This file is indexed.

/usr/include/vigra/counting_iterator.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/************************************************************************/
/*                                                                      */
/*                 Copyright 2015 by Thorsten Beier                     */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_COUNTING_ITERATOR_HXX
#define VIGRA_COUNTING_ITERATOR_HXX


#include <cmath>
#include <iterator>
#include <limits>
#include <type_traits>
#include "error.hxx"
#include "tinyvector.hxx"

namespace vigra {

namespace detail  {

template <class T, bool is_float=false>
struct CountingIteratorCompare
{
    // use exact comparison for integer counting
    static bool equal(T left, T right, T /* step */)
    {
        return left == right;
    }
    static bool not_equal(T left, T right, T /* step */)
    {
        return left != right;
    }
    static bool less(T left, T right, T step)
    {
        // NOTE: the more efficient '(right - left)*step > 0'
        //       fails for unsigned arguments
        return step > 0
                ? left < right
                : left > right;
    }
    static bool less_equal(T left, T right, T step)
    {
        return step > 0
                ? left <= right
                : left >= right;
    }
    static bool greater(T left, T right, T step)
    {
        return step > 0
                ? left > right
                : left < right;
    }
    static bool greater_equal(T left, T right, T step)
    {
        return step > 0
                ? left >= right
                : left <= right;
    }
    // integer counting: if the raw distance is not divisible by step,
    // we must round upwards
    static std::ptrdiff_t distance(T from, T to, T step)
    {
        const double diff = (double(to) - double(from)) / double(step);
        return diff > 0.0
                 ? (std::ptrdiff_t)std::ceil(diff)
                 : (std::ptrdiff_t)std::floor(diff);
    }
};

template <class T>
struct CountingIteratorCompare<T, true>
{
    typedef std::numeric_limits<T> limit;

    // use comparison with tolerance for floating-point counting
    // (the natural epsilon is 0.5*step)
    static bool equal(T left, T right, T step)
    {
        return std::fabs(right-left) <= 0.5*std::fabs(step);
    }
    static bool not_equal(T left, T right, T step)
    {
        return std::fabs(right-left) > 0.5*std::fabs(step);
    }
    static bool less(T left, T right, T step)
    {
        return step > 0.0
                ? right - left > 0.5*step
                : right - left < 0.5*step;
    }
    static bool less_equal(T left, T right, T step)
    {
        return step > 0.0
                ? left - right < 0.5*step
                : left - right > 0.5*step;
    }
    static bool greater(T left, T right, T step)
    {
        return step > 0.0
                ? left - right > 0.5*step
                : left - right < 0.5*step;
    }
    static bool greater_equal(T left, T right, T step)
    {
        return step > 0.0
                ? right - left < 0.5*step
                : right - left > 0.5*step;
    }
    // floating-point counting: if the raw distance is not divisible by step,
    // we round to nearest if the difference is small, otherwise upwards
    static std::ptrdiff_t distance(T from, T to, T step)
    {
        const double diff = (double(to) - double(from)) / double(step);
        return diff > 0.0
                 ? (std::ptrdiff_t)std::ceil(diff*(1.0-2.0*limit::epsilon()))
                 : (std::ptrdiff_t)std::floor(diff*(1.0-2.0*limit::epsilon()));
    }
};

} // namespace detail

/** \addtogroup MathFunctions
*/
//@{

    /** \brief Iterator that counts upwards or downwards with a given step size.

        This iterator replicates the functionality of Python's
        well-known range-function. It is especially convenient in
        range-based for-loops. <tt>CountingIterator</tt> also works for
        floating-point counting.

        <b>Usage:</b>

        <b>\#include</b> \<vigra/counting_iterator.hxx\><br>
        Namespace: vigra

        You will normally construct instances of this iterator with
        one of the <tt>range()</tt> factory functions. There are three versions
        of this function <tt>range(end)</tt>, <tt>range(begin, end)</tt>, and
        <tt>range(begin, end, step)</tt>.
        \code
        // count upwards from 0 to 4
        for(int i: range(5))
            std::cout << i << " ";  // prints '0 1 2 3 4'

        // count upwards from 4 to 7
        for(int i: range(4, 8))
            std::cout << i << " ";  // prints '4 5 6 7'

        // count upwards from 0 to 9 with step 3
        for(int i: range(0, 9, 3))
            std::cout << i << " ";  // prints '0 3 6'

        // likewise (note upper bound)
        for(int i: range(0, 7, 3))
            std::cout << i << " ";  // prints '0 3 6'

        // count downwards from 4 to 1 with step -1
        for(int i: range(4, 0))
            std::cout << i << " ";  // prints '4 3 2 1'

        // count downwards from 8 to 2 with step -2
        for(int i: range(8, 0, -2))
            std::cout << i << " ";  // prints '8 6 4 2'
        \endcode

        Alternatively, you can create a traditional random-access iterator pair.
        The end iterator can be conveniently constructed by the begin iterator's
        <tt>end()</tt> function:
        \code
        auto iter = range(5),
             end  = iter.end();
        std::cout << std::accumulate(iter, end, 0) << std::endl; // prints '10'
        \endcode

        <tt>range()</tt> and <tt>CountingIterator</tt> also work for floating-point
        arguments. As in the integer case, the upper bound is excluded from the range
        if it can be reached by an integer multiple of the step (within machine
        epsilon):
        \code
        for(auto i: range(1.0, 1.6, 0.1))  // 1.6 is excluded
            std::cout << i << " ";         // prints '1 1.1 1.2 1.3 1.4 1.5'

        for(auto i: range(1.0, 1.61, 0.1)) // 1.6 is included
            std::cout << i << " ";         // prints '1 1.1 1.2 1.3 1.4 1.5 1.6'
        \endcode

        If you use an iterator pair, you can make clear which behavior you want
        by using either <tt>iter < end</tt> or <tt>iter <= end</tt> to terminate
        the loop:
        \code
        auto iter = range(1.0, 1.6, 0.1),
             end  = iter.end();
        for(; iter < end; ++iter)       // exclude upper bound
            std::cout << *iter << " ";  // prints '1 1.1 1.2 1.3 1.4 1.5'

        iter = range(1.0, 1.6, 0.1);
        for(; iter <= end; ++iter)      // include upper bound
            std::cout << *iter << " ";  // prints '1 1.1 1.2 1.3 1.4 1.5 1.6'
        \endcode

        Note that the termination condition is still <tt>iter <= end</tt>, even
        when the iterator counts downwards:
        \code
        auto iter = range(1.6, 1.0, -0.1),
             end  = iter.end();
        for(; iter <= end; ++iter)
            std::cout << *iter << " ";  // prints '1.6 1.5 1.4 1.3 1.2 1.1 1'
        \endcode
    */
template<class T = std::ptrdiff_t>
class CountingIterator
: public std::iterator<std::random_access_iterator_tag,
                       T, std::ptrdiff_t, T const *, T>
{
  public:
    CountingIterator()
    : begin_(0)
    , end_(0)
    , step_(1)
    {}

    CountingIterator(T begin, T end)
    : begin_(begin)
    , end_(end)
    , step_(1)
    {
        vigra_precondition(begin <= end,
            "CountingIterator(): begin must be less or equal to end.");
    }

    CountingIterator(T begin, T end, T step)
    : begin_(begin)
    , end_(end)
    , step_(step)
    {
        vigra_precondition(step != 0,
            "CountingIterator(): step must be non-zero.");
        vigra_precondition((step > 0 && begin <= end) || (step < 0 && begin >= end),
            "CountingIterator(): sign mismatch between step and (end-begin).");
    }

    CountingIterator(CountingIterator const & other, ReverseCopyTag)
    : begin_(other.end_)
    , end_(other.begin_)
    , step_(-other.step_)
    {}

  public:

    CountingIterator begin() const
    {
        return *this;
    }

    CountingIterator end() const
    {
        // since the range-based for-loop checks "iter != end",
        // (end - begin) must be a multiple of step to avoid infinite loops
        T end = begin_ + step_*Compare::distance(begin_, end_, step_);
        return CountingIterator(end, end, step_);
    }

    bool empty() const
    {
        return Compare::greater_equal(begin_, end_, step_);
    }

    CountingIterator& operator++()    {begin_ += step_; return *this;} // prefix++
    CountingIterator  operator++(int) {CountingIterator tmp(*this); ++(*this); return tmp;} // postfix++
    CountingIterator& operator--()    {begin_ -= step_; return *this;} // prefix--
    CountingIterator  operator--(int) {CountingIterator tmp(*this); --(*this); return tmp;} // postfix--

    CountingIterator& operator+=(std::ptrdiff_t n)
    {
        begin_ += n*step_;
        return *this;
    }

    CountingIterator operator+(std::ptrdiff_t n) const
    {
        return CountingIterator(*this) += n;
    }

    CountingIterator& operator-=(std::ptrdiff_t n)
    {
        begin_ -= n*step_;
        return *this;
    }

    CountingIterator operator-(std::ptrdiff_t n) const
    {
        return CountingIterator(*this) -= n;
    }

    std::ptrdiff_t operator-(const CountingIterator& other) const
    {
        return Compare::distance(other.begin_, begin_, step_);
    }

    bool operator<(CountingIterator const & other) const
    {
        return Compare::less(begin_, other.begin_, step_);
    }

    bool operator<=(CountingIterator const & other) const
    {
        return Compare::less_equal(begin_, other.begin_, step_);
    }

    bool operator>(CountingIterator const & other) const
    {
        return Compare::greater(begin_, other.begin_, step_);
    }

    bool operator>=(CountingIterator const & other) const
    {
        return Compare::greater_equal(begin_, other.begin_, step_);
    }

    bool operator==(const CountingIterator& other) const
    {
        return Compare::equal(begin_, other.begin_, step_);
    }

    bool operator!=(const CountingIterator& other) const
    {
        return Compare::not_equal(begin_, other.begin_, step_);
    }

    T operator[](std::ptrdiff_t n) const {
        return begin_ + n*step_;
    }

    T operator*() const {
        return  begin_;
    }

    T const * operator->() const{
        return &begin_;
    }

  private:

    typedef detail::CountingIteratorCompare<T, std::is_floating_point<T>::value> Compare;

    T begin_, end_, step_;
};


template <class T1, class T2, class T3>
inline CountingIterator<T1>
range(T1 begin, T2 end, T3 step)
{
    return CountingIterator<T1>(begin, end, step);
}

template <class T1, class T2>
inline CountingIterator<T1>
range(T1 begin, T2 end)
{
    return CountingIterator<T1>(begin, end, 1);
}

template <class T>
inline CountingIterator<T>
range(T end)
{
    return CountingIterator<T>(0, end, 1);
}

//@}

} // namespace vigra

#endif