This file is indexed.

/usr/include/ucommon/linked.h is in libucommon-dev 7.0.0-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
// Copyright (C) 2006-2014 David Sugar, Tycho Softworks.
// Copyright (C) 2015 Cherokees of Idaho.
//
// This file is part of GNU uCommon C++.
//
// GNU uCommon C++ is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// GNU uCommon C++ is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with GNU uCommon C++.  If not, see <http://www.gnu.org/licenses/>.

/**
 * Linked objects, lists, templates, and containers.
 * Common support for objects that might be organized as single and double
 * linked lists, rings and queues, and tree oriented data structures.  These
 * generic classes may be used to help form anything from callback
 * registration systems and indexed memory hashes to xml parsed tree nodes.
 * @file ucommon/linked.h
 */

/**
 * An example of the linked object classes and their use.
 * @example linked.cpp
 */

#ifndef _UCOMMON_LINKED_H_
#define _UCOMMON_LINKED_H_

#ifndef _UCOMMON_CONFIG_H_
#include <ucommon/platform.h>
#endif

#ifndef _UCOMMON_OBJECT_H_
#include <ucommon/object.h>
#endif

namespace ucommon {

class OrderedObject;

/**
 * Common base class for all objects that can be formed into a linked list.
 * This base class is used directly for objects that can be formed into a
 * single linked list.  It is also used directly as a type for a pointer to the
 * start of list of objects that are linked together as a list.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT LinkedObject : public __PROTOCOL ObjectProtocol
{
private:
    friend class OrderedIndex;
    friend class NamedObject;

protected:
    LinkedObject *Next;

    /**
     * Construct base class attached to a chain of objects.
     * @param root pointer to chain of objects we are part of.
     */
    LinkedObject(LinkedObject **root);

    /**
     * Construct base class unattached to anyone.  This might be
     * used to construct intermediary base classes that may form
     * lists through indexing objects.
     */
    LinkedObject();

    LinkedObject(const LinkedObject& from);

public:
    virtual ~LinkedObject();

    /**
     * Release list, mark as no longer linked.  Inherited from base Object.
     */
    virtual void release(void) __OVERRIDE;

    /**
     * Retain by marking as self referenced list. Inherited from base Object.
     */
    virtual void retain(void) __OVERRIDE;

    /**
     * Add our object to an existing linked list through a pointer.  This
     * forms a container sorted in lifo order since we become the head
     * of the list, and the previous head becomes our next.
     * @param root pointer to list we are adding ourselves to.
     */
    void enlist(LinkedObject **root);

    /**
     * Locate and remove ourselves from a list of objects.  This searches
     * the list to locate our object and if found relinks the list around
     * us.
     * @param root pointer to list we are removing ourselves from.
     */
    void delist(LinkedObject **root);

    /**
     * Search to see if we are a member of a specific list.
     * @return true if we are member of the list.
     */
    bool is_member(LinkedObject *list) const;

    /**
     * Release all objects from a list.
     * @param root pointer to list we are purging.
     */
    static void purge(LinkedObject *root);

    /**
     * Count the number of linked objects in a list.
     * @param root pointer to list we are counting.
     */
    static unsigned count(const LinkedObject *root);

    /**
     * Get member by index.
     * @return indexed member in linked list.
     * @param root pointer to list we are indexing.
     * @param index member to find.
     */
    static LinkedObject *getIndexed(LinkedObject *root, unsigned index);

    /**
     * Get next effective object when iterating.
     * @return next linked object in list.
     */
    inline LinkedObject *getNext(void) const {
        return Next;
    }
};

/**
 * Reusable objects for forming private heaps.  Reusable objects are
 * linked objects that may be allocated in a private heap, and are
 * returned to a free list when they are no longer needed so they can
 * be reused without having to be re-allocated.  The free list is the
 * root of a linked object chain.  This is used as a base class for those
 * objects that will be managed through reusable heaps.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT ReusableObject : public LinkedObject
{
    friend class ReusableAllocator;

protected:
    virtual void release(void) __OVERRIDE;

public:
    /**
     * Get next effective reusable object when iterating.
     * @return next reusable object in list.
     */
    inline ReusableObject *getNext(void) {
        return polypointer_cast<ReusableObject*>(LinkedObject::getNext());
    }
};

/**
 * An index container for maintaining an ordered list of objects.
 * This index holds a pointer to the head and tail of an ordered list of
 * linked objects.  Fundamental methods for supporting iterators are
 * also provided.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT OrderedIndex
{
protected:
    friend class OrderedObject;
    friend class DLinkedObject;
    friend class NamedObject;

    OrderedObject *head, *tail;

public:
    void copy(const OrderedIndex& source);

    /**
     * Create and initialize an empty index.
     */
    OrderedIndex();

    inline OrderedIndex(const OrderedIndex& source) {
        copy(source);
    }

    /**
     * Destroy index.
     */
    virtual ~OrderedIndex();

    /**
     * Find a specific member in the ordered list.
     * @param offset to member to find.
     */
    LinkedObject *find(unsigned offset) const;

    /**
     * Count of objects this list manages.
     * @return number of objects in the list.
     */
    unsigned count(void) const;

    /**
     * Purge the linked list and then set the index to empty.
     */
    void purge(void);

    /**
     * Reset linked list to empty without purging.
     */
    void reset(void);

    /**
     * Used to synchronize lists managed by multiple threads.  A derived
     * locking method would be invoked.
     */
    virtual void lock_index(void);

    /**
     * Used to synchronize lists managed by multiple threads.  A derived
     * unlocking method would be invoked.
     */
    virtual void unlock_index(void);

    /**
     * Return a pointer to the head of the list.  This allows the head
     * pointer to be used like a simple root list pointer for pure
     * LinkedObject based objects.
     * @return LinkedIndex style object.
     */
    LinkedObject **index(void) const;

    /**
     * Get (pull) object off the list.  The start of the list is advanced to
     * the next object.
     * @return LinkedObject based object that was head of the list.
     */
    LinkedObject *get(void);

    /**
     * Add an object into the ordered index.
     * @param ordered object to add to the index.
     */
    void add(OrderedObject *ordered);

    /**
     * Get an indexed member from the ordered index.
     * @param index of member to fetch.
     * @return LinkedObject member of index.
     */
    inline LinkedObject *getIndexed(unsigned index) const {
        return LinkedObject::getIndexed(polystatic_cast<LinkedObject*>(head), index);
    }

    /**
     * Return first object in list for iterators.
     * @return first object in list.
     */
    inline LinkedObject *begin(void) const {
        return polystatic_cast<LinkedObject*>(head);
    }

    /**
     * Return last object in list for iterators.
     * @return last object in list.
     */
    inline LinkedObject *end(void) const {
        return polystatic_cast<LinkedObject*>(tail);
    }

    /**
     * Return head object pointer.
     * @return head pointer.
     */
    inline LinkedObject *operator*() const {
        return polystatic_cast<LinkedObject*>(head);
    }

    /**
     * Assign ordered index.
     * @param object to copy from.
     */
    OrderedIndex& operator=(const OrderedIndex& object) {
        copy(object); 
        return *this;
    }

    /**
     * Add object to our list.
     * @param object to add.
     */
    void operator*=(OrderedObject *object);
};

/**
 * A linked object base class for ordered objects.  This is used for
 * objects that must be ordered and listed through the OrderedIndex
 * class.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT OrderedObject : public LinkedObject
{
private:
    friend class DLinkedObject;
    friend class OrderedIndex;

protected:
    /**
     * Construct an ordered object aot end of a an index.
     * @param index we are listed on.
     */
    OrderedObject(OrderedIndex *index);

    /**
     * Construct an ordered object unattached.
     */
    OrderedObject();

    OrderedObject(const OrderedObject& from);

public:
    /**
     * List our ordered object at end of a linked list on an index.
     * @param index we are listing on.
     */
    void enlistTail(OrderedIndex *index);

    /**
     * List our ordered object at start of a linked list on an index.
     * @param index we are listing on.
     */
    void enlistHead(OrderedIndex *index);

    /**
     * List our ordered object in default strategy mode.  The default
     * base class uses enlistTail.
     * @param index we are listing on.
     */
    virtual void enlist(OrderedIndex *index);

    /**
     * Remove our ordered object from an existing index.
     * @param index we are listed on.
     */
    void delist(OrderedIndex *index);

    /**
     * Get next ordered member when iterating.
     * @return next ordered object.
     */
    inline OrderedObject *getNext(void) const {
        return static_cast<OrderedObject *>(LinkedObject::getNext());
    }
};

/**
 * A linked object base class with members found by name.  This class is
 * used to help form named option lists and other forms of name indexed
 * associative data structures.  The id is assumed to be passed from a
 * dupped or dynamically allocated string.  If a constant string is used
 * then you must not call delete for this object.
 *
 * Named objects are either listed on an ordered list or keyed through an
 * associate hash map table.  When using a hash table, the name id string is
 * used to determine the slot number to use in a list of n sized linked
 * object lists.  Hence, a hash index refers to a specific sized array of
 * object indexes.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT NamedObject : public OrderedObject
{
protected:
    char *Id;

    /**
     * Create an empty unnamed cell object.
     */
    NamedObject();

    /**
     * Create a named object and add to hash indexed list.
     * @param hash map table to list node on.
     * @param name of the object we are listing.
     * @param size of hash map table used.
     */
    NamedObject(NamedObject **hash, char *name, unsigned size = 1);

    /**
     * Created a named object on an ordered list.  This is commonly used
     * to form attribute lists.
     * @param index to list object on.
     * @param name of the object we are listing.
     */
    NamedObject(OrderedIndex *index, char *name);

    /**
     * Destroy named object.  We do not always destroy named objects, since
     * we may use them in reusable pools or we may initialize a list that we
     * keep permanently.  If we do invoke delete for something based on
     * NamedObject, then be aware the object id is assumed to be formed from
     * a dup'd string which will also be freed unless clearId is overridden.
     */
    ~NamedObject();

    /**
     * The behavior of clearing id's can be overridden if they are not
     * assigned as strdup's from the heap...
     */
    virtual void clearId(void);

public:
    /**
     * Add object to hash indexed list.
     * @param hash map table to list node on.
     * @param name of the object we are listing.
     * @param size of hash map table used.
     */
    void add(NamedObject **hash, char *name, unsigned size = 1);

    /**
     * Purge a hash indexed table of named objects.
     * @param hash map table to purge.
     * @param size of hash map table used.
     */
    static void purge(NamedObject **hash, unsigned size);

    /**
     * Convert a hash index into a linear object pointer array.  The
     * object pointer array is created from the heap and must be deleted
     * when no longer used.
     * @param hash map table of objects to index.
     * @param size of hash map table used.
     * @return array of named object pointers.
     */
    static NamedObject **index(NamedObject **hash, unsigned size);

    /**
     * Count the total named objects in a hash table.
     * @param hash map table of objects to index.
     * @param size of hash map table used.
     */
    static unsigned count(NamedObject **hash, unsigned size);

    /**
     * Find a named object from a simple list.  This may also use the
     * begin() member of an ordered index of named objects.
     * @param root node of named object list.
     * @param name of object to find.
     * @return object pointer or NULL if not found.
     */
    static NamedObject *find(NamedObject *root, const char *name);

    /**
     * Remove a named object from a simple list.
     * @param root node of named object list.
     * @param name of object to find.
     * @return object pointer or NULL if not found.
     */
    static NamedObject *remove(NamedObject **root, const char *name);

    /**
     * Find a named object through a hash map table.
     * @param hash map table of objects to search.
     * @param name of object to find.
     * @param size of hash map table.
     * @return object pointer or NULL if not found.
     */
    static NamedObject *map(NamedObject **hash, const char *name, unsigned size);

    /**
     * Remove an object from a hash map table.
     * @param hash map table of object to remove from.
     * @param name of object to remove.
     * @param size of hash map table.
     * @return object that is removed or NULL if not found.
     */
    static NamedObject *remove(NamedObject **hash, const char *name, unsigned size);

    /**
     * Iterate through a hash map table.
     * @param hash map table to iterate.
     * @param current named object we iterated or NULL to find start of list.
     * @param size of map table.
     * @return next named object in hash map or NULL if no more objects.
     */
    static NamedObject *skip(NamedObject **hash, NamedObject *current, unsigned size);

    /**
     * Internal function to convert a name to a hash index number.
     * @param name to convert into index.
     * @param size of map table.
     */
    static unsigned keyindex(const char *name, unsigned size);

    /**
     * Sort an array of named objects in alphabetical order.  This would
     * typically be used to sort a list created and returned by index().
     * @param list of named objects to sort.
     * @param count of objects in the list or 0 to find by NULL pointer.
     * @return list in sorted order.
     */
    static NamedObject **sort(NamedObject **list, size_t count = 0);

    /**
     * Get next effective object when iterating.
     * @return next linked object in list.
     */
    inline NamedObject *getNext(void) const {
        return static_cast<NamedObject*>(LinkedObject::getNext());
    }

    /**
     * Get the named id string of this object.
     * @return name id.
     */
    inline char *getId(void) const {
        return Id;
    };

    /**
     * Compare the name of our object to see if equal.  This is a virtual
     * so that it can be overridden when using named lists or hash lookups
     * that must be case insensitive.
     * @param name to compare our name to.
     * @return 0 if effectivily equal, used for sorting keys.
     */
    virtual int compare(const char *name) const;

    /**
     * Equal function which calls compare.
     * @param name to compare our name to.
     * @return true if equal.
     */
    inline bool equal(const char *name) const {
        return (compare(name) == 0);
    }

    /**
     * Comparison operator between our name and a string.
     * @param name to compare with.
     * @return true if equal.
     */
    inline bool operator==(const char *name) const {
        return compare(name) == 0;
    }

    /**
     * Comparison operator between our name and a string.
     * @param name to compare with.
     * @return true if not equal.
     */
    inline bool operator!=(const char *name) const {
        return compare(name) != 0;
    }
};

/**
 * The named tree class is used to form a tree oriented list of associated
 * objects.  Typical uses for such data structures might be to form a
 * parsed XML document, or for forming complex configuration management
 * systems or for forming system resource management trees.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT NamedTree : public NamedObject
{
protected:
    NamedTree *Parent;
    OrderedIndex Child;

    /**
     * Create a stand-alone or root tree node, with an optional name.
     * @param name for this node.
     */
    NamedTree(char *name = NULL);

    /**
     * Create a tree node as a child of an existing node.
     * @param parent node we are listed under.
     * @param name of our node.
     */
    NamedTree(NamedTree *parent, char *name);

    /**
     * Construct a copy of the tree.
     * @param source object to copy from.
     */
    NamedTree(const NamedTree& source);

    /**
     * Delete node in a tree.  If we delete a node, we must delist it from
     * it's parent.  We must also delink any child nodes.  This is done by
     * calling the purge() member.
     */
    virtual ~NamedTree();

    /**
     * Performs object destruction.  Note, if we delete a named tree object
     * the name of our member object is assumed to be a dynamically allocated
     * string that will also be free'd.
     */
    void purge(void);

public:
    /**
     * Find a child node of our object with the specified name.  This will
     * also recursivily search all child nodes that have children until
     * the named node can be found.  This seeks a child node that has
     * children.
     * @param name to search for.
     * @return tree object found or NULL.
     */
    NamedTree *find(const char *name) const;

    /**
     * Find a subnode by a dot separated list of node names.  If one or
     * more lead dots are used, then the search will go through parent
     * node levels of our node.  The dot separated list could be thought
     * of as a kind of pathname where dot is used like slash.  This implies
     * that individual nodes can never use names which contain dot's if
     * the path function will be used.
     * @param path name string being sought.
     * @return tree node object found at the path or NULL.
     */
    NamedTree *path(const char *path) const;

    /**
     * Find a child leaf node of our object with the specified name.  This
     * will recursively search all our child nodes until it can find a leaf
     * node containing the specified id but that holds no further children.
     * @param name of leaf node to search for.
     * @return tree node object found or NULL.
     */
    NamedTree *leaf(const char *name) const;

    /**
     * Find a direct child of our node which matches the specified name.
     * @param name of child node to find.
     * @return tree node object of child or NULL.
     */
    NamedTree *getChild(const char *name) const;

    /**
     * Find a direct leaf node on our node.  A leaf node is a node that has
     * no children of it's own.  This does not perform a recursive search.
     * @param name of leaf child node to find.
     * @return tree node object of leaf or NULL.
     */
    NamedTree *getLeaf(const char *name) const;

    /**
     * Get first child node in our ordered list of children.  This might
     * be used to iterate child nodes.  This may also be used to get
     * unamed child nodes.
     * @return first child node or NULL if no children.
     */
    inline NamedTree *getFirst(void) const {
        return static_cast<NamedTree *>(Child.begin());
    }

    /**
     * Get parent node we are listed as a child on.
     * @return parent node or NULL if none.
     */
    inline NamedTree *getParent(void) const {
        return static_cast<NamedTree *>(Parent);
    };

    /**
     * Get child by index number.
     * @param index of child to fetch.
     * @return indexed child node.
     */
    inline NamedTree *getIndexed(unsigned index) const {
        return static_cast<NamedTree *>(Child.getIndexed(index));
    }

    /**
     * Get the ordered index of our child nodes.
     * @return ordered index of our children.
     */
    inline OrderedIndex *getIndex(void) const {
        return const_cast<OrderedIndex*>(&Child);
    }

    /**
     * Test if this node has a name.
     * @return true if name is set.
     */
    inline operator bool() const {
        return (Id != NULL);
    }

    /**
     * Test if this node is unnamed.
     * @return false if name is set.
     */
    inline bool operator!() const {
        return (Id == NULL);
    }

    /**
     * Set or replace the name id of this node.  This will free the string
     * if a name had already been set.
     * @param name for this node to set.
     */
    void setId(char *name);

    /**
     * Remove our node from our parent list.  The name is set to NULL to
     * keep delete from freeing the name string.
     */
    void remove(void);

    /**
     * Test if node has children.
     * @return true if node contains child nodes.
     */
    inline bool is_leaf(void) const {
        return (Child.begin() == NULL);
    }

    /**
     * Test if node is root node.
     * @return true if node is root node.
     */
    inline bool is_root(void) const {
        return (Parent == NULL);
    }

    /**
     * Add leaf to a trunk, by order.  If NULL, just remove.
     * @param trunk we add leaf node to.
     */
    void relistTail(NamedTree *trunk);

    /**
     * Add leaf to a trunk, by reverse order.  If NULL, just remove.
     * @param trunk we add leaf node to.
     */
    void relistHead(NamedTree *trunk);

    /**
     * Default relist is by tail...
     * @param trunk we add leaf node to, NULL to delist.
     */
    inline void relist(NamedTree *trunk = NULL) {
        relistTail(trunk);
    }
};

/**
 * A double linked list object.  This is used as a base class for objects
 * that will be organized through ordered double linked lists which allow
 * convenient insertion and deletion of list members anywhere in the list.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT DLinkedObject : public OrderedObject
{
protected:
    friend class ObjectQueue;

    DLinkedObject *Prev;
    OrderedIndex *Root;

    /**
     * Construct and add our object to an existing double linked list at end.
     * @param index of linked list we are listed in.
     */
    DLinkedObject(OrderedIndex *index);

    /**
     * Construct an unlinked object.
     */
    DLinkedObject();

    DLinkedObject(const DLinkedObject& from);

    /**
     * Delete linked list object.  If it is a member of a list of objects,
     * then the list is reformed around us.
     */
    virtual ~DLinkedObject();

public:
    /**
     * Remove our object from the list it is currently part of.
     */
    void delist(void);

    /**
     * Attach our object to the start of a linked list though an ordered index.
     * If we are already attached to a list we are delisted first.
     * @param index of linked list we are joining.
     */
    void enlistHead(OrderedIndex *index);

    /**
     * Attach our object to the end of a linked list though an ordered index.
     * If we are already attached to a list we are delisted first.
     * @param index of linked list we are joining.
     */
    void enlistTail(OrderedIndex *index);

    /**
     * Attach our object to a linked list.  The default strategy is to add
     * to tail.
     * @param index of linked list we are joining.
     */
    void enlist(OrderedIndex *index);

    /**
     * Test if we are at the head of a list.
     * @return true if we are the first node in a list.
     */
    inline bool is_head(void) const {
        return polypointer_cast<DLinkedObject *>(Root->head) == this;
    }

    /**
     * Test if we are at the end of a list.
     * @return true if we are the last node in a list.
     */
    inline bool is_tail(void) const {
        return polypointer_cast<DLinkedObject *>(Root->tail) == this;
    }

    /**
     * Get previous node in the list for reverse iteration.
     * @return previous node in list.
     */
    inline DLinkedObject *getPrev(void) const {
        return static_cast<DLinkedObject*>(Prev);
    }

    /**
     * Get next node in the list when iterating.
     * @return next node in list.
     */
    inline DLinkedObject *getNext(void) const {
        return static_cast<DLinkedObject*>(LinkedObject::getNext());
    }

    /**
     * Insert object behind our object.
     * @param object to add to list.
     */
    void insertTail(DLinkedObject *object);

    /**
     * Insert object in front of our object.
     * @param object to add to list.
     */
    void insertHead(DLinkedObject *object);

    /**
     * Insert object, method in derived object.
     * @param object to add to list.
     */
    virtual void insert(DLinkedObject *object);

    /**
     * Insert object behind our object.
     * @param object to add to list.
     */
    inline DLinkedObject& operator+=(DLinkedObject *object) {
        insertTail(object);
        return *this;
    }

    /**
     * Insert object in front of our object.
     * @param object to add to list.
     */
    inline DLinkedObject& operator-=(DLinkedObject *object) {
        insertHead(object);
        return *this;
    }

    /**
     * Insert object in list with our object.
     * @param object to add to list.
     */
    inline DLinkedObject& operator*=(DLinkedObject *object) {
        insert(object);
        return *this;
    }
};

/**
 * Template value class to embed data structure into a linked list.
 * This is used to form a class which can be linked together using
 * either an ordered index or simple linked pointer chain and that
 * contains a member value object.  Most of the core logic for this
 * template is found in and derived from the object_value template.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <typename T, class O = LinkedObject>
class linked_value : public O
{
protected:
    __DELETE_COPY(linked_value);

public:
    T value;

    /**
     * Create embedded value object unlinked.
     */
    inline linked_value() {}

    /**
     * Construct embedded object on a linked list.
     * @param root node or pointer for list.
     */
    inline linked_value(LinkedObject **root) {
        LinkedObject::enlist(root);
    }

    /**
     * Construct embedded object on an ordered list.
     * @param index pointer for the ordered list.
     */
    inline linked_value(OrderedIndex *index) {
        O::enlist(index);
    }

    /**
     * Assign embedded value from related type and link to list.
     * @param root node or pointer for list.
     * @param typed_value to assign.
     */
    inline linked_value(LinkedObject **root, const T& typed_value) {
        LinkedObject::enlist(root); 
        value = typed_value;
    }

    /**
     * Assign embedded value from related type and add to list.
     * @param index to list our object on.
     * @param typed_value to assign.
     */
    inline linked_value(OrderedIndex *index, const T& typed_value) {
        O::enlist(index);
        value = typed_value; 
    }

    inline void set(const T& typed_value) {
        value = typed_value;
    }

    /**
     * Assign embedded value from related type.
     * @param typed_value to assign.
     */
    inline linked_value& operator=(const T& typed_value) {
        value = typed_value;
        return *this;
    }

    inline T& operator*() {
        return value;
    }

    inline operator T&() {
        return value;
    }

    inline void operator()(const T data) {
        value = data;
    }
};

/**
 * A smart pointer template for iterating linked lists.  This class allows
 * one to access a list of single or double linked objects and iterate
 * through each member of a list.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <class T>
class linked_pointer
{
private:
    T *ptr;

public:
    /**
     * Create a linked pointer and assign to start of a list.
     * @param pointer to first member of a linked list.
     */
    inline linked_pointer(T *pointer) {
        ptr = pointer;
    }

    /**
     * Create a copy of an existing linked pointer.
     * @param pointer to copy from.
     */
    inline linked_pointer(const linked_pointer &pointer) {
        ptr = pointer.ptr;
    }

    /**
     * Create a linked pointer assigned from a raw linked object pointer.
     * @param pointer to linked object.
     */
    inline linked_pointer(LinkedObject *pointer) {
        ptr = static_cast<T*>(pointer);
    }

    inline linked_pointer(const LinkedObject *pointer) {
        ptr = static_cast<T*>(pointer);
    }

    /**
     * Create a linked pointer to examine an ordered index.
     * @param index of linked objects to iterate through.
     */
    inline linked_pointer(OrderedIndex *index) {
        ptr = static_cast<T*>(index->begin());
    }

    /**
     * Create a linked pointer not attached to a list.
     */
    inline linked_pointer() {
        ptr = NULL;
    }

    /**
     * Assign our typed iterative pointer from a matching typed object.
     * @param pointer to typed object.
     */
    inline void operator=(T *pointer) {
        ptr = pointer;
    }

    /**
     * Assign our pointer from another pointer.
     * @param pointer to assign from.
     */
    inline void operator=(linked_pointer &pointer) {
        ptr = pointer.ptr;
    }

    /**
     * Assign our pointer from the start of an ordered index.
     * @param index to assign pointer from.
     */
    inline void operator=(OrderedIndex *index) {
        ptr = static_cast<T*>(index->begin());
    }

    /**
     * Assign our pointer from a generic linked object pointer.
     * @param pointer of linked list.
     */
    inline void operator=(LinkedObject *pointer) {
        ptr = static_cast<T*>(pointer);
    }

    /**
     * Return member from typed object our pointer references.
     * @return evaluated member of object we point to.
     */
    inline T* operator->() const {
        return ptr;
    }

    /**
     * Return object we currently point to.
     * @return object linked pointer references.
     */
    inline T* operator*() const {
        return ptr;
    }

    /**
     * Return object we point to by casting.
     * @return object linked pointer references.
     */
    inline operator T*() const {
        return ptr;
    }

    /**
     * Move (iterate) pointer to previous member in double linked list.
     */
    inline void prev(void) {
        ptr = static_cast<T*>(ptr->getPrev());
    }

    /**
     * Move (iterate) pointer to next member in linked list.
     */
    inline void next(void) {
        ptr = static_cast<T*>(ptr->getNext());
    }

    /**
     * Get the next member in linked list.  Do not change who we point to.
     * @return next member in list or NULL if end of list.
     */
    inline T *getNext(void) const {
        return static_cast<T*>(ptr->getNext());
    }

    /**
     * Get the previous member in double linked list.  Do not change who we
     * point to.
     * @return previous member in list or NULL if start of list.
     */
    inline T *getPrev(void) const {
        return static_cast<T*>(ptr->getPrev());
    }

    /**
     * Move (iterate) pointer to next member in linked list.
     */
    inline void operator++() {
        ptr = static_cast<T*>(ptr->getNext());
    }

    /**
     * Move (iterate) pointer to previous member in double linked list.
     */
    inline void operator--() {
        ptr = static_cast<T*>(ptr->getPrev());
    }

    /**
     * Test for next member in linked list.
     * @return true if there is more members after current one.
     */
    inline bool is_next(void) const {
        return (ptr->getNext() != NULL);
    }

    /**
     * Test for previous member in double linked list.
     * @return true if there is more members before current one.
     */
    inline bool is_prev(void) const {
        return (ptr->getPrev() != NULL);
    }

    /**
     * Test if linked pointer is set/we are not at end of list.
     * @return true if we are not at end of list.
     */
    inline operator bool() const {
        return (ptr != NULL);
    }

    /**
     * Test if linked list is empty/we are at end of list.
     * @return true if we are at end of list.
     */
    inline bool operator!() const {
        return (ptr == NULL);
    }

    inline bool is() const {
        return (ptr != NULL);
    }

    /**
     * Return pointer to our linked pointer to use as root node of a chain.
     * @return our object pointer as a root index.
     */
    inline LinkedObject **root(void) const {
        T **r = &ptr;
        return static_cast<LinkedObject**>(r);
    }
};

/**
 * Embed data objects into a tree structured memory database.  This can
 * be used to form XML document trees or other data structures that
 * can be organized in trees.  The NamedTree class is used to manage
 * the structure of the tree, and the type specified is embedded as a
 * data value object which can be manipulated.  Name identifiers are
 * assumed to be dynamically allocated if tree node elements are deletable.
 *
 * Embedded values can either be of direct types that are then stored as
 * part of the template object, or of class types that are data pointers.
 * The latter might be used for trees that contain data which might be
 * parsed dynamically from a document and/or saved on a heap.  Pointer trees
 * assume that NULL pointers are for nodes that are empty, and that NULL data
 * value nodes with children are trunk nodes.  Generally data values are then
 * allocated with a pointer stored in pure leaf nodes.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <typename T>
class treemap : public NamedTree
{
protected:
    T value;

public:
    /**
     * Construct a typed root node for the tree.  The root node may be
     * named as a stand-alone node or unnamed.
     * @param name of the node we are creating.
     */
    inline treemap(char *name = NULL) : NamedTree(name) {}

    /**
     * Construct a copy of the treemap object.
     * @param source of copy for new object.
     */
    inline treemap(const treemap& source) : NamedTree(source) {
        value = source.value;
    };

    /**
     * Construct a child node on an existing tree.
     * @param parent of this node to attach.
     * @param name of this node.
     */
    inline treemap(treemap *parent, char *name) : NamedTree(parent, name) {}

    /**
     * Construct a child node on an existing tree and assign it's value.
     * @param parent of this node to attach.
     * @param name of this node.
     * @param reference to value to assign to this node.
     */
    inline treemap(treemap *parent, char *name, T& reference) : NamedTree(parent, name) {
        value = reference;
    }

    /**
     * Return the typed value of this node.
     * @return reference to value of node.
     */
    inline const T& get(void) const {
        return value;
    }

    /**
     * Return typed value of this node by pointer reference.
     * @return value of node.
     */
    inline const T& operator*() const {
        return value;
    }

    /**
     * Return value from tree element when value is a pointer.
     * @param node in our typed tree.
     * @return value of node.
     */
    static inline T getPointer(treemap *node) {
        return (node == NULL) ? NULL : node->value;
    }

    /**
     * Test if this node is a leaf node for a tree pointer table.
     * @return true if value pointer is not NULL and there are no children.
     */
    inline bool is_attribute(void) const {
        return (!Child.begin() && value != NULL);
    }

    /**
     * Get the pointer of a pointer based value tree.
     * @return value pointer of node.
     */
    inline const T getPointer(void) const {
        return value;
    }

    /**
     * Get the data value of a data based value tree.
     * @return data value of node.
     */
    inline const T& getData(void) const {
        return value;
    }

    /**
     * Set the pointer of a pointer based value tree.
     * @param pointer to set.
     */
    inline void setPointer(const T pointer) {
        value = pointer;
    }

    /**
     * Set the value of a data based value tree.
     * @param reference to value to copy into node.
     */
    inline void set(const T& reference) {
        value = reference;
    }

    /**
     * Assign the value of our node.
     * @param data value to assign.
     */
    inline void operator=(const T& data) {
        value = data;
    }

    /**
     * Get child member node by index.
     * @param index of child member.
     * @return node or NULL if past end.
     */
    inline treemap *getIndexed(unsigned index) const {
        return static_cast<treemap*>(Child.getIndexed(index));
    }

    /**
     * Get the typed parent node for our node.
     * @return parent node or NULL if root of tree.
     */
    inline treemap *getParent(void) const {
        return static_cast<treemap*>(Parent);
    }

    /**
     * Get direct typed child node of our node of specified name.  This
     * does not perform a recursive search.
     * @param name of child node.
     * @return typed child node pointer or NULL if not found.
     */
    inline treemap *getChild(const char *name) const {
        return static_cast<treemap*>(NamedTree::getChild(name));
    }

    /**
     * Find a direct typed leaf node on our node.  A leaf node is a node that
     * has no children of it's own.  This does not perform a recursive search.
     * @param name of leaf child node to find.
     * @return typed leaf node object of leaf or NULL.
     */
    inline treemap *getLeaf(const char *name) const {
        return static_cast<treemap*>(NamedTree::getLeaf(name));
    }

    /**
     * Get the value pointer of a leaf node of a pointer tree.  This allows
     * one to find a leaf node and return it's pointer value in a single
     * operation.
     * @param name of leaf node.
     * @return value of leaf pointer if found and contains value, or NULL.
     */
    inline T getValue(const char *name) const {
        return getPointer(getLeaf(name));
    }

    /**
     * Find a subnode from our node by name.  This performs a recursive
     * search.
     * @param name to search for.
     * @return typed node that is found or NULL if none is found.
     */
    inline treemap *find(const char *name) const {
        return static_cast<treemap*>(NamedTree::find(name));
    }

    /**
     * Find a subnode by pathname.  This is the same as the NamedTree
     * path member function.
     * @param path name to search for node.
     * @return typed node that is found at path or NULL.
     */
    inline treemap *path(const char *path) const {
        return static_cast<treemap*>(NamedTree::path(path));
    }

    /**
     * Search for a leaf node of our node.  This performs a recursive
     * search.
     * @param name to search for.
     * @return typed not that is found or NULL if none is found.
     */
    inline treemap *leaf(const char *name) const {
        return static_cast<treemap*>(NamedTree::leaf(name));
    }

    /**
     * Get first child of our node.  This is useful for iterating children.
     * @return first child or NULL.
     */
    inline treemap *getFirst(void) const {
        return static_cast<treemap*>(NamedTree::getFirst());
    }
};

/**
 * Convenience typedef for root pointers of single linked lists.
 */
typedef LinkedObject *LinkedIndex;

typedef DLinkedObject LinkedList;   // compatibility for older code

} // namespace ucommon

#endif