/usr/include/trilinos/Zoltan2_ImbalanceMetricsUtility.hpp is in libtrilinos-zoltan2-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/*! \file Zoltan2_ImbalanceMetricsUtility.hpp
*/
#ifndef ZOLTAN2_IMBALANCEMETRICSUTILITY_HPP
#define ZOLTAN2_IMBALANCEMETRICSUTILITY_HPP
#include <Zoltan2_ImbalanceMetrics.hpp>
#include <Zoltan2_MetricUtility.hpp>
namespace Zoltan2{
/*! \brief Given the local partitioning, compute the global sums in each part.
*
* \param env Environment for error handling
* \param comm communicator
* \param part \c part[i] is the part ID for local object \c i
* \param vwgts \c vwgts[w] is the StridedData object
* representing weight index \c w. The number of weights
* (which must be at least one TODO WHY?) is taken to be \c vwgts.size().
* \param mcNorm the multiCriteria norm to be used if the number of weights is
* greater than one.
* \param targetNumParts input: number of requested parts
* \param numExistingParts on return this is the maximum part ID + 1.
* \param numNonemptyParts on return this is the number of those
* parts that are non-empty.
* \param metrics on return points to a list of named MetricValues objects
* that each contains the global min, max and avg over parts of
* the item being measured. The list may contain "object count",
* "normed weight", "weight 0", "weight 1" and so on in that order.
* If uniform weights were given, then only "object count" appears.
* If one set of non-uniform weights were given, then
* "object count" and "weight 0" appear. Finally, if multiple
* weights were given, we have "object count", then "normed weight",
* then the individual weights "weight 0", "weight 1", and so on.
* \param globalSums If weights are uniform, the globalSums is the
* \c numExistingParts totals of global number of objects in each part.
* Suppose the number of weights is \c W. If
* W is 1, then on return this is an array of length \c 2*numExistingParts .
* The first \c numExistingParts entries are the count of objects in each
* part and the second is the total weight in each part.
* If \c W is greater than one, then the length of this array is
* \c (2+W)*numExistingParts .
* The first \c numExistingParts entries are the count of objects in each
* part.
* The next \c numExistingParts entries are the sum of the normed weights in
* each part.
* The final entries are the sum of the individual weights in each part,
* by weight index by part number. The array is allocated here.
*
* () must be called by all processes in \c comm.
* The imbalance metrics are not yet set in the MetricValues objects,
* because they require part size information.
*/
template <typename scalar_t, typename lno_t, typename part_t>
void globalSumsByPart(
const RCP<const Environment> &env,
const RCP<const Comm<int> > &comm,
const ArrayView<const part_t> &part,
int vwgtDim,
const ArrayView<StridedData<lno_t, scalar_t> > &vwgts,
multiCriteriaNorm mcNorm,
part_t targetNumParts,
part_t &numExistingParts,
part_t &numNonemptyParts,
ArrayRCP<RCP<BaseClassMetrics<scalar_t> > > &metrics,
ArrayRCP<scalar_t> &globalSums)
{
env->debug(DETAILED_STATUS, "Entering globalSumsByPart");
//////////////////////////////////////////////////////////
// Initialize return values
numExistingParts = numNonemptyParts = 0;
int numMetrics = 1; // "object count"
if (vwgtDim) numMetrics++; // "normed weight" or "weight 0"
if (vwgtDim > 1) numMetrics += vwgtDim; // "weight n"
// add some more metrics to the array
typedef ImbalanceMetrics<scalar_t> mv_t;
typedef typename ArrayRCP<RCP<BaseClassMetrics<scalar_t> > >::size_type array_size_type;
metrics.resize( metrics.size() + numMetrics );
for(array_size_type n = metrics.size()-numMetrics; n < metrics.size(); ++n) {
mv_t * newMetric = new mv_t; // allocate the new memory
// moved this here because we now allocate the polymorphic classes
// we should probably reorganize these functions so all data
// setup is done on the derived classes
// then as a last step we can insert them into the general array of
// MetricBase types
if (vwgtDim > 1) {
newMetric->setNorm(multiCriteriaNorm(mcNorm));
}
env->localMemoryAssertion(__FILE__,__LINE__,1,newMetric); // check errors
metrics[n] = rcp( newMetric ); // create the new members
}
array_size_type next = metrics.size() - numMetrics; // MDM - this is most
// likely temporary to
// preserve the format
// here - we are now
// filling a larger array
// so we may not have
// started at 0
//////////////////////////////////////////////////////////
// Figure out the global number of parts in use.
// Verify number of vertex weights is the same everywhere.
lno_t localNumObj = part.size();
part_t localNum[2], globalNum[2];
localNum[0] = static_cast<part_t>(vwgtDim);
localNum[1] = 0;
for (lno_t i=0; i < localNumObj; i++)
if (part[i] > localNum[1]) localNum[1] = part[i];
try{
reduceAll<int, part_t>(*comm, Teuchos::REDUCE_MAX, 2,
localNum, globalNum);
}
Z2_THROW_OUTSIDE_ERROR(*env)
env->globalBugAssertion(__FILE__,__LINE__,
"inconsistent number of vertex weights",
globalNum[0] == localNum[0], DEBUG_MODE_ASSERTION, comm);
part_t maxPartPlusOne = globalNum[1] + 1; // Range of possible part IDs:
// [0,maxPartPlusOne)
part_t globalSumSize = maxPartPlusOne * numMetrics;
scalar_t * sumBuf = new scalar_t [globalSumSize];
env->localMemoryAssertion(__FILE__, __LINE__, globalSumSize, sumBuf);
globalSums = arcp(sumBuf, 0, globalSumSize);
//////////////////////////////////////////////////////////
// Calculate the local totals by part.
scalar_t *localBuf = new scalar_t [globalSumSize];
env->localMemoryAssertion(__FILE__, __LINE__, globalSumSize, localBuf);
memset(localBuf, 0, sizeof(scalar_t) * globalSumSize);
scalar_t *obj = localBuf; // # of objects
for (lno_t i=0; i < localNumObj; i++)
obj[part[i]]++;
if (numMetrics > 1){
scalar_t *wgt = localBuf+maxPartPlusOne; // single normed weight or weight 0
try{
normedPartWeights<scalar_t, lno_t, part_t>(env, maxPartPlusOne,
part, vwgts, mcNorm, wgt);
}
Z2_FORWARD_EXCEPTIONS
// This code assumes the solution has the part ordered the
// same way as the user input. (Bug 5891 is resolved.)
if (vwgtDim > 1){
wgt += maxPartPlusOne; // individual weights
for (int vdim = 0; vdim < vwgtDim; vdim++){
for (lno_t i=0; i < localNumObj; i++)
wgt[part[i]] += vwgts[vdim][i];
wgt += maxPartPlusOne;
}
}
}
// Metric: local sums on process
metrics[next]->setName("object count");
metrics[next]->setMetricValue("local sum", localNumObj);
next++;
if (numMetrics > 1){
scalar_t *wgt = localBuf+maxPartPlusOne; // single normed weight or weight 0
scalar_t total = 0.0;
for (int p=0; p < maxPartPlusOne; p++){
total += wgt[p];
}
if (vwgtDim == 1)
metrics[next]->setName("weight 0");
else
metrics[next]->setName("normed weight");
metrics[next]->setMetricValue("local sum", total);
next++;
if (vwgtDim > 1){
for (int vdim = 0; vdim < vwgtDim; vdim++){
wgt += maxPartPlusOne;
total = 0.0;
for (int p=0; p < maxPartPlusOne; p++){
total += wgt[p];
}
std::ostringstream oss;
oss << "weight " << vdim;
metrics[next]->setName(oss.str());
metrics[next]->setMetricValue("local sum", total);
next++;
}
}
}
//////////////////////////////////////////////////////////
// Obtain global totals by part.
try{
reduceAll<int, scalar_t>(*comm, Teuchos::REDUCE_SUM, globalSumSize,
localBuf, sumBuf);
}
Z2_THROW_OUTSIDE_ERROR(*env);
delete [] localBuf;
//////////////////////////////////////////////////////////
// Global sum, min, max, and average over all parts
obj = sumBuf; // # of objects
scalar_t min=0, max=0, sum=0;
next = metrics.size() - numMetrics; // MDM - this is most likely temporary
// to preserve the format here - we are
// now filling a larger array so we may
// not have started at 0
ArrayView<scalar_t> objVec(obj, maxPartPlusOne);
getStridedStats<scalar_t>(objVec, 1, 0, min, max, sum);
if (maxPartPlusOne < targetNumParts)
min = scalar_t(0); // Some of the target parts are empty
metrics[next]->setMetricValue("global minimum", min);
metrics[next]->setMetricValue("global maximum", max);
metrics[next]->setMetricValue("global sum", sum);
next++;
if (numMetrics > 1){
scalar_t *wgt = sumBuf + maxPartPlusOne; // single normed weight or weight 0
ArrayView<scalar_t> normedWVec(wgt, maxPartPlusOne);
getStridedStats<scalar_t>(normedWVec, 1, 0, min, max, sum);
if (maxPartPlusOne < targetNumParts)
min = scalar_t(0); // Some of the target parts are empty
metrics[next]->setMetricValue("global minimum", min);
metrics[next]->setMetricValue("global maximum", max);
metrics[next]->setMetricValue("global sum", sum);
next++;
if (vwgtDim > 1){
for (int vdim=0; vdim < vwgtDim; vdim++){
wgt += maxPartPlusOne; // individual weights
ArrayView<scalar_t> fromVec(wgt, maxPartPlusOne);
getStridedStats<scalar_t>(fromVec, 1, 0, min, max, sum);
if (maxPartPlusOne < targetNumParts)
min = scalar_t(0); // Some of the target parts are empty
metrics[next]->setMetricValue("global minimum", min);
metrics[next]->setMetricValue("global maximum", max);
metrics[next]->setMetricValue("global sum", sum);
next++;
}
}
}
//////////////////////////////////////////////////////////
// How many parts do we actually have.
numExistingParts = maxPartPlusOne;
obj = sumBuf; // # of objects
/*for (part_t p=nparts-1; p > 0; p--){
if (obj[p] > 0) break;
numExistingParts--;
}*/
numNonemptyParts = numExistingParts;
for (part_t p=0; p < numExistingParts; p++)
if (obj[p] == 0) numNonemptyParts--;
env->debug(DETAILED_STATUS, "Exiting globalSumsByPart");
}
/*! \brief Compute imbalance metrics for a distribution.
*
* \param env The problem environment.
* \param comm The problem communicator.
* \param ia the InputAdapter object which corresponds to the Solution.
* \param solution the PartitioningSolution to be evaluated.
* \param mcNorm is the multicriteria norm to use if the number of weights
* is greater than one. See the multiCriteriaNorm enumerator for
* \c mcNorm values.
* \param graphModel the graph model.
* \param numExistingParts on return is the max Part ID + 1.
* \param numNonemptyParts on return is the global number of parts to which
* objects are assigned.
* \param metrics on return points to a list of named MetricValues objects
* that each contains the global min, max and avg over parts and
* also imbalance measures of
* the item being measured. The list may contain "object count",
* "normed weight", "weight 0", "weight 1" and so on in that order.
* If uniform weights were given, then only "object count" appears.
* If one set of non-uniform weights were given, then
* "object count" and "weight 0" appear. Finally, if multiple
* weights were given, we have "object count", then "normed weight",
* then the individual weights "weight 0", "weight 1", and so on.
*
* objectMetrics() must be called by all processes in \c comm.
* See the metricOffset enumerator in the MetricValues class for the
* interpretation of the metric quantities.
* \todo check that part sizes sum to one if we're doing COMPLEX_ASSERTION
*/
template <typename Adapter>
void imbalanceMetrics(
const RCP<const Environment> &env,
const RCP<const Comm<int> > &comm,
multiCriteriaNorm mcNorm,
const Adapter *ia,
const PartitioningSolution<Adapter> *solution,
const ArrayView<const typename Adapter::part_t> &partArray,
const RCP<const GraphModel<typename Adapter::base_adapter_t> > &graphModel,
typename Adapter::part_t &numExistingParts,
typename Adapter::part_t &numNonemptyParts,
ArrayRCP<RCP<BaseClassMetrics<typename Adapter::scalar_t> > > &metrics)
{
env->debug(DETAILED_STATUS, "Entering objectMetrics");
typedef typename Adapter::scalar_t scalar_t;
typedef typename Adapter::gno_t gno_t;
typedef typename Adapter::lno_t lno_t;
typedef typename Adapter::part_t part_t;
typedef typename Adapter::base_adapter_t base_adapter_t;
typedef StridedData<lno_t, scalar_t> sdata_t;
// Local number of objects.
size_t numLocalObjects = ia->getLocalNumIDs();
// Weights, if any, for each object.
int nWeights = ia->getNumWeightsPerID();
int numCriteria = (nWeights > 0 ? nWeights : 1);
Array<sdata_t> weights(numCriteria);
if (nWeights == 0){
// One set of uniform weights is implied.
// StridedData default constructor creates length 0 strided array.
weights[0] = sdata_t();
}
else{
// whether vertex degree is ever used as vertex weight.
enum BaseAdapterType adapterType = ia->adapterType();
bool useDegreeAsWeight = false;
if (adapterType == GraphAdapterType) {
useDegreeAsWeight = reinterpret_cast<const GraphAdapter
<typename Adapter::user_t, typename Adapter::userCoord_t> *>(ia)->
useDegreeAsWeight(0);
} else if (adapterType == MatrixAdapterType) {
useDegreeAsWeight = reinterpret_cast<const MatrixAdapter
<typename Adapter::user_t, typename Adapter::userCoord_t> *>(ia)->
useDegreeAsWeight(0);
} else if (adapterType == MeshAdapterType) {
useDegreeAsWeight =
reinterpret_cast<const MeshAdapter<typename Adapter::user_t> *>(ia)->
useDegreeAsWeight(0);
}
if (useDegreeAsWeight) {
ArrayView<const gno_t> Ids;
ArrayView<sdata_t> vwgts;
if (graphModel == Teuchos::null) {
std::bitset<NUM_MODEL_FLAGS> modelFlags;
RCP<GraphModel<base_adapter_t> > graph;
const RCP<const base_adapter_t> bia =
rcp(dynamic_cast<const base_adapter_t *>(ia), false);
graph = rcp(new GraphModel<base_adapter_t>(bia,env,comm,modelFlags));
graph->getVertexList(Ids, vwgts);
} else {
graphModel->getVertexList(Ids, vwgts);
}
scalar_t *wgt = new scalar_t[numLocalObjects];
for (int i=0; i < nWeights; i++){
for (size_t j=0; j < numLocalObjects; j++) {
wgt[j] = vwgts[i][j];
}
ArrayRCP<const scalar_t> wgtArray(wgt,0,numLocalObjects,false);
weights[i] = sdata_t(wgtArray, 1);
}
} else {
for (int i=0; i < nWeights; i++){
const scalar_t *wgt;
int stride;
ia->getWeightsView(wgt, stride, i);
ArrayRCP<const scalar_t> wgtArray(wgt,0,stride*numLocalObjects,false);
weights[i] = sdata_t(wgtArray, stride);
}
}
}
// Relative part sizes, if any, assigned to the parts.
part_t targetNumParts = comm->getSize();
scalar_t *psizes = NULL;
ArrayRCP<ArrayRCP<scalar_t> > partSizes(numCriteria);
if (solution) {
targetNumParts = solution->getTargetGlobalNumberOfParts();
for (int dim=0; dim < numCriteria; dim++){
if (solution->criteriaHasUniformPartSizes(dim) != true){
psizes = new scalar_t [targetNumParts];
env->localMemoryAssertion(__FILE__, __LINE__, targetNumParts, psizes);
for (part_t i=0; i < targetNumParts; i++){
psizes[i] = solution->getCriteriaPartSize(dim, i);
}
partSizes[dim] = arcp(psizes, 0, targetNumParts, true);
}
}
}
///////////////////////////////////////////////////////////////////////////
// Get number of parts, and the number that are non-empty.
// Get sums per part of objects, individual weights, and normed weight sums.
ArrayRCP<scalar_t> globalSums;
int initialMetricCount = metrics.size();
try{
globalSumsByPart<scalar_t, lno_t, part_t>(env, comm,
partArray, nWeights, weights.view(0, numCriteria), mcNorm,
targetNumParts, numExistingParts, numNonemptyParts, metrics, globalSums);
}
Z2_FORWARD_EXCEPTIONS
int addedMetricsCount = metrics.size() - initialMetricCount;
///////////////////////////////////////////////////////////////////////////
// Compute imbalances for the object count.
// (Use first index of part sizes.)
int index = initialMetricCount;
scalar_t *objCount = globalSums.getRawPtr();
scalar_t min, max, avg;
psizes=NULL;
if (partSizes[0].size() > 0)
psizes = partSizes[0].getRawPtr();
scalar_t gsum = metrics[index]->getMetricValue("global sum");
computeImbalances<scalar_t, part_t>(numExistingParts, targetNumParts, psizes,
gsum, objCount, min, max, avg);
metrics[index]->setMetricValue("global average", gsum / targetNumParts);
metrics[index]->setMetricValue("maximum imbalance", 1.0 + max);
metrics[index]->setMetricValue("average imbalance", avg);
///////////////////////////////////////////////////////////////////////////
// Compute imbalances for the normed weight sum.
scalar_t *wgts = globalSums.getRawPtr() + numExistingParts;
if (addedMetricsCount > 1){
++index;
gsum = metrics[index]->getMetricValue("global sum");
computeImbalances<scalar_t, part_t>(numExistingParts, targetNumParts,
numCriteria, partSizes.view(0, numCriteria), gsum, wgts, min, max, avg);
metrics[index]->setMetricValue("global average", gsum / targetNumParts);
metrics[index]->setMetricValue("maximum imbalance", 1.0 + max);
metrics[index]->setMetricValue("average imbalance", avg);
if (addedMetricsCount > 2){
///////////////////////////////////////////////////////////////////////////
// Compute imbalances for each individual weight.
++index;
for (int vdim=0; vdim < numCriteria; vdim++){
wgts += numExistingParts;
psizes = NULL;
if (partSizes[vdim].size() > 0)
psizes = partSizes[vdim].getRawPtr();
gsum = metrics[index]->getMetricValue("global sum");
computeImbalances<scalar_t, part_t>(numExistingParts, targetNumParts,
psizes, gsum, wgts, min, max, avg);
metrics[index]->setMetricValue("global average", gsum / targetNumParts);
metrics[index]->setMetricValue("maximum imbalance", 1.0 + max);
metrics[index]->setMetricValue("average imbalance", avg);
index++;
}
}
}
env->debug(DETAILED_STATUS, "Exiting objectMetrics");
}
/*! \brief Print out header info for imbalance metrics.
*/
template <typename scalar_t, typename part_t>
void printImbalanceMetricsHeader(
std::ostream &os,
part_t targetNumParts,
part_t numExistingParts,
part_t numNonemptyParts)
{
os << "Imbalance Metrics: (" << numExistingParts << " existing parts)";
if (numNonemptyParts < numExistingParts) {
os << " (" << numNonemptyParts << " of which are non-empty)";
}
os << std::endl;
if (targetNumParts != numExistingParts) {
os << "Target number of parts is " << targetNumParts << std::endl;
}
ImbalanceMetrics<scalar_t>::printHeader(os);
}
/*! \brief Print out list of imbalance metrics.
*/
template <typename scalar_t, typename part_t>
void printImbalanceMetrics(
std::ostream &os,
part_t targetNumParts,
part_t numExistingParts,
part_t numNonemptyParts,
const ArrayView<RCP<BaseClassMetrics<scalar_t>>> &infoList)
{
printImbalanceMetricsHeader<scalar_t, part_t>(os, targetNumParts,
numExistingParts,
numNonemptyParts);
for (int i=0; i < infoList.size(); i++) {
if (infoList[i]->getName() != METRICS_UNSET_STRING) {
infoList[i]->printLine(os);
}
}
os << std::endl;
}
/*! \brief Print out header and a single imbalance metric.
*/
template <typename scalar_t, typename part_t>
void printImbalanceMetrics(
std::ostream &os,
part_t targetNumParts,
part_t numExistingParts,
part_t numNonemptyParts,
RCP<BaseClassMetrics<scalar_t>> metricValue)
{
printImbalanceMetricsHeader<scalar_t, part_t>(os, targetNumParts,
numExistingParts,
numNonemptyParts);
metricValue->printLine(os);
}
} //namespace Zoltan2
#endif
|