This file is indexed.

/usr/include/vigra/clebsch-gordan.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/************************************************************************/
/*                                                                      */
/*        Copyright 2009-2010 by Ullrich Koethe and Janis Fehr          */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_CLEBSCH_GORDAN_HXX
#define VIGRA_CLEBSCH_GORDAN_HXX

#include "config.hxx"
#include "numerictraits.hxx"
#include "error.hxx"
#include "mathutil.hxx"
#include "array_vector.hxx"

namespace vigra {

namespace {

void ThreeJSymbolM(double l1, double l2, double l3, double m1,
                   double &m2min, double &m2max, double *thrcof, int ndim,
                   int &errflag)
{
    ContractViolation err;  
    const double zero = 0.0, eps = 0.01, one = 1.0, two = 2.0;

    int nfin, nlim, i, n, index, lstep, nfinp1, nfinp2, nfinp3, nstep2;
    double oldfac, dv, newfac, sumbac = 0.0, thresh, a1s, sumfor, sumuni,
    sum1, sum2, x, y, m2, m3, x1, x2, x3, y1, y2, y3, cnorm,
    ratio, a1, c1, c2, c1old = 0.0, sign1, sign2;

    // Parameter adjustments
    --thrcof;

    errflag = 0;

    // "hugedouble" is the square root of one twentieth of the largest floating
    // point number, approximately.
    double hugedouble   = std::sqrt(NumericTraits<double>::max() / 20.0),
    srhuge = std::sqrt(hugedouble),
    tiny   = one / hugedouble,
    srtiny = one / srhuge;

    // lmatch = zero

    //  Check error conditions 1, 2, and 3.
    if (l1 - abs(m1) + eps < zero
            || std::fmod(l1 + abs(m1) + eps, one) >= eps + eps) 
    {
        errflag = 1;
        err << "ThreeJSymbolM: l1-abs(m1) less than zero or l1+abs(m1) not integer.\n";
        throw err;
    } 
    else if (l1+l2-l3 < -eps || l1-l2+l3 < -eps || -(l1) + l2+l3 < -eps) 
    {
        errflag = 2;
        err << " ThreeJSymbolM: l1, l2, l3 do not satisfy triangular condition:"
            << l1 << " " << l2 << " " << l3 << "\n";
        throw err;
    } 
    else if (std::fmod(l1 + l2 + l3 + eps, one) >= eps + eps) 
    {
        errflag = 3;
        err << " ThreeJSymbolM: l1+l2+l3 not integer.\n";
        throw err;
    }

    // limits for m2
    m2min = std::max(-l2,-l3-m1);
    m2max = std::min(l2,l3-m1);

    // Check error condition 4.
    if (std::fmod(m2max - m2min + eps, one) >= eps + eps) {
        errflag = 4;
        err << " ThreeJSymbolM: m2max-m2min not integer.\n";
        throw err;
    }
    if (m2min < m2max - eps) 
        goto L20;
    if (m2min < m2max + eps) 
        goto L10;

    //  Check error condition 5.
    errflag = 5;
    err << " ThreeJSymbolM: m2min greater than m2max.\n";
    throw err;

    // This is reached in case that m2 and m3 can take only one value.
L10:
    // mscale = 0
    thrcof[1] = (odd(int(abs(l2-l3-m1)+eps)) 
                       ? -one 
                       :  one) / std::sqrt(l1+l2+l3+one);
    return;

    // This is reached in case that M1 and M2 take more than one value.
L20:
    // mscale = 0
    nfin = int(m2max - m2min + one + eps);
    if (ndim - nfin >= 0) 
        goto L23;

    // Check error condition 6.

    errflag = 6;
    err << " ThreeJSymbolM: Dimension of result array for 3j coefficients too small.\n";
    throw err;

    //  Start of forward recursion from m2 = m2min

L23:
    m2 = m2min;
    thrcof[1] = srtiny;
    newfac = 0.0;
    c1 = 0.0;
    sum1 = tiny;

    lstep = 1;
L30:
    ++lstep;
    m2 += one;
    m3 = -m1 - m2;

    oldfac = newfac;
    a1 = (l2 - m2 + one) * (l2 + m2) * (l3 + m3 + one) * (l3 - m3);
    newfac = std::sqrt(a1);

    dv = (l1+l2+l3+one) * (l2+l3-l1) - (l2-m2+one) * (l3+m3+one)
         - (l2+m2-one) * (l3-m3-one);

    if (lstep - 2 > 0) 
        c1old = abs(c1);

    // L32:
    c1 = -dv / newfac;

    if (lstep > 2) 
        goto L60;

    //  If m2 = m2min + 1, the third term in the recursion equation vanishes,  
    //  hence

    x = srtiny * c1;
    thrcof[2] = x;
    sum1 += tiny * c1 * c1;
    if (lstep == nfin) 
        goto L220;
    goto L30;

L60:
    c2 = -oldfac / newfac;

    // Recursion to the next 3j coefficient
    x = c1 * thrcof[lstep-1] + c2 * thrcof[lstep-2];
    thrcof[lstep] = x;
    sumfor = sum1;
    sum1 += x * x;
    if (lstep == nfin) 
        goto L100;

    // See if last unnormalized 3j coefficient exceeds srhuge
    if (abs(x) < srhuge) 
        goto L80;

    // This is reached if last 3j coefficient larger than srhuge,
    // so that the recursion series thrcof(1), ... , thrcof(lstep)
    // has to be rescaled to prevent overflow

    // mscale = mscale + 1
    for (i = 1; i <= lstep; ++i) 
    {
        if (abs(thrcof[i]) < srtiny) 
            thrcof[i] = zero;
        thrcof[i] /= srhuge;
    }
    sum1 /= hugedouble;
    sumfor /= hugedouble;
    x /= srhuge;

    // As long as abs(c1) is decreasing, the recursion proceeds towards
    // increasing 3j values and, hence, is numerically stable.  Once
    // an increase of abs(c1) is detected, the recursion direction is
    // reversed.

L80:
    if (c1old - abs(c1) > 0.0) 
        goto L30;

    //  Keep three 3j coefficients aroundi mmatch for comparison later
    //  with backward recursion values.

L100:
    // mmatch = m2 - 1
    nstep2 = nfin - lstep + 3;
    x1 = x;
    x2 = thrcof[lstep-1];
    x3 = thrcof[lstep-2];

    //  Starting backward recursion from m2max taking nstep2 steps, so
    //  that forwards and backwards recursion overlap at the three points
    //  m2 = mmatch+1, mmatch, mmatch-1.

    nfinp1 = nfin + 1;
    nfinp2 = nfin + 2;
    nfinp3 = nfin + 3;
    thrcof[nfin] = srtiny;
    sum2 = tiny;

    m2 = m2max + two;
    lstep = 1;
L110:
    ++lstep;
    m2 -= one;
    m3 = -m1 - m2;
    oldfac = newfac;
    a1s = (l2-m2+two) * (l2+m2-one) * (l3+m3+two) * (l3-m3-one);
    newfac = std::sqrt(a1s);
    dv = (l1+l2+l3+one) * (l2+l3-l1) - (l2-m2+one) * (l3+m3+one)
          - (l2+m2-one) * (l3-m3-one);
    c1 = -dv / newfac;
    if (lstep > 2) 
        goto L120;

    // if m2 = m2max + 1 the third term in the recursion equation vanishes

    y = srtiny * c1;
    thrcof[nfin - 1] = y;
    if (lstep == nstep2) 
        goto L200;
    sumbac = sum2;
    sum2 += y * y;
    goto L110;

L120:
    c2 = -oldfac / newfac;

    // Recursion to the next 3j coefficient

    y = c1 * thrcof[nfinp2 - lstep] + c2 * thrcof[nfinp3 - lstep];

    if (lstep == nstep2) 
        goto L200;

    thrcof[nfinp1 - lstep] = y;
    sumbac = sum2;
    sum2 += y * y;

    // See if last 3j coefficient exceeds SRHUGE

    if (abs(y) < srhuge) 
        goto L110;

    // This is reached if last 3j coefficient larger than srhuge,
    // so that the recursion series thrcof(nfin), ... , thrcof(nfin-lstep+1)   
    // has to be rescaled to prevent overflow.

    // mscale = mscale + 1
    for (i = 1; i <= lstep; ++i) 
    {
        index = nfin - i + 1;
        if (abs(thrcof[index]) < srtiny) 
            thrcof[index] = zero;
        thrcof[index] /= srhuge;
    }
    sum2 /= hugedouble;
    sumbac /= hugedouble;

    goto L110;

    //  The forward recursion 3j coefficients x1, x2, x3 are to be matched
    //  with the corresponding backward recursion values y1, y2, y3.

L200:
    y3 = y;
    y2 = thrcof[nfinp2-lstep];
    y1 = thrcof[nfinp3-lstep];

    //  Determine now ratio such that yi = ratio * xi  (i=1,2,3) holds
    //  with minimal error.

    ratio = (x1*y1 + x2*y2 + x3*y3) / (x1*x1 + x2*x2 + x3*x3);
    nlim = nfin - nstep2 + 1;

    if (abs(ratio) < one) 
        goto L211;
    for (n = 1; n <= nlim; ++n)
        thrcof[n] = ratio * thrcof[n];
    sumuni = ratio * ratio * sumfor + sumbac;
    goto L230;

L211:
    ++nlim;
    ratio = one / ratio;
    for (n = nlim; n <= nfin; ++n)
        thrcof[n] = ratio * thrcof[n];
    sumuni = sumfor + ratio * ratio * sumbac;
    goto L230;
L220:
    sumuni = sum1;

    // Normalize 3j coefficients

L230:
    cnorm = one / std::sqrt((l1+l1+one) * sumuni);

    // Sign convention for last 3j coefficient determines overall phase

    sign1 = sign(thrcof[nfin]);
    sign2 = odd(int(abs(l2-l3-m1)+eps)) 
                   ? -one 
                   : one;
    if (sign1 * sign2 <= 0.0) 
        goto L235;
    else 
        goto L236;

L235:
    cnorm = -cnorm;

L236:
    if (abs(cnorm) < one) 
        goto L250;

    for (n = 1; n <= nfin; ++n)
        thrcof[n] = cnorm * thrcof[n];
    return;

L250:
    thresh = tiny / abs(cnorm);
    for (n = 1; n <= nfin; ++n) 
    {
        if (abs(thrcof[n]) < thresh) 
            thrcof[n] = zero;
        thrcof[n] = cnorm * thrcof[n];
    }
}

} // anonymous namespace

inline 
double clebschGordan (double l1, double m1, double l2, double m2, double l3, double m3)
{
    const double err = 0.01;
    double CG = 0.0, m2min, m2max, *cofp;                               
    // array for calculation of 3-j symbols 
    const int ncof = 100;
    double cof[ncof];                                            
    // reset error flag   
    int errflag = 0;
    ContractViolation Err;

    // Check for physical restriction.
    // All other restrictions are checked by the 3-j symbol routine.
    if ( abs(m1 + m2 - m3) > err) 
    {
        errflag = 7;
        Err << " clebschGordan: m1 + m2 - m3 is not zero.\n";
        throw Err;
    }                                                                   
    // calculate minimum storage size needed for ThreeJSymbolM()
    // if the dimension becomes negative the 3-j routine will capture it
    int njm = roundi(std::min(l2,l3-m1) - std::max(-l2,-l3-m1) + 1);            

    // allocate dynamic memory if necessary
    ArrayVector<double> cofa;
    if(njm > ncof)
    {
        cofa.resize(njm);
        cofp = cofa.begin();
    }
    else
    {
        cofp = cof;
    }

    // calculate series of 3-j symbols
    ThreeJSymbolM (l1,l2,l3,m1, m2min,m2max, cofp,njm, errflag);        
    // calculated Clebsch-Gordan coefficient
    if (! errflag)
    {
        CG = cofp[roundi(m2-m2min)] * (odd(roundi(l1-l2+m3)) ? -1 : 1) * std::sqrt(2*l3+1);
    }
    else
    {
        Err << " clebschGordan: 3jM-sym error.\n";
        throw Err;
    }
    return CG;                                                          
}

} // namespace vigra 

#endif // VIGRA_CLEBSCH_GORDAN_HXX