This file is indexed.

/usr/include/trilinos/Zoltan2_MatcherHelper.hpp is in libtrilinos-zoltan2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
#ifndef _ZOLTAN2_MatcherHelper_hpp_
#define _ZOLTAN2_MatcherHelper_hpp_


#ifdef ZOLTAN2ND_HAVE_OMP
#include <omp.h>
#endif

#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <queue>
#include <cassert>

// PPF Matching code copied from Isorropia.  Siva has reservations about algorithm
// robustness.  It uses recursion, which can cause problems on the stack.
// Probably should rewrite at least some of these algorithms, eventually.


namespace Zoltan2 {

/** @ingroup matching_grp
    An implementation of the Matcher interface that operates on Epetra matrices
    and Graphs.
    
    matching algorithms provides an interface to solve the Bipartite Matching
    problem.

*/
////////////////////////////////////////////////////////////////////////////////
class Matcher 
{
private:

    int *mCRS_rowPtrs;
    int *mCRS_cols;
  
    // Number of vertices in u set (num row vertices)
    int numU;

    // Number of vertices in v set (num col vertices)
    int numV;

    // For each u vertex, the matching v vertex
    std::vector<int> matchedVertexForU;

    // For each v vertex, the matching u vertex
    std::vector<int> matchedVertexForV;

    std::vector<int> queue;
    int* LV_;
    int* LU_;
    int* unmatchedU_;
    int *parent_;
    int *lookahead_;
    bool finish_;
    int numE,avgDegU_,k_star_,icm_,BFSInd_,numThread_,Qst_,Qend_,numMatched;

    int *visitedV_;

    void delete_matched_v();
    int SGM();  
    int match_dfs();
    int match_hk();
    int construct_layered_graph();
    int find_set_del_M();
    int recursive_path_finder(int, int);
    int dfs_path_finder(int);
    int dfs_augment();
    int augment_matching(int);
    int DW_phase();

public:
    /** @ingroup matching_grp
    Constructor
    \param[in] row pointer for CRS matrix for of bipartite graph
    \param[in] cols for CRS matrix for of bipartite graph
    \param[in] Number of vertices in u set (num row vertices)
    \param[in] Number of vertices in v set (num col vertices)
    */
    Matcher(int *_rowPtr, int *_cols, int _numU, int _numV, int _numE);



      
    /** @ingroup matching_grp
    Destructor
    */
     virtual ~Matcher();

    /* @ingroup matching_grp
    Returns the number of matched vertices from Maximum Cardinality
     Matching set
    */
    int getNumberOfMatchedVertices()
    {
      int count=0;
      for(unsigned int i=0;i<matchedVertexForU.size(); i++)
      {
        if(matchedVertexForU[i]!=-1)
	{
          count++;
	}
      }
      return count;
    }



    const std::vector<int> &getVertexUMatches() {return matchedVertexForU;};
    const std::vector<int> &getVertexVMatches() {return matchedVertexForV;};

    /** @ingroup matching_grp
    Computes the maximum cardinality matching.
    */
    int match();
};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
Matcher::Matcher(int *_rowPtr, int *_cols, int _numU, int _numV, int _numE)
  :mCRS_rowPtrs(_rowPtr),mCRS_cols(_cols),numU(_numU),numV(_numV),numE(_numE)
{
    finish_=false;
    avgDegU_=numE/numU+1;
    matchedVertexForU.resize(numU);
    matchedVertexForV.resize(numV);

    lookahead_=new int[numU];
    unmatchedU_=new int[numU];

    for(int i=0;i<numU;i++)
    {
        matchedVertexForU[i]=-1;

        lookahead_[i]=mCRS_rowPtrs[i];
        unmatchedU_[i]=i;
    }

    visitedV_=new int[numV];

    parent_=new int[numV];

    for(int i=0;i<numV;i++)
    {
        visitedV_[i]=0;

        matchedVertexForV[i]=-1;
        parent_[i]=-1;
    }

    numThread_=1;
}
////////////////////////////////////////////////////////////////////////////////


////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
Matcher::~Matcher()
{
    delete [] lookahead_;
    delete [] unmatchedU_;

    if (parent_) delete [] parent_; parent_ = NULL;

    if(visitedV_)
      {
	delete [] visitedV_;
      }

}
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
// This function increases the matching size by one with the help of a
// augmenting path. The input is an integer which is the id of the last
// columns vertex of the augmenting path. We trace the whole path by
// backtraking using parent array. while tracing back we flip the unmatched
// edges to matched edges.
////////////////////////////////////////////////////////////////////////////////
int Matcher::augment_matching(int tv)
{
    int u,v,t,lnt=1;
    v=tv;
    while(true)
    {
        u=parent_[v];
        t=matchedVertexForU[u];
        matchedVertexForV[v]=u;
        matchedVertexForU[u]=v;
        if(t==-1)
            break;
        lnt+=2;
        v=t;
    }

    return lnt;
}
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
// This function is almost similar to the previous function which is to find
// a vertex disjoint path. It is used for the algorithm DFS, PPF and in HKDW. The
// difference is that this function operates on the original graph not on the
// layerd subgraph. It also does the incorporates the lookahead mechanism and
// scanning adjacency list alternately from backward and from forward in
// alternate iterations for PPF and HKDW.
////////////////////////////////////////////////////////////////////////////////
int Matcher::dfs_path_finder(int u)
{
    int i,ind=-1,res=0;

        for(i=lookahead_[u];i<mCRS_rowPtrs[u+1];i++) // the lookahead scheme
        {
            ind=mCRS_cols[i];
            assert(ind>=0 && ind<numV);
            if(matchedVertexForV[ind]==-1)
            {
	      int lock2=0;
	      if (visitedV_[ind]==0)
                {
                  visitedV_[ind]=1;
                  lock2=1;
                }

                if(lock2>0)
                {
                    parent_[ind]=u;
                    lookahead_[u]=i+1;
                    return ind;
                }
            }
        }


        if(icm_%2==1) // odd number iteration so scan the adj list forward dir
        {
            for(i=mCRS_rowPtrs[u];i<mCRS_rowPtrs[u+1];i++)
            {
                ind=mCRS_cols[i];
                assert(ind>=0 && ind<numV);

	      int lock2=0;
	      if (visitedV_[ind]==0)
                {
                  visitedV_[ind]=1;
                  lock2=1;
                }

                if(lock2>0)
                {
                    parent_[ind]=u;
                    res=dfs_path_finder(matchedVertexForV[ind]);
                    if(res!=-1)
                        return res;
                }
            }
        }
        else // even number iteration so scan from backward
        {
            for(i=mCRS_rowPtrs[u+1]-1;i>=mCRS_rowPtrs[u];i--)
            {
                ind=mCRS_cols[i];
                assert(ind>=0 && ind<numV);


	      int lock2=0;
	      if (visitedV_[ind]==0)
                {
                  visitedV_[ind]=1;
                  lock2=1;
                }

                if(lock2>0)
                {
                    parent_[ind]=u;
                    res=dfs_path_finder(matchedVertexForV[ind]);
                    if(res!=-1)
                        return res;
                }
            }
        }


    return -1;
}
////////////////////////////////////////////////////////////////////////////////

// ////////////////////////////////////////////////////////////////////////////////
// // This function starts the BFS phase for the HK and HKDW. It starts from the
// // layer 0 vertices and tries to find a vertex disjoint path from each of
// // these vertices.
// ////////////////////////////////////////////////////////////////////////////////
// int Matcher::find_set_del_M()
// {

//     int i,j,count=0;
//     delete_matched_v();

// #ifdef ZOLTAN2ND_HAVE_OMP
//     #pragma omp parallel for private(j)
// #endif
//     for(i=0;i<BFSInd_;i++)
//     {

//         j=recursive_path_finder(0,queue[i]);
//         if(j!=-1)
//         {
//             augment_matching(j);

// 	    //MMW: Not 100% this is necessary, let this in just in case bug in original code
// #ifdef ZOLTAN2ND_HAVE_OMP
//             #pragma omp atomic
// #endif
//             count++;



//         }

//     }
//     return count;
// }
// ////////////////////////////////////////////////////////////////////////////////

// ////////////////////////////////////////////////////////////////////////////////
// // This is the additional Duff and Wiberg phase for the HKDW. This function
// // does nothing but first unset the locks and then runs PPF from the
// // remaining unmatched row vertices after the BFS phase of HK.
// ////////////////////////////////////////////////////////////////////////////////
// int Matcher::DW_phase()
// {
//     int i,count=0;

// #ifdef ZOLTAN2ND_HAVE_OMP
//     #pragma omp parallel for
// #endif
//     for(i=0;i<numV;i++)
//     {
// #ifdef ZOLTAN2ND_HAVE_OMP
//         omp_unset_lock(&scannedV_[i]); // unsetting the locks
// #endif
//     }

// #ifdef ZOLTAN2ND_HAVE_OMP
//     #pragma omp parallel for
// #endif
//     for(i=0;i<BFSInd_;i++) // calling the PPF
//     {
//         int u=queue[i];
//         if(matchedVertexForU[u]==-1)
//         {
//             int ind=dfs_path_finder(u);
//             if(ind!=-1)
//             {
//                 augment_matching(ind);

// 	        //MMW: Not 100% this is necessary, let this in just in case bug in original code
// #ifdef ISORROPIA_HAVE_OMP
//                 #pragma omp atomic
// #endif
//                 count++;

//             }
//         }
//     }
//     return count;
// }
// ////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
    //This function is the starter function for PPF and DFS. It unsets the locks
    //the call dfs_path_finder and then call the augment_matching.
////////////////////////////////////////////////////////////////////////////////
int Matcher::dfs_augment()
{
    int i,flag=0,flag1=0,count=0,totc=0,index=numU,cur=0;
    icm_=0;

    while(true)
    {
        icm_++;

        for(i=0;i<numV;i++)
	{
          visitedV_[i]=0;
	}

        cur=0;
        for(i=0;i<numU;i++)
	{
	  if(matchedVertexForU[i]==-1)
	    unmatchedU_[cur++]=i;
	}
        index=cur;
        flag=flag1=count=0;

        for(i=0;i<index;i++)
        {
            flag=1;
            int u=unmatchedU_[i];
            int ind=dfs_path_finder(u);
            if(ind!=-1)
            {
                flag1=1;
                augment_matching(ind);
            }
        }

        if(flag==0 || flag1==0)
            break;
        else
        {
            cur=0;
            for(i=0;i<index;i++)
            {
                if(matchedVertexForU[unmatchedU_[i]]==-1)
                    unmatchedU_[cur++]=unmatchedU_[i];
            }
            index=cur;

        }
    }

    return totc;
}
////////////////////////////////////////////////////////////////////////////////

// ////////////////////////////////////////////////////////////////////////////////
// ////////////////////////////////////////////////////////////////////////////////
// int Matcher::SGM()
// {
//    int i,j,lock,ind,count=0;
// #ifdef ZOLTAN2ND_HAVE_OMP
//    #pragma omp parallel for private(j,ind,lock)
// #endif
//    for(i=0;i<numU;i++)
//    {
//       for(j=mCRS_rowPtrs[i];j<mCRS_rowPtrs[i+1];j++)
//       {
//          ind=mCRS_cols[j];
// #ifdef ZOLTAN2ND_HAVE_OMP
//          lock=omp_test_lock(&scannedV_[ind]);
// #else
//             // mfh 07 Feb 2013: lock wasn't getting initialized if
//             // ZOLTAN2ND_HAVE_OMP was not defined.  omp_test_lock()
//             // returns nonzero if the thread successfully acquired the
//             // lock.  If there's only one thread, that thread will
//             // always be successful, so the default value of lock
//             // should be nonzero.
//          lock = 1;
// #endif
//          if(lock>0)
//          {
//             matchedVertexForU[i]=ind;
//             matchedVertexForV[ind]=i;
//             break;
// 	 }
//       }
//     }
//     return count;
// }
// ////////////////////////////////////////////////////////////////////////////////


////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
int Matcher::SGM()
{
  int i,j,ind,count=0;

  for(i=0;i<numU;i++)
    {
      for(j=mCRS_rowPtrs[i];j<mCRS_rowPtrs[i+1];j++)
        {
	  ind=mCRS_cols[j];

	  int lock2=0;
	  if (visitedV_[ind]==0)
          {
            visitedV_[ind]=1;
            lock2=1;
          }

	  if(lock2>0)
            {
	      matchedVertexForU[i]=ind;
	      matchedVertexForV[ind]=i;
	      break;
            }
        }
    }
  return count;
}
////////////////////////////////////////////////////////////////////////////////



////////////////////////////////////////////////////////////////////////////////
// Forking function for DFS based algorithm
////////////////////////////////////////////////////////////////////////////////
int Matcher::match_dfs()
{
    int totc=0;
    icm_=0;

    totc=dfs_augment();

    return totc;
}
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
int Matcher::match()
{
  // User interface function for the matching..                                                                                                             

  int totc=0;
  totc=SGM();
  totc+=match_dfs();

  numMatched = totc;

  return 0;
}
////////////////////////////////////////////////////////////////////////////////


////////////////////////////////////////////////////////////////////////////////
// Calculate vertex cover (which is vertex separator) from matching
// VC = (U-L) union (B intersection L)
// 
// Let X be the exposed nodes in U (those without a match)
//
// E':
// Matched edges should be directed VtoU -- just use vertVMatches array
// All other edges should be directed UtoV -- use modified biGraphCRScols
//
// L is the set of vertices in (U union V, E') that can be reached from X
//
//
// Perhaps I should use internal class members in this function
// However, I decided not to do this for now since I'm changing some of these
// member variables in this function
////////////////////////////////////////////////////////////////////////////////
void getVCfromMatching(const std::vector<int> &bigraphCRSRowPtr,
		       std::vector<int> &bigraphCRSCols,
                       const std::vector<int> &vertUMatches,
		       const std::vector<int> &vertVMatches,
		       const std::vector<int> &bigraphVMapU,
		       const std::vector<int> &bigraphVMapV,
		       std::vector<int> &VC)
{
   int numU = vertUMatches.size();
   int numV = vertVMatches.size();

   //////////////////////////////////////////////////////////////////////
   // Build X
   //////////////////////////////////////////////////////////////////////
   std::set<int> X;
   for(int i=0;i<numU; i++)
   {
     if(vertUMatches[i]==-1)
     {
       X.insert(i);
     }
   }
   //////////////////////////////////////////////////////////////////////

   //////////////////////////////////////////////////////////////////////
   // Non matched edges should be directed UtoV
   // Removed matches edges from bipartite graph (set to -1)
   //   -- perhaps replace this with something more efficient/compact
   //////////////////////////////////////////////////////////////////////
   for (int uID=0;uID<numU;uID++)
   {
     for (int eIdx=bigraphCRSRowPtr[uID];eIdx<bigraphCRSRowPtr[uID+1];eIdx++)
     {
       int vID = bigraphCRSCols[eIdx];

       if (vertUMatches[uID]==vID)
       {
         bigraphCRSCols[eIdx]=-1;
       }
     }

   }
   //////////////////////////////////////////////////////////////////////

   //////////////////////////////////////////////////////////////////////
   // Calculate L - set of vertices in (U union V, E') that can be reached from X
   //////////////////////////////////////////////////////////////////////
   std::set<int> L;

   std::queue<int> queue;

   std::copy(X.begin(), X.end(), std::inserter( L, L.begin() ) );

   for(std::set<int>::const_iterator iter = X.begin(); iter != X.end(); ++iter)
   {
     L.insert(bigraphVMapU[*iter]);   // L contains all vertices in X

     queue.push(*iter); // copy on to queue
   }

   int iteration=0;
   while(queue.size()!=0)
   {
     //Number of active vertices on this side of bipartite graph
     int nstarts=queue.size();

     for (int i=0; i<nstarts; i++)
     {
       int start = queue.front();
       queue.pop();

       //Traverse from U to V
       if(iteration%2==0)
       {
         //Traverse edges starting from vertex "start"
         for (int eIdx=bigraphCRSRowPtr[start];eIdx<bigraphCRSRowPtr[start+1];eIdx++)
	 {
	   int newV = bigraphCRSCols[eIdx];

           //Edge is in correct direction (U to V) => newV is valid
           if (newV!=-1)
	   {
             // If this vertex has not been reached
             if(L.find(bigraphVMapV[newV])==L.end())
	     {
               L.insert(bigraphVMapV[newV]);
               queue.push(newV);
	     }
	   }
	 }

       }

       //Traverse from V to U
       else
       {
         int newU = vertVMatches[start];

         // If this vertex has not been reached
         if(L.find(bigraphVMapU[newU])==L.end())
	 {
           L.insert(bigraphVMapU[newU]);
           queue.push(newU);
	 }
       }
     } // for

     iteration++;
   } //while
   //////////////////////////////////////////////////////////////////////

   //////////////////////////////////////////////////////////////////////
   // Calc VC = (U-L) union (B intersection L)
   //////////////////////////////////////////////////////////////////////
   for(int uID=0;uID<numU;uID++)
   {
     // if vertex not in L, it is in VC
     if(L.find(bigraphVMapU[uID])==L.end())
     {
       VC.push_back(bigraphVMapU[uID]);
     }
   }

   for(int vID=0;vID<numV;vID++)
   {
     // if vertex is in L, it is in VC
     if(L.find(bigraphVMapV[vID])!=L.end())
     {
       VC.push_back(bigraphVMapV[vID]);
     }
   }
   //////////////////////////////////////////////////////////////////////



}
////////////////////////////////////////////////////////////////////////////////













} //Zoltan2 namespace
#endif //ifdef