType()], 
                       neighborIndices[vertexIterator_.borderType()], 
                       backIndices[vertexIterator_.borderType()], shape_type())
    {
        if(outEdgeIterator_.atEnd()) // in a undirected graph, the first point stores no edges
        {
            ++vertexIterator_;
            if(vertexIterator_.isValid())
            {
                unsigned int borderType = vertexIterator_.borderType();
                outEdgeIterator_.init(&(*neighborOffsets_)[borderType], &(*neighborIndices_)[borderType], *vertexIterator_);
            }
        }
    }

    ArrayVector<ArrayVector<typename out_edge_iterator::value_type> > const * neighborOffsets_;
    ArrayVector<ArrayVector<index_type> > const * neighborIndices_;
    vertex_iterator vertexIterator_;
    out_edge_iterator outEdgeIterator_;
};

template<unsigned int N, bool BackEdgesOnly>
class GridGraphArcIterator
: public GridGraphEdgeIterator<N, BackEdgesOnly>
{
public:
    typedef GridGraphEdgeIterator<N, BackEdgesOnly>              base_type;
    typedef GridGraphArcIterator<N, BackEdgesOnly>               self_type;
    typedef MultiCoordinateIterator<N>                           vertex_iterator;
    typedef typename vertex_iterator::value_type                 vertex_descriptor;
    typedef GridGraphOutArcIterator<N, BackEdgesOnly>            out_edge_iterator;
    typedef typename out_edge_iterator::value_type               edge_descriptor;
    typedef edge_descriptor                                      value_type;
    typedef value_type const *                                   pointer;
    typedef value_type const *                                   const_pointer;
    typedef value_type const &                                   reference;
    typedef value_type const &                                   const_reference;
    typedef typename MultiArrayShape<N>::type                    shape_type;
    typedef MultiArrayIndex                                      difference_type;
    typedef MultiArrayIndex                                      index_type;
    typedef std::forward_iterator_tag                            iterator_category;

    friend struct NeighborhoodTests<N>;

    GridGraphArcIterator() 
    : base_type()
    {}

    explicit GridGraphArcIterator(base_type const & b) 
    : base_type(b)
    {}

    template <class DirectedTag>
    GridGraphArcIterator(GridGraph<N, DirectedTag> const & g)
    : base_type(g)
    {}

    GridGraphArcIterator & operator++()
    {
        base_type::operator++();
        return *this;
    }

    GridGraphArcIterator  operator++(int)
    {
        GridGraphArcIterator ret(*this);
        ++*this;
        return ret;
    }

    const_reference operator*() const
    {
        return *(this->outEdgeIterator_);
    }

    operator const_reference() const
    {
        return *(this->outEdgeIterator_);
    }

    const_pointer operator->() const
    {
        return this->outEdgeIterator_.operator->();
    }
    
    GridGraphArcIterator getEndIterator() const
    {
        return GridGraphArcIterator(base_type::getEndIterator());
    }

  protected:
  
        // for testing only
    GridGraphArcIterator(ArrayVector<ArrayVector<value_type> > const & neighborOffsets,
                          ArrayVector<ArrayVector<index_type> > const & neighborIndices,
                          ArrayVector<ArrayVector<index_type> > const & backIndices,
                          shape_type const & shape)
    : base_type(neighborOffsets, neighborIndices, backIndices, shape)
    {}
};

template<unsigned int N>
inline bool operator==(MultiCoordinateIterator<N> const & i, lemon::Invalid)
{
    return i.atEnd();
}

template<unsigned int N>
inline bool operator!=(MultiCoordinateIterator<N> const & i, lemon::Invalid)
{
    return i.isValid();
}

template<unsigned int N>
inline bool operator==(lemon::Invalid, MultiCoordinateIterator<N> const & i)
{
    return i.atEnd();
}

template<unsigned int N>
inline bool operator!=(lemon::Invalid, MultiCoordinateIterator<N> const & i)
{
    return i.isValid();
}

#define VIGRA_LEMON_INVALID_COMPARISON(type) \
template<unsigned int N, bool BackEdgesOnly> \
inline bool operator==(type<N, BackEdgesOnly> const & i, lemon::Invalid) \
{ \
    return i.atEnd(); \
} \
template<unsigned int N, bool BackEdgesOnly> \
inline bool operator!=(type<N, BackEdgesOnly> const & i, lemon::Invalid) \
{ \
    return i.isValid(); \
} \
template<unsigned int N, bool BackEdgesOnly> \
inline bool operator==(lemon::Invalid, type<N, BackEdgesOnly> const & i) \
{ \
    return i.atEnd(); \
} \
template<unsigned int N, bool BackEdgesOnly> \
inline bool operator!=(lemon::Invalid, type<N, BackEdgesOnly> const & i) \
{ \
    return i.isValid(); \
}

VIGRA_LEMON_INVALID_COMPARISON(GridGraphNeighborIterator)
VIGRA_LEMON_INVALID_COMPARISON(GridGraphOutEdgeIterator)
VIGRA_LEMON_INVALID_COMPARISON(GridGraphOutArcIterator)
VIGRA_LEMON_INVALID_COMPARISON(GridGraphInArcIterator)
VIGRA_LEMON_INVALID_COMPARISON(GridGraphEdgeIterator)
VIGRA_LEMON_INVALID_COMPARISON(GridGraphArcIterator)

#undef VIGRA_LEMON_INVALID_COMPARISON

using boost_graph::directed_tag;
using boost_graph::undirected_tag;

namespace detail {

template <unsigned int N, class DirectedTag>
struct GridGraphBase;

template <unsigned int N>
struct GridGraphBase<N, directed_tag>
{
    template <class T>
    class ArcMap
    : public MultiArray<N+1, Multiband<T> >
    {
      public:
        typedef MultiArray<N+1, Multiband<T> >             base_type;
        typedef typename base_type::difference_type        difference_type;
        typedef typename base_type::key_type               key_type;
        typedef typename base_type::value_type             value_type; 
        typedef typename base_type::reference              reference;
        typedef typename base_type::const_reference        const_reference;
        typedef boost_graph::read_write_property_map_tag   category;
        
        typedef lemon::True                                ReferenceMapTag;
        typedef key_type                                   Key;
        typedef value_type                                 Value;
        typedef reference                                  Reference;
        typedef const_reference                            ConstReference;

        ArcMap()
        : base_type()
        {}
        
        explicit ArcMap(GridGraph<N, directed_tag> const & g)
        : base_type(g.arc_propmap_shape())
        {}
        
        ArcMap(GridGraph<N, directed_tag> const & g, T const & t)
        : base_type(g.arc_propmap_shape(), t)
        {}

        explicit ArcMap(difference_type const & shape)
        : base_type(shape)
        {}
        
        ArcMap(difference_type const & shape, T const & t)
        : base_type(shape, t)
        {}
        
        ArcMap & operator=(ArcMap const & m)
        {
            base_type::operator=(m);
            return *this;
        }
        
        ArcMap & operator=(base_type const & m)
        {
            base_type::operator=(m);
            return *this;
        }
        
        // appropriate operator[] are inherited
        
        void set(Key const & k, Value const & v)
        {
            (*this)[k] = v;
        }
    };
};

template <unsigned int N>
struct GridGraphBase<N, undirected_tag>
{
    typedef lemon::True UndirectedTag;
    
    template <class T>
    class ArcMap
    : public MultiArray<N+1, Multiband<T> >
    {
      public:
        typedef MultiArray<N+1, Multiband<T> >             base_type;
        typedef GridGraphArcDescriptor<N>                  difference_type;
        typedef difference_type                            key_type;
        typedef typename base_type::value_type             value_type; 
        typedef typename base_type::reference              reference;
        typedef typename base_type::const_reference        const_reference;
        typedef boost_graph::read_write_property_map_tag   category;
        
        typedef lemon::True                                ReferenceMapTag;
        typedef key_type                                   Key;
        typedef value_type                                 Value;
        typedef reference                                  Reference;
        typedef const_reference                            ConstReference;
        
        ArcMap()
        : base_type()
        {}
        
        explicit ArcMap(GridGraph<N, undirected_tag> const & g)
        : base_type(g.arc_propmap_shape()),
          graph_(&g)
        {}
        
        ArcMap(GridGraph<N, undirected_tag> const & g, T const & t)
        : base_type(g.arc_propmap_shape(), t),
          graph_(&g)
        {}
        
        ArcMap & operator=(ArcMap const & m)
        {
            base_type::operator=(m);
            return *this;
        }
        
        ArcMap & operator=(base_type const & m)
        {
            base_type::operator=(m);
            return *this;
        }
        
        reference operator[](difference_type const & s)
        {
            if(s.isReversed())
            {
                return base_type::operator[](graph_->directedArc(s));
            }
            else
            {
                return base_type::operator[](s);
            }
        }
        
        const_reference operator[](difference_type const & s) const
        {
            if(s.isReversed())
            {
                return base_type::operator[](graph_->directedArc(s));
            }
            else
            {
                return base_type::operator[](s);
            }
        }
        
        void set(Key const & k, Value const & v)
        {
            (*this)[k] = v;
        }
        
        GridGraph<N, undirected_tag> const * graph_;
    };
};

} // namespace detail

/********************************************************/
/*                                                      */
/*                      GridGraph                       */
/*                                                      */
/********************************************************/

/** \brief Define a grid graph in arbitrary dimensions.

    A GridGraph connects each pixel to its direct or indirect neighbors. 
    Direct neighbors are the adjacent point along the coordinate axes, 
    whereas indirect neighbors include the diagonally adjacent points. Thus, 
    direct neighbors correspond to the 4-neighborhood in 2D and the 
    6-neighborhood in 3D, whereas indirect neighbors correspond to the 
    8-neighborhood and 26-neighborhood respectively. The GridGraph class 
    extends this scheme to arbitrary dimensions. While the dimension must be 
    defined at compile time via the template parameter <tt>N</tt>, the 
    desired neighborhood can be chosen at runtime in the GridGraph's 
    constructor. The shape of the grid is also specified at runtime in terms 
    of a suitable shape object. 

    Another choice to be made at compile time is whether the graph should be directed 
    or undirected. This is defined via the <tt>DirectedTag</tt> template parameter
    which can take the values <tt>directed_tag</tt> or <tt>undirected_tag</tt> (default).
    
    The main difficulty in a grid graph is to skip the missing neighbors
    of the pixels near the grid's border. For example, the upper left pixel in a 
    2D grid has only two direct neighbors instead of the usual four. The GridGraph
    class uses a precomputed set of internal look-up tables to efficiently determine the 
    appropriate number and location of the existing neighbors. A key design decision 
    to make this fast was to give up the requirement that edge IDs are contiguous 
    integers (as in LEMON's implementation of a 2D grid graph, which became very
    complicated and slow by enforcing this requirement). Instead, edges are numbered 
    as if all nodes (including nodes at the grid's border) had the same degree.
    Since edges crossing the border are not actually present in the graph, these IDs 
    are missing, leading to gaps in the sequence of IDs. 
    
    For the sake of compatibility, the GridGraph class implements two 
    popular graph APIs: the one defined by the <a href="http://www.boost.org/doc/libs/release/libs/graph/">boost::graph</a> library and
    the one defined by the <a href="http://lemon.cs.elte.hu/">LEMON</a> library.
    Their basic principles are very similar: The graph's nodes, edges and adjacency
    structure are accessed via a set of iterators, whereas additional properties
    (like node and edge weights) are provided via <i>property maps</i> that are
    indexed with suitable node or edge descriptor objects returned by the iterators.
    
    Specifically, GridGraph implements the requirements of the following <a href="http://www.boost.org/doc/libs/release/libs/graph/doc/graph_concepts.html">concepts of the 
    boost::graph API</a>: <b>Graph, IncidenceGraph, BidirectionalGraph, AdjacencyGraph, 
    VertexListGraph, EdgeListGraph,</b> and <b>AdjacencyMatrix</b>. Likewise, it supports 
    the concepts <b>Graph</b> and <b>Digraph</b> of the LEMON API. The property maps 
    associated with a GridGraph support the boost concepts ReadablePropertyMap, 
    WritablePropertyMap, ReadWritePropertyMap, and LvaluePropertyMap as well as the 
    LEMON concepts ReadMap, WriteMap, ReadWriteMap, and ReferenceMap.
    
    VIGRA's GridGraph class is designed such that multi-dimensional coordinates
    (i.e. <tt>TinyVector<MultiArrayIndex></tt>) serve as descriptor objects, which means
    that normal <tt>MultiArray</tt>s or <tt>MultiArrayView</tt>s can serve as property
    maps in most situations. Thus, node properties like a foreground probability for 
    foreground/background segmentation can simply be stored as normal images.
    
    Since the boost::graph and LEMON APIs differ in how they call corresponding
    functionality (e.g., they use the terms <tt>vertex</tt> and <tt>node</tt> respectively
    in an exactly synonymous way), most GridGraph helper classes and functions are exposed 
    under two different names. To implement your own algorithms, you can choose the API 
    you like most. VIGRA adopts the convention that algorithms using the boost::graph 
    API go into the namespace <tt>vigra::boost_graph</tt>, while those using the 
    LEMON API are placed into the namespace <tt>vigra::lemon_graph</tt>. This helps 
    to avoid name clashes when the two APIs happen to use the same name for different 
    things. The documentation of the GridGraph members specifies which API the respective
    function or class belongs to. Please consult the documentation of these 
    libraries for tutorial introductions and full reference of the respective APIs.
    
    VIGRA adds an important new concept of its own: the back neighborhood
    and associated adjacency and edge iterators. The back neighborhood of a given vertex 
    with ID <tt>i</tt> is the set of all neighbor vertices whose ID is smaller than <tt>i</tt>.
    This concept is useful if you work on the grid graph's vertices in scan order
    and want to access just those neighbors that have already been processed. Connected
    components labeling is a typical example of an algorithm that can take advantage of this 
    possibility. In principle, a back neighborhood iterator could be implemented as
    a filter iterator that simply skips all neighbors with inappropriate IDs. However,
    in case of grid graphs it is more efficient to provide a special iterator for this purpose.
    
    <b>Usage:</b>

    <b>\#include</b> \<vigra/multi_gridgraph.hxx\> <br/>
    Namespace: vigra
    
    At present, the GridGraph class is mainly used internally to implement image 
    analysis functions for arbitrary dimensional arrays (e.g. detection of local 
    extrema, connected components labeling, watersheds, SLIC superpixels). For example,
    a dimension-independent algorithm to detect local maxima using the LEMON API
    might look like this:
    
    \code
    namespace vigra { namespace lemon_graph { 

    template <class Graph, class InputMap, class OutputMap>
    void
    localMaxima(Graph const & g, 
                InputMap const & src,
                OutputMap & local_maxima,
                typename OutputMap::value_type marker)
    {
        // define abreviations for the required iterators
        typedef typename Graph::NodeIt    graph_scanner;
        typedef typename Graph::OutArcIt  neighbor_iterator;

        // iterate over all nodes (i.e. pixels)
        for (graph_scanner node(g); node != INVALID; ++node) 
        {
            // remember the value of the current node
            typename InputMap::value_type current = src[*node];

            // iterate over all neighbors of the current node
            bool is_local_maximum = true;
            for (neighbor_iterator arc(g, node); arc != INVALID; ++arc)
            {
                // if a neighbor has larger value, the center node is not a local maximum
                if (current < src[g.target(*arc)]) 
                    is_local_maximum = false;
            }
            
            // mark the node when it is a local maximum
            if (is_local_maximum)
                local_maxima[*node] = marker;
        }
    }
    
    }} // namespace vigra::lemon_graph
    \endcode
    
    It should be noted that this algorithm will work for any LEMON-compatible graph class, 
    not just our GridGraph. When implemented in terms of the boost::graph API, the same algorithm
    looks like this:
    
    \code
    namespace vigra { namespace boost_graph {

    template <class Graph, class InputMap, class OutputMap>
    void
    localMaxima(Graph const & g, 
                InputMap const & src,
                OutputMap & local_maxima,
                typename property_traits<OutputMap>::value_type marker)
    {
        // define abreviations and variables for the required iterators
        typedef typename graph_traits<Graph>::vertex_iterator graph_scanner;
        typedef typename graph_traits<Graph>::adjacency_iterator neighbor_iterator;

        graph_scanner      node, node_end;
        neighbor_iterator  arc, arc_end;

        // iterate over all nodes (i.e. pixels)
        tie(node, node_end) = vertices(g);
        for (; node != node_end; ++node) 
        {
            // remember the value of the current node
            typename property_traits<InputMap>::value_type current = get(src, *node);

            // iterate over all neighbors of the current node
            bool is_local_maximum = true;
            tie(arc, arc_end) = adjacent_vertices(*node, g);
            for (;arc != arc_end; ++arc)
            {
                // if a neighbor has larger value, the center node is not a local maximum
                if (current < get(src, *arc))
                    is_local_maximum = false;
            }
            
            // mark the node when it is a local maximum
            if (is_local_maximum)
                put(local_maxima, *node, marker);
        }
    }

    }} // namespace vigra::boost_graph
    \endcode
    
    It can be seen that the differences between the APIs are mainly syntactic 
    (especially note that boost::graph users traits classes and free functions, 
    whereas LEMON uses nested typedefs and member functions). Either of these 
    algorithms can now serve as the backend of a local maxima detector 
    for <tt>MultiArrayViews</tt>:
    
    \code
    namespace vigra {
    
    template <unsigned int N, class T1, 
                              class T2>
    void
    localMaxima(MultiArrayView<N, T1> const & src,
                MultiArrayView<N, T2> local_maxima,
                T2 marker,
                NeighborhoodType neighborhood = IndirectNeighborhood)
    {
        vigra_precondition(src.shape() == local_maxima.shape(),
            "localMinMax(): shape mismatch between input and output.");
        
        // create a grid graph with appropriate shape and desired neighborhood
        GridGraph<N, undirected_tag> graph(src.shape(), neighborhood);
        
        // forward the call to the graph-based algorithm, using 
        // the given MultiArrayViews as property maps
        lemon_graph::localMaxima(graph, src, local_maxima, marker);
    }

    } // namespace vigra
    \endcode
    
    A slightly enhanced version of this code is actually used to implement this
    functionality in VIGRA.
*/
template<unsigned int N, class DirectedTag=undirected_tag>
class GridGraph
: public detail::GridGraphBase<N, DirectedTag>
{
public:
        /** \brief 'true' if the graph is directed (API: boost::graph)
        */
    static const bool is_directed = IsSameType<DirectedTag, directed_tag>::value;
    
    typedef detail::GridGraphBase<N, DirectedTag>   base_type;
    typedef GridGraph<N, DirectedTag>               self_type;
    
        /** \brief Dimension of the grid.
        */
    static const unsigned int dimension = N;
    
        /** \brief Shape type of the graph and a node property map.
        */
    typedef typename MultiArrayShape<N>::type       shape_type;
    
        /** \brief Shape type of an edge property map (must have one additional dimension).
        */
    typedef typename MultiArrayShape<N+1>::type     edge_propmap_shape_type;    
    
        /** \brief Type of node and edge IDs.
        */
    typedef MultiArrayIndex                         index_type;
    
        /** \brief Type to specify number of vertices (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::vertices_size_type</tt>).
        */
    typedef MultiArrayIndex                         vertices_size_type;
    
        /** \brief Type to specify number of edges (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::edges_size_type</tt>).
        */
    typedef MultiArrayIndex                         edges_size_type;
    
        /** \brief Type to specify number of neighbors (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::degree_size_type</tt>).
        */
    typedef MultiArrayIndex                         degree_size_type;

        /** \brief Iterator over the vertices of the graph (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::vertex_iterator</tt>).
        */
    typedef MultiCoordinateIterator<N>              vertex_iterator;
    
        /** \brief Iterator over the neighbor vertices of a given vertex (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::adjacency_iterator</tt>).
        */
    typedef GridGraphNeighborIterator<N>            adjacency_iterator;
    
        /** \brief Same as adjacency_iterator (API: VIGRA).
        */
    typedef adjacency_iterator                      neighbor_vertex_iterator;
    
        /** \brief Iterator over only those neighbor vertices of a given vertex 
                   that have smaller ID (API: VIGRA).
        */
    typedef GridGraphNeighborIterator<N, true>      back_neighbor_vertex_iterator;
    
        /** \brief Iterator over the incoming edges of a given vertex (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::in_edge_iterator</tt>).
        */
    typedef GridGraphInArcIterator<N>               in_edge_iterator;
    
        /** \brief Iterator over the outgoing edges of a given vertex (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::out_edge_iterator</tt>).
        */
    typedef GridGraphOutArcIterator<N>              out_edge_iterator;
    
        /** \brief Iterator over only those outgoing edges of a given vertex
                   that go to vertices with smaller IDs (API: VIGRA).
        */
    typedef GridGraphOutArcIterator<N, true>        out_back_edge_iterator;
    
        /** \brief Iterator over the edges of a graph (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::edge_iterator</tt>).
        */
    typedef GridGraphArcIterator<N, !is_directed>   edge_iterator;
    
        /** \brief The vertex descriptor (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::vertex_descriptor</tt>).
        */
    typedef shape_type                              vertex_descriptor;
    
        /** \brief The edge descriptor (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::edge_descriptor</tt>).
        */
    typedef GridGraphArcDescriptor<N>               edge_descriptor;
     
        /** \brief Is the graph directed or undirected ? (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::directed_category</tt>).
        */
    typedef DirectedTag                             directed_category;
    
        /** \brief The graph does not allow multiple edges between the same vertices 
                  (API: boost::graph, use via 
                  <tt>boost::graph_traits<Graph>::edge_parallel_category</tt>).
        */
    typedef boost_graph::disallow_parallel_edge_tag  edge_parallel_category;
    
        /** \brief The graph does not define internal property maps (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::vertex_property_type</tt>).
        */
    typedef boost_graph::no_property                 vertex_property_type; // we only support "external properties".
    // FIXME: Maybe support the vertex -> coordinate map (identity) as the only internal property map
    // and additionally the vertex_descriptor -> ID map (vertex_index = SOI).

        /** \brief Define several graph tags related to graph traversal (API: boost::graph,
             use via <tt>boost::graph_traits<Graph>::traversal_category</tt>).
        */
    struct traversal_category 
    : virtual public boost_graph::bidirectional_graph_tag,
      virtual public boost_graph::adjacency_graph_tag,
      virtual public boost_graph::vertex_list_graph_tag,
      virtual public boost_graph::edge_list_graph_tag,
      virtual public boost_graph::adjacency_matrix_tag
    {};
    
        // internal types
    typedef ArrayVector<shape_type>                      NeighborOffsetArray;
    typedef ArrayVector<NeighborOffsetArray>             RelativeNeighborOffsetsArray;
    typedef ArrayVector<ArrayVector<edge_descriptor> >   RelativeEdgeOffsetsArray;
    typedef ArrayVector<ArrayVector<MultiArrayIndex> >   IndexArray;
    typedef ArrayVector<ArrayVector<bool> >              NeighborExistsArray;
        


    ////////////////////////////////////////////////////////////////////
    
    // LEMON interface
    typedef self_type                               Graph;
    
        /** \brief The Node descriptor (API: LEMON).
        */
    typedef vertex_descriptor                       Node;
    
        /** \brief Iterator over all nodes of the graph (API: LEMON).
        */
    typedef vertex_iterator                         NodeIt;
    
        /** \brief The arc (directed edge) descriptor (API: LEMON).
        */
    typedef GridGraphArcDescriptor<N>               Arc;
    
        /** \brief Iterator over the outgoing edges of a node (API: LEMON).
        */
    typedef GridGraphOutArcIterator<N>              OutArcIt;
    
        /** \brief Iterator over only those outgoing edges of a node
            that end in a node with smaller ID (API: VIGRA).
        */
    typedef GridGraphOutArcIterator<N, true>        OutBackArcIt;
    
        /** \brief Iterator over the acrs (directed edges) of a node (API: LEMON).
        */
    typedef GridGraphArcIterator<N, false>          ArcIt;
    
        /** \brief Iterator over the incoming arcs of a node (API: LEMON).
        */
    typedef GridGraphInArcIterator<N>               InArcIt;
    
        /** \brief The edge descriptor (API: LEMON).
        */
    typedef typename MultiArrayShape<N+1>::type     Edge;
    
        /** \brief Iterator over the incident edges of a node (API: LEMON).
        */
    typedef GridGraphOutEdgeIterator<N>             IncEdgeIt;
    
        /** \brief Iterator over only those incident edges of a node that
            end in a node with smaller ID (API: VIGRA).
        */
    typedef GridGraphOutEdgeIterator<N, true>       IncBackEdgeIt;
    
        /** \brief Iterator over the edges of the graph (API: LEMON).
        */
    typedef GridGraphEdgeIterator<N, !is_directed>  EdgeIt;
    
    typedef lemon::True NodeNumTag;
    typedef lemon::True EdgeNumTag;
    typedef lemon::True ArcNumTag;
    typedef lemon::True FindEdgeTag;
    typedef lemon::True FindArcTag;
    
    ////////////////////////////////////////////////////////////////////
    
        /** \brief Type of a node property map that maps node descriptor objects 
            onto property values of type <tt>T</tt> (API: LEMON).
        */
    template <class T>
    class NodeMap
    : public MultiArray<N, T>
    {
      public:
        typedef MultiArray<N, T> base_type;
        typedef typename base_type::difference_type        difference_type;
        typedef typename base_type::key_type               key_type;
        typedef typename base_type::value_type             value_type; 
        typedef typename base_type::reference              reference;
        typedef typename base_type::const_reference        const_reference;
        typedef boost_graph::read_write_property_map_tag   category;
        
        typedef lemon::True                                ReferenceMapTag;
        typedef key_type                                   Key;
        typedef value_type                                 Value;
        typedef reference                                  Reference;
        typedef const_reference                            ConstReference;

        NodeMap()
        : base_type()
        {}
        
            /** \brief Construct property map for the given graph \a g
                (preallocates a zero-initialized entry for each node of the graph).
            */
        explicit NodeMap(GridGraph const & g)
        : base_type(g.shape())
        {}
        
            /** \brief Construct property map for the given graph \a g
                (preallocates an entry with initial value \a t for each node of the graph).
            */
        NodeMap(GridGraph const & g, T const & t)
        : base_type(g.shape(), t)
        {}

            /** \brief Construct property map for the given \a shape.
                (preallocates a zero-initialized entry for each node of a grid
                graph with this shape).
            */
        explicit NodeMap(difference_type const & shape)
        : base_type(shape)
        {}
        
            /** \brief Construct property map for the given \a shape.
                (preallocates an entry with initial value \a t for each node of a grid
                graph with this shape).
            */
        NodeMap(difference_type const & shape, T const & t)
        : base_type(shape, t)
        {}
        
        NodeMap & operator=(NodeMap const & m)
        {
            base_type::operator=(m);
            return *this;
        }
        
        NodeMap & operator=(base_type const & m)
        {
            base_type::operator=(m);
            return *this;
        }
        
        // appropriate operator[] are inherited
#ifdef DOXYGEN
            /** \brief Read/write access to the value associated with node descriptor \a key.
            */
        Value & operator[](Key const & key);

            /** \brief Read-only access to the value associated with node descriptor \a key.
            */
        Value const & operator[](Key const & key) const;
#endif // DOXYGEN
        
            /** \brief Set the property of node desctiptor \a key to value \a v.
            */
        void set(Key const & k, Value const & v)
        {
            (*this)[k] = v;
        }
    };
    
    
        /** \brief Type of an edge property map that maps edge descriptor objects 
            onto property values of type <tt>T</tt> (API: LEMON).
        */
    template <class T>
    class EdgeMap
    : public MultiArray<N+1, Multiband<T> >
    {
      public:
        typedef MultiArray<N+1, Multiband<T> >             base_type;
        typedef typename base_type::difference_type        difference_type;
        typedef typename base_type::key_type               key_type;
        typedef typename base_type::value_type             value_type; 
        typedef typename base_type::reference              reference;
        typedef typename base_type::const_reference        const_reference;
        typedef boost_graph::read_write_property_map_tag   category;
        
        typedef lemon::True                                ReferenceMapTag;
        typedef key_type                                   Key;
        typedef value_type                                 Value;
        typedef reference                                  Reference;
        typedef const_reference                            ConstReference;

        EdgeMap()
        : base_type()
        {}
        
            /** \brief Construct property map for the given graph \a g
                (preallocates a zero-initialized entry for each edge of the graph).
            */
        explicit EdgeMap(GridGraph const & g)
        : base_type(g.edge_propmap_shape())
        {}
        
            /** \brief Construct property map for the given graph \a g
                (preallocates an entry with initial value \a t for each edge of the graph).
            */
        EdgeMap(GridGraph const & g, T const & t)
        : base_type(g.edge_propmap_shape(), t)
        {}

            /** \brief Construct property map for the given \a shape
                (preallocates a zero-initialized entry for each edge of 
                a grid graph with this shape).
            */
        explicit EdgeMap(difference_type const & shape)
        : base_type(shape)
        {}
        
            /** \brief Construct property map for the given \a shape
                (preallocates an entry with initial value \a t for each edge 
                of a grid graph with this shape).
            */
        EdgeMap(difference_type const & shape, T const & t)
        : base_type(shape, t)
        {}
        
        EdgeMap & operator=(EdgeMap const & m)
        {
            base_type::operator=(m);
            return *this;
        }
        
        EdgeMap & operator=(base_type const & m)
        {
            base_type::operator=(m);
            return *this;
        }
        
        // appropriate operator[] are inherited
#ifdef DOXYGEN
            /** \brief Read/write access to the value associated with edge descriptor \a key.
            */
        Value & operator[](Key const & key);

            /** \brief Read-only access to the value associated with edge descriptor \a key.
            */
        Value const & operator[](Key const & key) const;
#endif // DOXYGEN
        
            /** \brief Set the property of edge desctiptor \a key to value \a v.
            */
        void set(Key const & k, Value const & v)
        {
            (*this)[k] = v;
        }
    };

#ifdef DOXYGEN
        /** \brief Type of an arc property map that maps arc descriptor objects 
            onto property values of type <tt>T</tt> (API: LEMON).
        */
    template <class T>
    class ArcMap
    : public MultiArray<N+1, Multiband<T> >
    {
      public:
        
            /** \brief Construct property map for the given graph \a g
                (preallocates a zero-initialized entry for each arc of the graph).
            */
        explicit ArcMap(GridGraph const & g);
        
            /** \brief Construct property map for the given graph \a g
                (preallocates an entry with initial value \a t for each arc of the graph).
            */
        ArcMap(GridGraph const & g, T const & t);

            /** \brief Construct property map for the given \a shape
                (preallocates a zero-initialized entry for each arc of 
                a grid graph with this shape).
            */
        explicit ArcMap(difference_type const & shape);
        
            /** \brief Construct property map for the given \a shape
                (preallocates an entry with initial value \a t for each arc of 
                a grid graph with this shape).
            */
        ArcMap(difference_type const & shape, T const & t);

            /** \brief Read/write access to the value associated with arc descriptor \a key.
            */
        Value & operator[](Key const & key);

            /** \brief Read-only access to the value associated with arc descriptor \a key.
            */
        Value const & operator[](Key const & key) const;
        
            /** \brief Set the property of arc desctiptor \a key to value \a v.
            */
        void set(Key const & k, Value const & v);
    };
#endif // DOXYGEN

        /** \brief Type of a property map that returns the coordinate of a given node (API: LEMON).
        */
    class IndexMap 
    {
      public:
        typedef Node                                    Key;
        typedef Node                                    Value;
        typedef Key                                     key_type;
        typedef Value                                   value_type; 
        typedef Value const &                           reference;
        typedef boost_graph::readable_property_map_tag  category;

        IndexMap()
        {}

            /** \brief Construct property map for the given graph.
            */
        explicit IndexMap(const GridGraph&)
        {}

            /** \brief Get the grid coordinate of the node descriptor \a key.
            */
        Value const & operator[](Key const & key) const 
        {
            return key;
        }
    };
        
        /** \brief Type of a property map that returns the number of incoming edges of a given node (API: LEMON, use via <tt>lemon::InDegMap<Graph></tt>).
        */
    class InDegMap
    {
      public:
      
        /// The graph type of InDegMap (works for directed and undirected graphs)
        typedef GridGraph                               Graph;
        typedef GridGraph                               Digraph;
        typedef Node                                    Key;
        typedef degree_size_type                        Value;
        typedef Key                                     key_type;
        typedef Value                                   value_type; 
        typedef Value const &                           reference;
        typedef boost_graph::readable_property_map_tag  category;
        
            /** \brief Construct property map for the given graph.
            */
        explicit InDegMap(const GridGraph& graph)
        : graph_(graph)
        {}
        
            /** \brief Get the in-degree of the node descriptor \a key.
            */
        Value operator[](const Key& key) const 
        {
            return graph_.in_degree(key);
        }
        
      protected:
      
        GridGraph const & graph_;
    };

        /** \brief Type of a property map that returns the number of outgoing edges of a given node (API: LEMON, use via <tt>lemon::OutDegMap<Graph></tt>).
        */
    class OutDegMap
    {
      public:
      
        /// The graph type of OutDegMap (works for directed and undirected graphs)
        typedef GridGraph                               Graph;
        typedef GridGraph                               Digraph;
        typedef Node                                    Key;
        typedef degree_size_type                        Value;
        typedef Key                                     key_type;
        typedef Value                                   value_type; 
        typedef Value const &                           reference;
        typedef boost_graph::readable_property_map_tag  category;
        
            /** \brief Construct property map for the given graph.
            */
        explicit OutDegMap(const GridGraph& graph)
        : graph_(graph)
        {}
        
            /** \brief Get the out-degree of the node descriptor \a key.
            */
        Value operator[](const Key& key) const 
        {
            return graph_.out_degree(key);
        }
        
      
        GridGraph const & graph_;
    };
    
    ////////////////////////////////////////////////////////////////////
    
        // dummy default constructor to satisfy adjacency_graph concept
    GridGraph()
    : max_node_id_(-1), 
      max_arc_id_(-1), 
      max_edge_id_(-1)
    {}
        
        /** \brief Construct a grid graph with given \a shape and neighborhood type \a ntype.

            The shape must have type <tt>MultiArrayShape<N>::type</tt> with the appropriate 
            dimension <tt>N</tt>. The neighborhood type can take the values 
            <tt>DirectNeighborhood</tt> to use only the axis-aligned edges (2N-neighborhood)
            and <tt>IndirectNeighborhood</tt> to use all diagonal edges as well 
            ((3<sup>N</sup>-1)-neighborhood).
        */
    GridGraph(shape_type const &shape, NeighborhoodType ntype = DirectNeighborhood) 
    : shape_(shape),
      num_vertices_(prod(shape)),
      num_edges_(gridGraphEdgeCount(shape, ntype, is_directed)), 
      max_node_id_(num_vertices_ - 1), 
      max_arc_id_(-2), 
      max_edge_id_(-2), 
      neighborhoodType_(ntype)
    {
        // populate the neighborhood tables:
        // FIXME: this might be static (but make sure that it works with multi-threading)
        detail::makeArrayNeighborhood(neighborOffsets_, neighborExists_, neighborhoodType_);
        detail::computeNeighborOffsets(neighborOffsets_, neighborExists_, incrementalOffsets_, 
                                       edgeDescriptorOffsets_, neighborIndices_, backIndices_, is_directed);
        
        // compute the neighbor offsets per neighborhood type
        // detail::makeArraySubNeighborhood(neighborhood[0], neighborExists, shape_type(1), neighborhoodIndices);
    }
    
        /** \brief Get the ID (i.e. scan-order index) for node desciptor \a v (API: LEMON).
        */
    index_type id(Node const & v) const
    {
        return detail::CoordinateToScanOrder<N>::exec(shape(), v);
    }

    index_type id(NodeIt const & v) const
    {
        return v.scanOrderIndex();
    }
    
    index_type id(neighbor_vertex_iterator const & v) const
    {
        return id(*v);
    }
    
    index_type id(back_neighbor_vertex_iterator const & v) const
    {
        return id(*v);
    }
    
        /** \brief Get node descriptor for given node ID \a i (API: LEMON).
        
            Return <tt>Node(lemon::INVALID)</tt> when the ID does not exist in this graph.
        */
    Node nodeFromId(index_type i) const
    {
        if(i < 0 || i > maxNodeId())
            return Node(lemon::INVALID);
        
        Node res(SkipInitialization);
        detail::ScanOrderToCoordinate<N>::exec(i, shape(), res);
        return res;
    }

        /** \brief Get the maximum ID of any node in this graph (API: LEMON).
        */
    index_type maxNodeId() const
    {
        return prod(shape()) - 1;
    }
    
        /** \brief Get the grid cordinate of the given node \a v (convenience function).
        */
    Node const & pos(Node const & v) const
    {
        return v;
    }
    
        /** \brief Get vertex iterator pointing to the first vertex of this graph (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::vertices(graph)</tt>,<br/>
            LEMON uses <tt>Graph::NodeIt(graph)</tt>).
        */
    vertex_iterator get_vertex_iterator() const 
    {
        return vertex_iterator(shape_);
    }

        /** \brief Get vertex iterator pointing to the given vertex (API: VIGRA).
        */
    vertex_iterator get_vertex_iterator(vertex_descriptor const & v) const 
    {
        return vertex_iterator(shape_) + v;
    }

        /** \brief Get vertex iterator pointing beyond the valid range of vertices of this graph (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::vertices(graph)</tt>,<br/>
            LEMON uses the special value <tt>lemon::INVALID</tt> instead).
        */
    vertex_iterator get_vertex_end_iterator() const 
    {
        return get_vertex_iterator().getEndIterator();
    }

        /** \brief Get an iterator pointing to the first neighbor of the given vertex (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::adjacent_vertices(v, graph)</tt>,<br/>
            LEMON uses <tt>Graph::ArcIt(g, v)</tt>).
        */
    neighbor_vertex_iterator get_neighbor_vertex_iterator(vertex_descriptor const & v) const 
    {
        return neighbor_vertex_iterator(*this, v);
    }

        /** \brief Get an iterator pointing beyond the range of neighbors of the given vertex (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::adjacent_vertices(v, graph)</tt>,<br/>
            LEMON uses the speical value <tt>lemon::INVALID</tt> instead).
        */
    neighbor_vertex_iterator get_neighbor_vertex_end_iterator(vertex_descriptor const & v) const 
    {
       return get_neighbor_vertex_iterator(v).getEndIterator();
    }

        /** \brief Get an iterator pointing to the first backward neighbor of the given vertex (API: VIGRA,<br/>
            in analogy to the boost::graph API, we also provide a free function <tt>boost::back_adjacent_vertices(v, g)</tt>,<br/>
            and the LEMON analogue is <tt>Graph::OutBackArcIt(graph, v)</tt>).
        */
    back_neighbor_vertex_iterator get_back_neighbor_vertex_iterator(vertex_descriptor const & v) const 
    {
        return back_neighbor_vertex_iterator(*this, v);
    }

        /** \brief Get an iterator pointing beyond the range of backward neighbors of the given vertex (API: VIGRA,<br/>
            in analogy to the boost::graph API, we also provide a free function <tt>boost::back_adjacent_vertices(v, g)</tt>,<br/>
            and LEMON just uses <tt>lemon::INVALID</tt> instead).
        */
    back_neighbor_vertex_iterator get_back_neighbor_vertex_end_iterator(vertex_descriptor const & v) const 
    {
       return get_back_neighbor_vertex_iterator(v).getEndIterator();
    }
    
    // --------------------------------------------------
    // support for VertexListGraph:

        /** \brief Get the number of vertices in this graph (convenience function,
            the boost::graph API provides the free function <tt>boost::num_vertices(graph)</tt>).
        */
    vertices_size_type num_vertices() const 
    {
        return num_vertices_;
    }

        /** \brief Get the number of nodes in this graph (API: LEMON).
        */
    vertices_size_type nodeNum() const 
    {
        return num_vertices();
    }

    // --------------------------------------------------
    // support for IncidenceGraph:

         /** \brief Get the ID (i.e. scan-order index in an edge property map) for the
             given edges descriptor \a e (API: LEMON).
        */
   index_type id(Edge const & e) const
    {
        return detail::CoordinateToScanOrder<N+1>::exec(edge_propmap_shape(), e);
    }
    
    index_type id(EdgeIt const & e) const
    {
        return id(*e);
    }
    
    index_type id(IncEdgeIt const & e) const
    {
        return id(*e);
    }

    index_type id(IncBackEdgeIt const & e) const
    {
        return id(*e);
    }

        /** \brief Get the edge descriptor for the given edge ID \a i (API: LEMON).
        
            Return <tt>Edge(lemon::INVALID)</tt> when the ID does not exist
            in this graph. 
        */
    Edge edgeFromId(index_type i) const
    {
        if(i < 0 || i > maxEdgeId())
            return Edge(lemon::INVALID);
        
        Edge res(SkipInitialization);
        detail::ScanOrderToCoordinate<N+1>::exec(i, edge_propmap_shape(), res);
        
        unsigned int b = detail::BorderTypeImpl<N>::exec(res.template subarray<0, N>(), shape());
        if(neighborExists_[b][res[N]])
            return res;
        else
            return Edge(lemon::INVALID);
    }
    
        /** \brief Get the maximum ID of any edge in this graph (API: LEMON).
        */
    index_type maxEdgeId() const
    {
        if(max_edge_id_ == -2) // -2 means uninitialized
            const_cast<GridGraph *>(this)->computeMaxEdgeAndArcId();
        return max_edge_id_;
    }
    
        /* Initial computation of the max_arc_id_ and max_edge_id_ (call in the constructor and
           whenever the shape changes).
        */
    void computeMaxEdgeAndArcId()
    {
        if(edgeNum() == 0)
        {
            max_arc_id_ = -1;
            max_edge_id_ = -1;
        }
        else
        {
            Node lastNode = shape() - shape_type(1);
            index_type n = neighborIndices_[get_border_type(lastNode)][0];
            Arc a(neighbor(lastNode, n), oppositeIndex(n), false);
            max_arc_id_ = detail::CoordinateToScanOrder<N+1>::exec(arc_propmap_shape(), a);
            
            if(is_directed)
            {
                max_edge_id_ = max_arc_id_;
            }
            else
            {
                Arc a(lastNode, backIndices_[get_border_type(lastNode)].back(), false);
                max_edge_id_ = detail::CoordinateToScanOrder<N+1>::exec(edge_propmap_shape(), a);
            }
        }
    }
    
        /** \brief Get the ID (i.e. scan-order index an an arc property map) for 
            the given ar \a a (API: LEMON).
        */
    index_type id(Arc const & a) const
    {
        return detail::CoordinateToScanOrder<N+1>::exec(arc_propmap_shape(), directedArc(a));
    }
    
    index_type id(ArcIt const & a) const
    {
        return id(*a);
    }
    
    index_type id(OutArcIt const & a) const
    {
        return id(*a);
    }
    
    index_type id(OutBackArcIt const & a) const
    {
        return id(*a);
    }
        
        /** \brief Get an arc descriptor for the given arc ID \a i (API: LEMON).
        
            Return <tt>Arc(lemon::INVALID)</tt> when the ID does not exist
            in this graph. 
        */
    Arc arcFromId(index_type i) const
    {
        if(i < 0 || i > maxArcId())
            return Arc(lemon::INVALID);
        
        Arc res;
        detail::ScanOrderToCoordinate<N+1>::exec(i, arc_propmap_shape(), res);
        unsigned int b = detail::BorderTypeImpl<N>::exec(res.template subarray<0, N>(), shape());
        if(neighborExists_[b][res[N]])
            return undirectedArc(res);
        else
            return Arc(lemon::INVALID);
    }
    
        /** \brief Get the maximal ID af any arc in this graph (API: LEMON).
        */
    index_type maxArcId() const
    {
        if(max_arc_id_ == -2) // -2 means uninitialized
            const_cast<GridGraph *>(this)->computeMaxEdgeAndArcId();
        return max_arc_id_;
    }
    
        /** \brief Return <tt>true</tt> when the arc is looking on the underlying
            edge in its natural (i.e. forward) direction, <tt>false</tt> otherwise (API: LEMON).
        */
    bool direction(Arc const & a) const
    {
        return !a.isReversed();
    }
    
        /** \brief Create an arc for the given edge \a e, oriented along the 
            edge's natural (<tt>forward = true</tt>) or reversed 
            (<tt>forward = false</tt>) direction (API: LEMON).
        */
    Arc direct(Edge const & e, bool forward) const
    {
        if(!is_directed || forward)
            return Arc(e, !forward);
        else
            return Arc(v(e), oppositeIndex(e[N]), true);
    }
    
        /** \brief Create an arc for the given edge \a e oriented
            so that node \a n is the starting node of the arc (API: LEMON), or
            return <tt>lemon::INVALID</tt> if the edge is not incident to this node.
        */
    Arc direct(Edge const & e, Node const & n) const
    {
        if(u(e) == n)
            return direct(e, true);
        if(v(e) == n)
            return direct(e, false);
        return Arc(lemon::INVALID);
    }
    
        /** \brief Return the opposite node of the given node \a n
            along edge \a e (API: LEMON), or return <tt>lemon::INVALID</tt>
            if the edge is not incident to this node.
        */
    Node oppositeNode(Node const & n, Edge const & e) const
    {
        Node start(u(e)), end(v(e));
        if(n == start)
            return end;
        if(n == end)
            return start;
        return Node(lemon::INVALID);
    }
    
        /** \brief Create an arc referring to the same edge as the given 
            arc \a a, but with reversed direction (API: LEMON).
        */
    Arc oppositeArc(Arc const & a) const
    {
        return is_directed
                 ? Arc(neighbor(a.vertexDescriptor(), a.edgeIndex()), oppositeIndex(a.edgeIndex()), false)
                 : Arc(a, !a.isReversed());
    }
    
        // internal function
        // transforms the arc into its directed form (i.e. a.isReversed() is 
        // guaranteed to be false in the returned arc).
    Arc directedArc(Arc const & a) const
    {
        return a.isReversed()
                 ? Arc(neighbor(a.vertexDescriptor(), a.edgeIndex()), oppositeIndex(a.edgeIndex()), false)
                 : a;
    }
    
        // internal function
        // transforms the arc into its undirected form (i.e. a.isReversed() will 
        // be true in the returned arc if this graph is undirected and the arc
        // traverses the edge backwards).
    Arc undirectedArc(Arc const & a) const
    {
        return a.edgeIndex() < maxUniqueDegree() 
                 ? a
                 : Arc(neighbor(a.vertexDescriptor(), a.edgeIndex()), oppositeIndex(a.edgeIndex()), true);
    }
    
        /** \brief Return the start node of the edge the given iterator is referring to (API: LEMON).
        */
    Node baseNode(IncEdgeIt const & e)  const
    {
        return source(e.arcDescriptor());
    }
    
        /** \brief Return the start node of the edge the given iterator is referring to (API: VIGRA).
        */
    Node baseNode(IncBackEdgeIt const & e)  const
    {
        return source(e.arcDescriptor());
    }
    
        /** \brief Return the start node of the edge the given iterator is referring to (API: LEMON).
        */
    Node baseNode(OutArcIt const & a)  const
    {
        return source(*a);
    }
    
        /** \brief Return the start node of the edge the given iterator is referring to (API: VIGRA).
        */
    Node baseNode(OutBackArcIt const & a)  const
    {
        return source(*a);
    }

        /** \brief Return the end node of the edge the given iterator is referring to (API: LEMON).
        */
    Node runningNode(IncEdgeIt const & e)  const
    {
        return target(e.arcDescriptor());
    }
    
        /** \brief Return the end node of the edge the given iterator is referring to (API: VIGRA).
        */
    Node runningNode(IncBackEdgeIt const & e)  const
    {
        return target(e.arcDescriptor());
    }
    
        /** \brief Return the end node of the edge the given iterator is referring to (API: LEMON).
        */
    Node runningNode(OutArcIt const & a)  const
    {
        return target(*a);
    }
    
        /** \brief Return the end node of the edge the given iterator is referring to (API: VIGRA).
        */
    Node runningNode(OutBackArcIt const & a)  const
    {
        return target(*a);
    }
    
        /** \brief Get the start node of the given arc \a a (API: LEMON).
        */
    Node source(Arc const & a) const 
    {
        return source_or_target(a, true);
    }

        /** \brief Get the end node of the given arc \a a (API: LEMON).
        */
    Node target(Arc const & a) const 
    {
        return source_or_target(a, false);
    }

        /** \brief Get the start node of the given edge \a e (API: LEMON,<br/>
            the boost::graph API provides the free function <tt>boost::source(e, graph)</tt>).
        */
    Node u(Edge const & e) const 
    {
        return Node(e.template subarray<0,N>());
    }

        /** \brief Get the end node of the given edge \a e (API: LEMON,<br/>
            the boost::graph API provides the free function <tt>boost::target(e, graph)</tt>).
        */
    Node v(Edge const & e) const 
    {
        return Node(e.template subarray<0,N>()) + neighborOffsets_[e[N]];
    }

        /** \brief Get an iterator pointing to the first outgoing edge of the given vertex (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::out_edges(v, graph)</tt>,<br/>
            LEMON uses <tt>Graph::OutArcIt(g, v)</tt>).
        */
    out_edge_iterator get_out_edge_iterator(vertex_descriptor const & v) const 
    {
        return out_edge_iterator(*this, v);
    }

        /** \brief Get an iterator pointing beyond the range of outgoing edges of the given vertex (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::out_edges(v, graph)</tt>,<br/>
            LEMON uses the special value <tt>lemon::INVALID</tt> instead).
        */
    out_edge_iterator get_out_edge_end_iterator(vertex_descriptor const & v) const 
    {
        return get_out_edge_iterator(v).getEndIterator();
    }

        /** \brief Get an iterator pointing to the first outgoing backward edge of the given vertex (API: VIGRA,<br/>
            in analogy to the boost::graph API, we also provide a free function <tt>boost::out_back_edges(v, g)</tt>,<br/>
            and the LEMON analogue is <tt>Graph::IncBackEdgeIt(graph, v)</tt>).
        */
    out_back_edge_iterator get_out_back_edge_iterator(vertex_descriptor const & v) const 
    {
        return out_back_edge_iterator(*this, v);
    }

        /** \brief Get an iterator pointing beyond the range of outgoing backward edges of the given vertex (API: VIGRA,<br/>
            in analogy to the boost::graph API, we also provide a free function <tt>boost::out_back_edges(v, g)</tt>,<br/>
            and LEMON uses the special value <tt>lemon::INVALID</tt> instead).
        */
    out_back_edge_iterator get_out_back_edge_end_iterator(vertex_descriptor const & v) const 
    {
        return get_out_back_edge_iterator(v).getEndIterator();
    }

        /** \brief Get an iterator pointing to the first incoming edge of the given vertex (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::in_edges(v, graph)</tt>,<br/>
            LEMON uses <tt>Graph::InArcIt(g, v)</tt>).
        */
    in_edge_iterator get_in_edge_iterator(vertex_descriptor const & v) const 
    {
        return in_edge_iterator(*this, v);
    }

        /** \brief Get an iterator pointing beyond the range of incoming edges of the given vertex (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::in_edges(v, graph)</tt>,<br/>
            LEMON uses the special value <tt>lemon::INVALID</tt> instead).
        */
    in_edge_iterator get_in_edge_end_iterator(vertex_descriptor const & v) const 
    {
        return get_in_edge_iterator(v).getEndIterator();
    }

        /** \brief Get the number of outgoing edges of the given vertex (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::out_degree(v, graph)</tt>,<br/>
            LEMON uses a special property map <tt>lemon::OutDegMap<Graph></tt>).
        */
    degree_size_type out_degree(vertex_descriptor const & v) const 
    {
        return (degree_size_type)neighborIndices_[get_border_type(v)].size();
    }
    
        /** \brief Get the number of outgoing backward edges of the given vertex (API: VIGRA).
        */
    degree_size_type back_degree(vertex_descriptor const & v) const 
    {
        return (degree_size_type)backIndices_[get_border_type(v)].size();
    }
    
        /** \brief Get the number of outgoing forward edges of the given vertex (API: VIGRA).
        */
    degree_size_type forward_degree(vertex_descriptor const & v) const 
    {
        unsigned int bt = get_border_type(v);
        return (degree_size_type)(neighborIndices_[bt].size() - backIndices_[bt].size());
    }
    
        /** \brief Get the number of incoming edges of the given vertex (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::in_degree(v, graph)</tt>,<br/>
            LEMON uses a special property map <tt>lemon::InDegMap<Graph></tt>).
        */
    degree_size_type in_degree(vertex_descriptor const & v) const 
    {
        return out_degree(v);
    }
    
        /** \brief Get the total number of edges (incoming plus outgoing) of the given vertex (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::degree(v, graph)</tt>,<br/>
            LEMON has no analogue).
        */
    degree_size_type degree(vertex_descriptor const & v) const 
    {
        return is_directed
                   ? 2*out_degree(v)
                   : out_degree(v);
    }
    
    // --------------------------------------------------
    // support for EdgeListGraph:

        /** \brief Get the number of edges in this graph (convenience function,
            boost::graph API provides the free function <tt>boost::num_edges(graph)</tt>).
        */
    edges_size_type num_edges() const 
    {
        return num_edges_;
    }

        /** \brief Get the number of edges in this graph (API: LEMON).
        */
    edges_size_type edgeNum() const 
    {
        return num_edges();
    }

        /** \brief Get the number of arc in this graph (API: LEMON).
        */
    edges_size_type arcNum() const 
    {
        return is_directed
                   ? num_edges()
                   : 2*num_edges();
    }
    
        /** \brief Get edge iterator pointing to the first edge of the graph (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::edges(graph)</tt>,<br/>
            LEMON uses <tt>Graph::EdgeIt(graph)</tt>).
        */
    edge_iterator get_edge_iterator() const 
    {
        return edge_iterator(*this);
    }

        /** \brief Get edge iterator pointing beyond the valid range of edges of this graph (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::vertices(graph)</tt>,<br/>
            LEMON uses the special value <tt>lemon::INVALID</tt> instead).
        */
    edge_iterator get_edge_end_iterator() const 
    {
        return get_edge_iterator().getEndIterator();
    }

    // --------------------------------------------------
    // support for AdjacencyMatrix concept:

        /** \brief Get a descriptor for the edge connecting vertices \a u and \a v,<br/>
            or <tt>(lemon::INVALID, false)</tt> if no such edge exists (convenience function,<br/>
            the boost::graph API provides the free function <tt>boost::edge(u, v, graph)</tt>).
        */
    std::pair<edge_descriptor, bool>
    edge(vertex_descriptor const & u, vertex_descriptor const & v) const
    {
        std::pair<edge_descriptor, bool> res(lemon::INVALID, false);

        neighbor_vertex_iterator i = get_neighbor_vertex_iterator(u),
                                 end = i.getEndIterator();
        for (; i != end; ++i) 
        {
            if (*i == v) 
            {
                res.first = make_edge_descriptor(u, i.neighborIndex());
                res.second = true;
                break;
            }
        }
        return res;
    }

        /** \brief Get a descriptor for the edge connecting vertices \a u and \a v,<br/>or <tt>lemon::INVALID</tt> if no such edge exists (API: LEMON).
        */
    Edge findEdge(Node const & u, Node const & v, Edge const & = lemon::INVALID) const 
    {
        return this->edge(u, v).first;
    }
    
        /** \brief Get a descriptor for the arc connecting vertices \a u and \a v,<br/>or <tt>lemon::INVALID</tt> if no such edge exists (API: LEMON).
        */
    Arc findArc(Node const & u, Node const & v, Arc const & = lemon::INVALID) const 
    {
        return this->edge(u, v).first;
        // std::pair<edge_descriptor, bool> res(edge(u, v));
        // return res.second
                 // ? res.first
                 // : Arc(lemon::INVALID);
    }
    
        /** \brief Create a property map that returns the coordinate of each node (API: LEMON GridGraph).
        */
    IndexMap indexMap() const 
    {
        return IndexMap();
    }

    // --------------------------------------------------
    // other helper functions:
    
    bool isDirected() const
    {
        return is_directed;
    }
    
    degree_size_type maxDegree() const
    {
        return (degree_size_type)neighborOffsets_.size();
    }

    degree_size_type maxUniqueDegree() const 
    {
         return is_directed
                    ? maxDegree()
                    : maxDegree() / 2;
    }

    shape_type const & shape() const 
    {
        return shape_;
    }

    edge_propmap_shape_type edge_propmap_shape() const 
    {
        edge_propmap_shape_type res(SkipInitialization);
        res.template subarray<0, N>() = shape_;
        res[N] = maxUniqueDegree();
        return res;
    }

    edge_propmap_shape_type arc_propmap_shape() const 
    {
        edge_propmap_shape_type res(SkipInitialization);
        res.template subarray<0, N>() = shape_;
        res[N] = maxDegree();
        return res;
    }

    unsigned int get_border_type(vertex_descriptor const & v) const
    {
        return detail::BorderTypeImpl<N>::exec(v, shape_);
    }

    unsigned int get_border_type(vertex_iterator const & v) const
    {
        return v.borderType();
    }
    
    index_type oppositeIndex(index_type neighborIndex) const
    {
        return  maxDegree() - neighborIndex - 1;
    }

        /* the given neighborIndex must be valid for the given vertex,
           otherwise this function will crash
        */
    edge_descriptor make_edge_descriptor(vertex_descriptor const & v,
                                         index_type neighborIndex) const
    {
        if(neighborIndex < maxUniqueDegree())
            return edge_descriptor(v, neighborIndex, false);
        else
            return edge_descriptor(neighbor(v, neighborIndex), oppositeIndex(neighborIndex), true);
    }
    
    shape_type const & neighborOffset(index_type neighborIndex) const
    {
        return neighborOffsets_[neighborIndex];
    }

    vertex_descriptor neighbor(vertex_descriptor const & v, index_type neighborIndex) const
    {
        return v + neighborOffsets_[neighborIndex];
    }

    vertex_descriptor 
    source_or_target(edge_descriptor const & e, bool return_source) const
    {
        // source is always the attached node (first coords) unless the
        // edge has been reversed. 
        if ((return_source && e.isReversed()) ||
            (!return_source && !e.isReversed())) 
        {
            return neighbor(e.vertexDescriptor(), e.edgeIndex());
        } 
        else 
        {
            return e.vertexDescriptor();
        }
    }
    
    NeighborOffsetArray const * neighborOffsetArray() const
    {
        return &neighborOffsets_;
    }
    
    RelativeNeighborOffsetsArray const * neighborIncrementArray() const
    {
        return &incrementalOffsets_;
    }
    
    RelativeEdgeOffsetsArray const * edgeIncrementArray() const
    {
        return &edgeDescriptorOffsets_;
    }
    
    IndexArray const * neighborIndexArray(bool backEdgesOnly) const
    {
        return backEdgesOnly 
                   ? &backIndices_
                   : &neighborIndices_;
    }

    NeighborExistsArray const * neighborExistsArray() const
    {
        return &neighborExists_;
    }

  protected:
    NeighborOffsetArray neighborOffsets_;
    NeighborExistsArray neighborExists_;
    IndexArray neighborIndices_, backIndices_;
    RelativeNeighborOffsetsArray incrementalOffsets_;
    RelativeEdgeOffsetsArray edgeDescriptorOffsets_;
    shape_type shape_;
    MultiArrayIndex num_vertices_, num_edges_, max_node_id_, max_arc_id_, max_edge_id_;
    NeighborhoodType neighborhoodType_;
};

template<unsigned int N, class DirectedTag>
inline
bool
isInside(GridGraph<N, DirectedTag> const & g,
         typename GridGraph<N, DirectedTag>::vertex_descriptor const & v) 
{
    return allLess(v, g.shape()) && allGreaterEqual(v, typename MultiArrayShape<N>::type());
}

//@}

#ifdef WITH_BOOST_GRAPH

} // namespace vigra

namespace boost {

#else

namespace boost_graph {

#endif 



template <unsigned int N, class T, class Acc>
struct property_traits<vigra::MultiArray<N, T, Acc> >
{
    typedef vigra::MultiArray<N, T, Acc>             type;
    typedef typename type::key_type                  key_type;
    typedef typename type::value_type                value_type; 
    typedef typename type::reference                 reference;
    typedef read_write_property_map_tag              category;
};

template <unsigned int N, class T, class Acc>
struct property_traits<vigra::MultiArray<N, T, Acc> const>
{
    typedef vigra::MultiArray<N, T, Acc> const       type;
    typedef typename type::key_type                  key_type;
    typedef typename type::value_type                value_type; 
    typedef typename type::const_reference           reference;
    typedef readable_property_map_tag                category;
};

template <unsigned int N, class T, class Stride>
struct property_traits<vigra::MultiArrayView<N, T, Stride> >
{
    typedef vigra::MultiArrayView<N, T, Stride>       type;
    typedef typename type::key_type                   key_type;
    typedef typename type::value_type                 value_type; 
    typedef typename type::reference                  reference;
    typedef read_write_property_map_tag               category;
};

template <unsigned int N, class T, class Stride>
struct property_traits<vigra::MultiArrayView<N, T, Stride> const>
{
    typedef vigra::MultiArrayView<N, T, Stride> const     type;
    typedef typename type::key_type                       key_type;
    typedef typename type::value_type                     value_type; 
    typedef typename type::const_reference                reference;
    typedef readable_property_map_tag                     category;
};

#ifdef WITH_BOOST_GRAPH

} // namespace boost

namespace vigra {
namespace boost_graph {

#endif 

/** \addtogroup BoostGraphExtensions GridGraph additions to namespace <tt>boost</tt>
        
        provides the required functionality to make \ref vigra::GridGraph compatible to the boost::graph library.
*/
//@{

    /** \brief Return number of outgoing edges of vertex \a v (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
typename vigra::GridGraph<N, DirectedTag>::degree_size_type
out_degree(typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & v, 
           vigra::GridGraph<N, DirectedTag> const & g) 
{
    return g.out_degree(v);
}

    /** \brief Return number of incoming edges of vertex \a v (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
typename vigra::GridGraph<N, DirectedTag>::degree_size_type
in_degree(typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & v, 
          vigra::GridGraph<N, DirectedTag> const & g) 
{
    return g.in_degree(v);
}

    /** \brief Return total number of edges (incoming and outgoing) of vertex \a v (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
typename vigra::GridGraph<N, DirectedTag>::degree_size_type
degree(typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & v, 
       vigra::GridGraph<N, DirectedTag> const & g) 
{
    return g.degree(v);
}

    /** \brief Get a (begin, end) iterator pair for the vertices of graph \a g (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
std::pair<typename vigra::GridGraph<N, DirectedTag>::vertex_iterator, 
          typename vigra::GridGraph<N, DirectedTag>::vertex_iterator>
vertices(vigra::GridGraph<N, DirectedTag> const & g) 
{
    return std::make_pair(g.get_vertex_iterator(),
                          g.get_vertex_end_iterator());    
}

    /** \brief Return the number of vertices in graph \a g (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
typename vigra::GridGraph<N, DirectedTag>::vertices_size_type
num_vertices(vigra::GridGraph<N, DirectedTag> const & g) 
{
    return g.num_vertices();
}

    /** \brief Get a (begin, end) iterator pair for the neighbor vertices of 
               vertex \a v in graph \a g (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
std::pair<typename vigra::GridGraph<N, DirectedTag>::adjacency_iterator, 
          typename vigra::GridGraph<N, DirectedTag>::adjacency_iterator>
adjacent_vertices(typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & v,
                  vigra::GridGraph<N, DirectedTag> const & g) 
{
    return std::make_pair(g.get_neighbor_vertex_iterator(v),
                          g.get_neighbor_vertex_end_iterator(v));    
}

    /** \brief Get a (begin, end) iterator pair for only thise neighbor vertices of 
               vertex \a v that have smaller ID than \a v (API: VIGRA).
    */
template<unsigned int N, class DirectedTag>
inline
std::pair<typename vigra::GridGraph<N, DirectedTag>::back_neighbor_vertex_iterator, 
          typename vigra::GridGraph<N, DirectedTag>::back_neighbor_vertex_iterator>
back_adjacent_vertices(typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & v,
                       vigra::GridGraph<N, DirectedTag> const & g) 
{
    return std::make_pair(g.get_back_neighbor_vertex_iterator(v),
                          g.get_back_neighbor_vertex_end_iterator(v));    
}

// adjacent_vertices variant in vigra namespace: allows to call adjacent_vertices with vertex_iterator argument
template<unsigned int N, class DirectedTag>
inline
std::pair<typename vigra::GridGraph<N, DirectedTag>::adjacency_iterator, 
          typename vigra::GridGraph<N, DirectedTag>::adjacency_iterator>
adjacent_vertices_at_iterator(typename vigra::GridGraph<N, DirectedTag>::vertex_iterator const & v,
                              vigra::GridGraph<N, DirectedTag> const & g) 
{    
    return std::make_pair(g.get_neighbor_vertex_iterator(v),
                          g.get_neighbor_vertex_end_iterator(v));    
}

    /** \brief Get a (begin, end) iterator pair for the outgoing edges of 
               vertex \a v in graph \a g (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
std::pair<typename vigra::GridGraph<N, DirectedTag>::out_edge_iterator, 
          typename vigra::GridGraph<N, DirectedTag>::out_edge_iterator>
out_edges(typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & v,
          vigra::GridGraph<N, DirectedTag> const & g) 
{
    return std::make_pair(g.get_out_edge_iterator(v),
                          g.get_out_edge_end_iterator(v));    
}

    /** \brief Get a (begin, end) iterator pair for only those outgoing edges of 
               vertex \a v whose ID is smaller than that of \a v (API: VIGRA).
    */
template<unsigned int N, class DirectedTag>
inline
std::pair<typename vigra::GridGraph<N, DirectedTag>::out_back_edge_iterator, 
          typename vigra::GridGraph<N, DirectedTag>::out_back_edge_iterator>
out_back_edges(typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & v,
               vigra::GridGraph<N, DirectedTag> const & g) 
{
    return std::make_pair(g.get_out_back_edge_iterator(v),
                          g.get_out_back_edge_end_iterator(v));    
}

    /** \brief Get a (begin, end) iterator pair for the incoming edges of 
               vertex \a v in graph \a g (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
std::pair<typename vigra::GridGraph<N, DirectedTag>::in_edge_iterator, 
          typename vigra::GridGraph<N, DirectedTag>::in_edge_iterator>
in_edges(typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & v,
         vigra::GridGraph<N, DirectedTag> const & g) 
{
    return std::make_pair(g.get_in_edge_iterator(v),
                          g.get_in_edge_end_iterator(v));    
}

    /** \brief Get a vertex descriptor for the start vertex of edge \a e in graph \a g (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor 
source(typename vigra::GridGraph<N, DirectedTag>::edge_descriptor const & e,
       vigra::GridGraph<N, DirectedTag> const & g) 
{
    return g.source(e);
}

    /** \brief Get a vertex descriptor for the end vertex of edge \a e in graph \a g (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor 
target(typename vigra::GridGraph<N, DirectedTag>::edge_descriptor const & e,
       vigra::GridGraph<N, DirectedTag> const & g) 
{
    return g.target(e);
}

    /** \brief Get a (begin, end) iterator pair for the edges of graph \a g (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
std::pair<typename vigra::GridGraph<N, DirectedTag>::edge_iterator, 
          typename vigra::GridGraph<N, DirectedTag>::edge_iterator>
edges(vigra::GridGraph<N, DirectedTag> const & g) 
{
    return std::make_pair(g.get_edge_iterator(), g.get_edge_end_iterator());
}

    /** \brief Return the number of edges in graph \a g (API: boost).
    */
template<unsigned int N, class DirectedTag>
inline
typename vigra::GridGraph<N, DirectedTag>::edges_size_type
num_edges(vigra::GridGraph<N, DirectedTag> const & g) 
{
    return g.num_edges();
}

// --------------------------------------------------
// support for AdjacencyMatrix concept:

// FIXME: test this
    /** \brief Return the pair (edge_descriptor, true) when an edge between vertices 
               \a u and \a v exists, or (lemon::INVALID, false) otherwise (API: boost).
    */
template<unsigned int N, class DirectedTag>
std::pair<typename vigra::GridGraph<N, DirectedTag>::edge_descriptor, bool>
edge(typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & u,
     typename vigra::GridGraph<N, DirectedTag>::vertex_descriptor const & v,
     vigra::GridGraph<N, DirectedTag> const & g)
{
    return g.edge(u,v);
}

// provide get / put for MultiArrayViews, indexed by the 
// above-defined vertex_descriptor and edge_descriptor (in our case, a coordinate tuple):
// FIXME: place this into multi_array.hxx ?
    /** \brief Put value \a val at key \a k in the property map \a pmap (API: boost).
    */
template<unsigned int N, class T, class Stride, class U>
inline
void put(vigra::MultiArrayView<N, T, Stride> & pmap,
         typename vigra::MultiArrayView<N, T, Stride>::difference_type const & k,
         U const & val) 
{ 
    pmap[k] = val;  
}

    /** \brief Read the value at key \a k in property map \a pmap (API: boost).
    */
//template<unsigned int N, class T, class Stride>
//inline
//typename vigra::MultiArrayView<N, T, Stride>::const_reference 
//get(vigra::MultiArrayView<N, T, Stride> const & pmap,
//    typename vigra::MultiArrayView<N, T, Stride>::difference_type const & k)
//{ 
//    return pmap[k]; 
//}


//@}

}} // namespace vigra::boost_graph

namespace lemon {

template <typename GR>
class InDegMap;

    // LEMON-compatible property map for the in-degree of the nodes
template<unsigned int N, class DirectedTag>
class InDegMap<vigra::GridGraph<N, DirectedTag> >
: public vigra::GridGraph<N, DirectedTag>::InDegMap
{
  public:
    typedef vigra::GridGraph<N, DirectedTag> Graph;
    
    explicit InDegMap(const Graph& graph)
    : Graph::InDegMap(graph)
    {}
};

template <typename GR>
class OutDegMap;

    // LEMON-compatible property map for the out-degree of the nodes
template<unsigned int N, class DirectedTag>
class OutDegMap<vigra::GridGraph<N, DirectedTag> >
: public vigra::GridGraph<N, DirectedTag>::OutDegMap
{
  public:
    typedef vigra::GridGraph<N, DirectedTag> Graph;
    
    explicit OutDegMap(const Graph& graph)
    : Graph::OutDegMap(graph)
    {}
};


} // namespace lemon

namespace std {

template<unsigned int N, class DirectedTag>
ostream& operator<<(ostream& out,
                    typename vigra::GridGraph<N, DirectedTag>::vertex_iterator const & arg)
{
    out << "v" << arg.scanOrderIndex();
    return out;
}

template<unsigned int N, class DirectedTag>
ostream& operator<<(ostream& out,
                    typename vigra::GridGraph<N, DirectedTag>::adjacency_iterator const & arg)
{
    out << "nb" << arg.index();
    return out;
}

} // namespace std



#endif /* VIGRA_MULTI_GRIDGRAPH_HXX */