This file is indexed.

/usr/include/trilinos/Zoltan2_ImbalanceMetricsUtility.hpp is in libtrilinos-zoltan2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_ImbalanceMetricsUtility.hpp
 */

#ifndef ZOLTAN2_IMBALANCEMETRICSUTILITY_HPP
#define ZOLTAN2_IMBALANCEMETRICSUTILITY_HPP

#include <Zoltan2_ImbalanceMetrics.hpp>
#include <Zoltan2_MetricUtility.hpp>

namespace Zoltan2{

/*! \brief Given the local partitioning, compute the global sums in each part.
 *
 *   \param env   Environment for error handling
 *   \param comm   communicator
 *   \param part   \c part[i] is the part ID for local object \c i
 *   \param vwgts  \c vwgts[w] is the StridedData object
 *       representing weight index \c w. The number of weights
 *       (which must be at least one  TODO WHY?) is taken to be \c vwgts.size().
 *   \param mcNorm the multiCriteria norm to be used if the number of weights is
 *             greater than one.
 *   \param targetNumParts  input:  number of requested parts
 *   \param numExistingParts  on return this is the maximum part ID + 1.
 *   \param numNonemptyParts  on return this is the number of those
 *          parts that are non-empty.
 *   \param metrics on return points to a list of named MetricValues objects
 *     that each contains the global min, max and avg over parts of
 *     the item being measured. The list may contain "object count",
 *     "normed weight", "weight 0", "weight 1" and so on in that order.
 *     If uniform weights were given, then only "object count" appears.
 *     If one set of non-uniform weights were given, then
 *     "object count" and "weight 0" appear.  Finally, if multiple
 *     weights were given, we have "object count", then "normed weight",
 *     then the individual weights "weight 0", "weight 1", and so on.
 *   \param globalSums If weights are uniform, the globalSums is the
 *      \c numExistingParts totals of global number of objects in each part.
 *     Suppose the number of weights is \c W.  If
 *     W is 1, then on return this is an array of length \c 2*numExistingParts .
 *     The first \c numExistingParts entries are the count of objects in each 
 *     part and the second is the total weight in each part.
 *     If \c W is greater than one, then the length of this array is
 *     \c (2+W)*numExistingParts .
 *     The first \c numExistingParts entries are the count of objects in each 
 *     part.
 *     The next \c numExistingParts entries are the sum of the normed weights in
 *     each part.
 *     The final entries are the sum of the individual weights in each part,
 *     by weight index by part number.  The array is allocated here.
 *
 * () must be called by all processes in \c comm.
 * The imbalance metrics are not yet set in the MetricValues objects,
 * because they require part size information.
 */

template <typename scalar_t, typename lno_t, typename part_t>
  void globalSumsByPart(
    const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm,
    const ArrayView<const part_t> &part,
    int vwgtDim,
    const ArrayView<StridedData<lno_t, scalar_t> > &vwgts,
    multiCriteriaNorm mcNorm,
    part_t targetNumParts,
    part_t &numExistingParts,
    part_t &numNonemptyParts,
    ArrayRCP<RCP<BaseClassMetrics<scalar_t> > > &metrics,
    ArrayRCP<scalar_t> &globalSums)
{
  env->debug(DETAILED_STATUS, "Entering globalSumsByPart");
  //////////////////////////////////////////////////////////
  // Initialize return values

  numExistingParts = numNonemptyParts = 0;

  int numMetrics = 1;                       // "object count"
  if (vwgtDim) numMetrics++;                // "normed weight" or "weight 0"
  if (vwgtDim > 1) numMetrics += vwgtDim;   // "weight n"

  // add some more metrics to the array
  typedef ImbalanceMetrics<scalar_t> mv_t;
  typedef typename ArrayRCP<RCP<BaseClassMetrics<scalar_t> > >::size_type array_size_type;
  metrics.resize( metrics.size() + numMetrics );
  for(array_size_type n = metrics.size()-numMetrics; n < metrics.size(); ++n) {
    mv_t * newMetric = new mv_t;									// allocate the new memory

    // moved this here because we now allocate the polymorphic classes
    // we should probably reorganize these functions so all data 
    // setup is done on the derived classes
    // then as a last step we can insert them into the general array of 
    // MetricBase types
    if (vwgtDim > 1) {
      newMetric->setNorm(multiCriteriaNorm(mcNorm));
    }

    env->localMemoryAssertion(__FILE__,__LINE__,1,newMetric);	// check errors
    metrics[n] = rcp( newMetric ); 		// create the new members
  }
  array_size_type next = metrics.size() - numMetrics; // MDM - this is most 
                                                      // likely temporary to 
                                                      // preserve the format 
                                                      // here - we are now 
                                                      // filling a larger array
                                                      // so we may not have 
                                                      // started at 0

  //////////////////////////////////////////////////////////
  // Figure out the global number of parts in use.
  // Verify number of vertex weights is the same everywhere.

  lno_t localNumObj = part.size();
  part_t localNum[2], globalNum[2];
  localNum[0] = static_cast<part_t>(vwgtDim);
  localNum[1] = 0;

  for (lno_t i=0; i < localNumObj; i++)
    if (part[i] > localNum[1]) localNum[1] = part[i];

  try{
    reduceAll<int, part_t>(*comm, Teuchos::REDUCE_MAX, 2,
      localNum, globalNum);
  }
  Z2_THROW_OUTSIDE_ERROR(*env)

  env->globalBugAssertion(__FILE__,__LINE__,
    "inconsistent number of vertex weights",
    globalNum[0] == localNum[0], DEBUG_MODE_ASSERTION, comm);

  part_t maxPartPlusOne = globalNum[1] + 1;  // Range of possible part IDs:
                                             // [0,maxPartPlusOne)

  part_t globalSumSize = maxPartPlusOne * numMetrics;
  scalar_t * sumBuf = new scalar_t [globalSumSize];
  env->localMemoryAssertion(__FILE__, __LINE__, globalSumSize, sumBuf);
  globalSums = arcp(sumBuf, 0, globalSumSize);

  //////////////////////////////////////////////////////////
  // Calculate the local totals by part.

  scalar_t *localBuf = new scalar_t [globalSumSize];
  env->localMemoryAssertion(__FILE__, __LINE__, globalSumSize, localBuf);
  memset(localBuf, 0, sizeof(scalar_t) * globalSumSize);

  scalar_t *obj = localBuf;              // # of objects

  for (lno_t i=0; i < localNumObj; i++)
    obj[part[i]]++;

  if (numMetrics > 1){

    scalar_t *wgt = localBuf+maxPartPlusOne; // single normed weight or weight 0
    try{
      normedPartWeights<scalar_t, lno_t, part_t>(env, maxPartPlusOne,
        part, vwgts, mcNorm, wgt);
    }
    Z2_FORWARD_EXCEPTIONS

    // This code assumes the solution has the part ordered the
    // same way as the user input.  (Bug 5891 is resolved.)
    if (vwgtDim > 1){
      wgt += maxPartPlusOne;         // individual weights
      for (int vdim = 0; vdim < vwgtDim; vdim++){
        for (lno_t i=0; i < localNumObj; i++)
          wgt[part[i]] += vwgts[vdim][i];
        wgt += maxPartPlusOne;
      }
    }
  }

  // Metric: local sums on process
  metrics[next]->setName("object count");
  metrics[next]->setMetricValue("local sum", localNumObj);

  next++;

  if (numMetrics > 1){
    scalar_t *wgt = localBuf+maxPartPlusOne; // single normed weight or weight 0
    scalar_t total = 0.0;

    for (int p=0; p < maxPartPlusOne; p++){
      total += wgt[p];
    }

    if (vwgtDim == 1)
      metrics[next]->setName("weight 0");
    else
      metrics[next]->setName("normed weight");

    metrics[next]->setMetricValue("local sum", total);

    next++;

    if (vwgtDim > 1){
      for (int vdim = 0; vdim < vwgtDim; vdim++){
        wgt += maxPartPlusOne;
        total = 0.0;
        for (int p=0; p < maxPartPlusOne; p++){
          total += wgt[p];
        }

        std::ostringstream oss;
        oss << "weight " << vdim;

        metrics[next]->setName(oss.str());
        metrics[next]->setMetricValue("local sum", total);

        next++;
      }
    }
  }

  //////////////////////////////////////////////////////////
  // Obtain global totals by part.

  try{
    reduceAll<int, scalar_t>(*comm, Teuchos::REDUCE_SUM, globalSumSize,
      localBuf, sumBuf);
  }
  Z2_THROW_OUTSIDE_ERROR(*env);

  delete [] localBuf;

  //////////////////////////////////////////////////////////
  // Global sum, min, max, and average over all parts

  obj = sumBuf;                     // # of objects
  scalar_t min=0, max=0, sum=0;
  next = metrics.size() - numMetrics; // MDM - this is most likely temporary 
                                      // to preserve the format here - we are 
                                      // now filling a larger array so we may 
                                      // not have started at 0


  ArrayView<scalar_t> objVec(obj, maxPartPlusOne);
  getStridedStats<scalar_t>(objVec, 1, 0, min, max, sum);
  if (maxPartPlusOne < targetNumParts)
    min = scalar_t(0);  // Some of the target parts are empty

  metrics[next]->setMetricValue("global minimum", min);
  metrics[next]->setMetricValue("global maximum", max);
  metrics[next]->setMetricValue("global sum", sum);
  next++;

  if (numMetrics > 1){
    scalar_t *wgt = sumBuf + maxPartPlusOne; // single normed weight or weight 0

    ArrayView<scalar_t> normedWVec(wgt, maxPartPlusOne);
    getStridedStats<scalar_t>(normedWVec, 1, 0, min, max, sum);
    if (maxPartPlusOne < targetNumParts)
      min = scalar_t(0);  // Some of the target parts are empty

    metrics[next]->setMetricValue("global minimum", min);
    metrics[next]->setMetricValue("global maximum", max);
    metrics[next]->setMetricValue("global sum", sum);
    next++;

    if (vwgtDim > 1){
      for (int vdim=0; vdim < vwgtDim; vdim++){
        wgt += maxPartPlusOne;       // individual weights
        ArrayView<scalar_t> fromVec(wgt, maxPartPlusOne);
        getStridedStats<scalar_t>(fromVec, 1, 0, min, max, sum);
        if (maxPartPlusOne < targetNumParts)
          min = scalar_t(0);  // Some of the target parts are empty

        metrics[next]->setMetricValue("global minimum", min);
        metrics[next]->setMetricValue("global maximum", max);
        metrics[next]->setMetricValue("global sum", sum);
        next++;
      }
    }
  }

  //////////////////////////////////////////////////////////
  // How many parts do we actually have.

  numExistingParts = maxPartPlusOne;
  obj = sumBuf;               // # of objects

  /*for (part_t p=nparts-1; p > 0; p--){
    if (obj[p] > 0) break;
    numExistingParts--;
    }*/

  numNonemptyParts = numExistingParts;

  for (part_t p=0; p < numExistingParts; p++)
    if (obj[p] == 0) numNonemptyParts--;

  env->debug(DETAILED_STATUS, "Exiting globalSumsByPart");
}

/*! \brief Compute imbalance metrics for a distribution.
 *
 *   \param env   The problem environment.
 *   \param comm  The problem communicator.
 *   \param ia the InputAdapter object which corresponds to the Solution.
 *   \param solution the PartitioningSolution to be evaluated.
 *   \param mcNorm  is the multicriteria norm to use if the number of weights
 *           is greater than one.  See the multiCriteriaNorm enumerator for
 *           \c mcNorm values.
 *   \param graphModel the graph model.
 *   \param numExistingParts on return is the max Part ID + 1.
 *   \param numNonemptyParts on return is the global number of parts to which
 *                                objects are assigned.
 *   \param metrics on return points to a list of named MetricValues objects
 *     that each contains the global min, max and avg over parts and
 *     also imbalance measures of
 *     the item being measured. The list may contain "object count",
 *     "normed weight", "weight 0", "weight 1" and so on in that order.
 *     If uniform weights were given, then only "object count" appears.
 *     If one set of non-uniform weights were given, then
 *     "object count" and "weight 0" appear.  Finally, if multiple
 *     weights were given, we have "object count", then "normed weight",
 *     then the individual weights "weight 0", "weight 1", and so on.
 *
 *  objectMetrics() must be called by all processes in \c comm.
 *  See the metricOffset enumerator in the MetricValues class for the
 *  interpretation of the metric quantities.
 *   \todo check that part sizes sum to one if we're doing COMPLEX_ASSERTION
 */

template <typename Adapter>
  void imbalanceMetrics(
    const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm,
    multiCriteriaNorm mcNorm,
    const Adapter *ia,
    const PartitioningSolution<Adapter> *solution,
    const ArrayView<const typename Adapter::part_t> &partArray,
    const RCP<const GraphModel<typename Adapter::base_adapter_t> > &graphModel,
    typename Adapter::part_t &numExistingParts,
    typename Adapter::part_t &numNonemptyParts,
    ArrayRCP<RCP<BaseClassMetrics<typename Adapter::scalar_t> > > &metrics)
{
  env->debug(DETAILED_STATUS, "Entering objectMetrics");

  typedef typename Adapter::scalar_t scalar_t;
  typedef typename Adapter::gno_t gno_t;
  typedef typename Adapter::lno_t lno_t;
  typedef typename Adapter::part_t part_t;
  typedef typename Adapter::base_adapter_t base_adapter_t;
  typedef StridedData<lno_t, scalar_t> sdata_t;

  // Local number of objects.

  size_t numLocalObjects = ia->getLocalNumIDs();

  // Weights, if any, for each object.

  int nWeights = ia->getNumWeightsPerID();
  int numCriteria = (nWeights > 0 ? nWeights : 1);
  Array<sdata_t> weights(numCriteria);

  if (nWeights == 0){
    // One set of uniform weights is implied.
    // StridedData default constructor creates length 0 strided array.
    weights[0] = sdata_t();
  }
  else{
    // whether vertex degree is ever used as vertex weight.
    enum BaseAdapterType adapterType = ia->adapterType();
    bool useDegreeAsWeight = false;
    if (adapterType == GraphAdapterType) {
      useDegreeAsWeight = reinterpret_cast<const GraphAdapter
	<typename Adapter::user_t, typename Adapter::userCoord_t> *>(ia)->
	useDegreeAsWeight(0);
    } else if (adapterType == MatrixAdapterType) {
      useDegreeAsWeight = reinterpret_cast<const MatrixAdapter
	<typename Adapter::user_t, typename Adapter::userCoord_t> *>(ia)->
	useDegreeAsWeight(0);
    } else if (adapterType == MeshAdapterType) {
      useDegreeAsWeight =
	reinterpret_cast<const MeshAdapter<typename Adapter::user_t> *>(ia)->
	useDegreeAsWeight(0);
    }
    if (useDegreeAsWeight) {
      ArrayView<const gno_t> Ids;
      ArrayView<sdata_t> vwgts;
      if (graphModel == Teuchos::null) {
	std::bitset<NUM_MODEL_FLAGS> modelFlags;
	RCP<GraphModel<base_adapter_t> > graph;
	const RCP<const base_adapter_t> bia =
	  rcp(dynamic_cast<const base_adapter_t *>(ia), false);
	graph = rcp(new GraphModel<base_adapter_t>(bia,env,comm,modelFlags));
	graph->getVertexList(Ids, vwgts);
      } else {
	graphModel->getVertexList(Ids, vwgts);
      }
      scalar_t *wgt = new scalar_t[numLocalObjects];
      for (int i=0; i < nWeights; i++){
	for (size_t j=0; j < numLocalObjects; j++) {
	  wgt[j] = vwgts[i][j];
	}
	ArrayRCP<const scalar_t> wgtArray(wgt,0,numLocalObjects,false);
	weights[i] = sdata_t(wgtArray, 1);
      }
    } else {
      for (int i=0; i < nWeights; i++){
	const scalar_t *wgt;
	int stride;
	ia->getWeightsView(wgt, stride, i);
	ArrayRCP<const scalar_t> wgtArray(wgt,0,stride*numLocalObjects,false);
	weights[i] = sdata_t(wgtArray, stride);
      }
    }
  }

  // Relative part sizes, if any, assigned to the parts.

  part_t targetNumParts = comm->getSize();
  scalar_t *psizes = NULL;

  ArrayRCP<ArrayRCP<scalar_t> > partSizes(numCriteria);
  if (solution) {
    targetNumParts = solution->getTargetGlobalNumberOfParts();
    for (int dim=0; dim < numCriteria; dim++){
      if (solution->criteriaHasUniformPartSizes(dim) != true){
        psizes = new scalar_t [targetNumParts];
        env->localMemoryAssertion(__FILE__, __LINE__, targetNumParts, psizes);
        for (part_t i=0; i < targetNumParts; i++){
          psizes[i] = solution->getCriteriaPartSize(dim, i);
        }
        partSizes[dim] = arcp(psizes, 0, targetNumParts, true);
      }
    }
  }

  ///////////////////////////////////////////////////////////////////////////
  // Get number of parts, and the number that are non-empty.
  // Get sums per part of objects, individual weights, and normed weight sums.

  ArrayRCP<scalar_t> globalSums;

  int initialMetricCount = metrics.size();
  try{
    globalSumsByPart<scalar_t, lno_t, part_t>(env, comm,
      partArray, nWeights, weights.view(0, numCriteria), mcNorm,
      targetNumParts, numExistingParts, numNonemptyParts, metrics, globalSums);
  }
  Z2_FORWARD_EXCEPTIONS

  int addedMetricsCount = metrics.size() - initialMetricCount;

  ///////////////////////////////////////////////////////////////////////////
  // Compute imbalances for the object count.
  // (Use first index of part sizes.)

  int index = initialMetricCount;

  scalar_t *objCount  = globalSums.getRawPtr();
  scalar_t min, max, avg;
  psizes=NULL;

  if (partSizes[0].size() > 0)
    psizes = partSizes[0].getRawPtr();

  scalar_t gsum = metrics[index]->getMetricValue("global sum");
  computeImbalances<scalar_t, part_t>(numExistingParts, targetNumParts, psizes,
      gsum, objCount, min, max, avg);

  metrics[index]->setMetricValue("global average", gsum / targetNumParts);

  metrics[index]->setMetricValue("maximum imbalance", 1.0 + max);
  metrics[index]->setMetricValue("average imbalance", avg);

  ///////////////////////////////////////////////////////////////////////////
  // Compute imbalances for the normed weight sum.

  scalar_t *wgts = globalSums.getRawPtr() + numExistingParts;

  if (addedMetricsCount > 1){
    ++index;
    gsum = metrics[index]->getMetricValue("global sum");
    computeImbalances<scalar_t, part_t>(numExistingParts, targetNumParts,
      numCriteria, partSizes.view(0, numCriteria), gsum, wgts, min, max, avg);

    metrics[index]->setMetricValue("global average", gsum / targetNumParts);

    metrics[index]->setMetricValue("maximum imbalance", 1.0 + max);
    metrics[index]->setMetricValue("average imbalance", avg);

    if (addedMetricsCount > 2){

    ///////////////////////////////////////////////////////////////////////////
    // Compute imbalances for each individual weight.

      ++index;

      for (int vdim=0; vdim < numCriteria; vdim++){
        wgts += numExistingParts;
        psizes = NULL;

        if (partSizes[vdim].size() > 0)
           psizes = partSizes[vdim].getRawPtr();

        gsum = metrics[index]->getMetricValue("global sum");
        computeImbalances<scalar_t, part_t>(numExistingParts, targetNumParts, 
                                            psizes, gsum, wgts, min, max, avg);

        metrics[index]->setMetricValue("global average", gsum / targetNumParts);

        metrics[index]->setMetricValue("maximum imbalance", 1.0 + max);
        metrics[index]->setMetricValue("average imbalance", avg);
        index++;
      }
    }

  }
  env->debug(DETAILED_STATUS, "Exiting objectMetrics");
}

/*! \brief Print out header info for imbalance metrics.
 */
template <typename scalar_t, typename part_t>
void printImbalanceMetricsHeader(
  std::ostream &os, 
  part_t targetNumParts, 
  part_t numExistingParts, 
  part_t numNonemptyParts)
{
  os << "Imbalance Metrics: (" << numExistingParts << " existing parts)";
  if (numNonemptyParts < numExistingParts) {
    os << " (" << numNonemptyParts << " of which are non-empty)";
  }
  os << std::endl;
  if (targetNumParts != numExistingParts) {
    os << "Target number of parts is " << targetNumParts << std::endl;
  }
  ImbalanceMetrics<scalar_t>::printHeader(os);
}

/*! \brief Print out list of imbalance metrics.
 */
template <typename scalar_t, typename part_t>
void printImbalanceMetrics(
  std::ostream &os, 
  part_t targetNumParts, 
  part_t numExistingParts, 
  part_t numNonemptyParts, 
  const ArrayView<RCP<BaseClassMetrics<scalar_t>>> &infoList)
{
  printImbalanceMetricsHeader<scalar_t, part_t>(os, targetNumParts, 
                                                numExistingParts,
                                                numNonemptyParts);
  for (int i=0; i < infoList.size(); i++) {
    if (infoList[i]->getName() != METRICS_UNSET_STRING) {
      infoList[i]->printLine(os);
    }
  }
  os << std::endl;
}

/*! \brief Print out header and a single imbalance metric.
 */
template <typename scalar_t, typename part_t>
void printImbalanceMetrics(
  std::ostream &os, 
  part_t targetNumParts, 
  part_t numExistingParts, 
  part_t numNonemptyParts, 
  RCP<BaseClassMetrics<scalar_t>> metricValue)
{
  printImbalanceMetricsHeader<scalar_t, part_t>(os, targetNumParts,
                                                numExistingParts,
                                                numNonemptyParts);
  metricValue->printLine(os);
}

} //namespace Zoltan2


#endif