This file is indexed.

/usr/include/trilinos/Zoltan2_AlgParMA.hpp is in libtrilinos-zoltan2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef _ZOLTAN2_ALGPARMA_HPP_
#define _ZOLTAN2_ALGPARMA_HPP_

#include <Zoltan2_Algorithm.hpp>
#include <Zoltan2_PartitioningSolution.hpp>
#include <Zoltan2_Util.hpp>
#include <Zoltan2_TPLTraits.hpp>

//////////////////////////////////////////////////////////////////////////////
//! \file Zoltan2_AlgParMA.hpp
//! \brief interface to the ParMA library
//  
//  This design creates an apf mesh to run the ParMA algorithms on. The
//  final solution is determined by changes from beginning to end of the mesh.
//  This approach allows development closer to that of PUMI setup but at the 
//  cost of creating an extra mesh representation.
// 
//  Available ParMA algorithms are given by setting the parma_method parameter 
//  of the sublist parma_paramaters to one of the following:
//  Vertex       - Balances targeting vertex imbalance
//  Element      - Balances targeting element imbalance
//  VtxElm       - Balances targeting vertex and element imbalance
//  VtxEdgeElm   - Balances targeting vertex, edge, and element imbalance
//  Ghost        - Balances using ghost element aware diffusion      
//  Shape        - Optimizes shape of parts by increasing the size of small part boundaries
//  Centroid     - Balances using centroid diffusion
//////////////////////////////////////////////////////////////////////////////

#ifndef HAVE_ZOLTAN2_PARMA

// Error handling for when ParMA is requested
// but Zoltan2 not built with ParMA.

namespace Zoltan2 {
template <typename Adapter>
class AlgParMA : public Algorithm<Adapter>
{
public:
  typedef typename Adapter::user_t user_t;

  AlgParMA(const RCP<const Environment> &env,
           const RCP<const Comm<int> > &problemComm,
           const RCP<const BaseAdapter<user_t> > &adapter)
  {
    throw std::runtime_error(
          "BUILD ERROR:  ParMA requested but not compiled into Zoltan2.\n"
          "Please set CMake flag Zoltan2_ENABLE_ParMA:BOOL=ON.");
  }
};
}

#endif

#ifdef HAVE_ZOLTAN2_PARMA


#include <apf.h>
#include <gmi_null.h>
#include <apfMDS.h>
#include <apfMesh2.h>
#include <apfNumbering.h>
#include <PCU.h>
#include <parma.h>
#include <apfConvert.h>
#include <apfShape.h>
#include <map>
#include <cassert>

namespace Zoltan2 {

template <typename Adapter>
class AlgParMA : public Algorithm<Adapter>
{

private:

  typedef typename Adapter::lno_t lno_t;
  typedef typename Adapter::gno_t gno_t;
  typedef typename Adapter::scalar_t scalar_t;
  typedef typename Adapter::part_t part_t;
  typedef typename Adapter::user_t user_t;
  typedef typename Adapter::userCoord_t userCoord_t;

  const RCP<const Environment> env;
  const RCP<const Comm<int> > problemComm;
  const RCP<const MeshAdapter<user_t> > adapter;
  
  apf::Mesh2* m;
  apf::Numbering* gids;
  apf::Numbering* origin_part_ids;
  std::map<gno_t, lno_t> mapping_elm_gids_index;

  MPI_Comm mpicomm;
  bool pcu_outside;

  void setMPIComm(const RCP<const Comm<int> > &problemComm__) {
#   ifdef HAVE_ZOLTAN2_MPI
      mpicomm = Teuchos::getRawMpiComm(*problemComm__);
#   else
      mpicomm = MPI_COMM_WORLD;  // taken from siMPI
#   endif
  }
  // provides conversion from an APF entity dimension to a Zoltan2 entity type
  enum MeshEntityType entityAPFtoZ2(int dimension) const {return static_cast<MeshEntityType>(dimension);}

  //provides a conversion from the Zoltan2 topology type to and APF type
  //  throws an error on topology types not supported by APF
  enum apf::Mesh::Type topologyZ2toAPF(enum EntityTopologyType ttype) const {
    if (ttype==POINT)
      return apf::Mesh::VERTEX;
    else if (ttype==LINE_SEGMENT)
      return apf::Mesh::EDGE;
    else if (ttype==TRIANGLE)
      return apf::Mesh::TRIANGLE;
    else if (ttype==QUADRILATERAL)
      return apf::Mesh::QUAD;
    else if (ttype==TETRAHEDRON) 
      return apf::Mesh::TET;
    else if (ttype==HEXAHEDRON)
      return apf::Mesh::HEX;
    else if (ttype==PRISM)
      return apf::Mesh::PRISM;
    else if (ttype==PYRAMID)
      return apf::Mesh::PYRAMID;
    else 
      throw std::runtime_error("APF does not support this topology type");
    
  }

  //Sets the weights of each entity in dimension 'dim' to those provided by the mesh adapter
  //sets all weights in the mesh adapter but currently only one is considered by ParMA
  void setEntWeights(int dim, apf::MeshTag* tag) {
    MeshEntityType etype = entityAPFtoZ2(dim);
    for (int i=0;i<m->getTagSize(tag);i++) {
      apf::MeshIterator* itr = m->begin(dim);
      apf::MeshEntity* ent;
      const scalar_t* ws=NULL;
      int stride;
      if (i<adapter->getNumWeightsPerOf(etype)) 
        adapter->getWeightsViewOf(etype,ws,stride,i);
      int j=0;
      while ((ent= m->iterate(itr)))  {
        double w = 1.0;
        if (ws!=NULL)
          w = static_cast<double>(ws[j]);
        m->setDoubleTag(ent,tag,&w);
        j++;
      }
      m->end(itr);
    }
  }
  
  //Helper function to set the weights of each dimension needed by the specific parma algorithm
  apf::MeshTag* setWeights(bool vtx, bool edge, bool face, bool elm) {
    int num_ws=1;
    if (vtx)
      num_ws = std::max(num_ws,adapter->getNumWeightsPerOf(MESH_VERTEX));
    if (edge)
      num_ws = std::max(num_ws,adapter->getNumWeightsPerOf(MESH_EDGE));
    if (face)
      num_ws = std::max(num_ws,adapter->getNumWeightsPerOf(MESH_FACE));
    if (elm) 
      num_ws = std::max(num_ws,adapter->getNumWeightsPerOf(entityAPFtoZ2(m->getDimension())));
    apf::MeshTag* tag = m->createDoubleTag("parma_weight",num_ws);
    if (vtx)
      setEntWeights(0,tag);
    if (edge)
      setEntWeights(1,tag);
    if (face)
      setEntWeights(2,tag);
    if (elm) {
      setEntWeights(m->getDimension(),tag);
    }
    return tag;
  }


  //APF Mesh construction helper functions modified and placed here to support arbitrary entity types
  void constructElements(const gno_t* conn, lno_t nelem, const lno_t* offsets, 
                         const EntityTopologyType* tops, apf::GlobalToVert& globalToVert)
  {
    apf::ModelEntity* interior = m->findModelEntity(m->getDimension(), 0);
    for (lno_t i = 0; i < nelem; ++i) {
      apf::Mesh::Type etype = topologyZ2toAPF(tops[i]);
      apf::Downward verts;
      for (int j = offsets[i]; j < offsets[i+1]; ++j)
	verts[j-offsets[i]] = globalToVert[conn[j]];
      buildElement(m, interior, etype, verts);
    }
  }
  int getMax(const apf::GlobalToVert& globalToVert)
  {
    int max = -1;
    APF_CONST_ITERATE(apf::GlobalToVert, globalToVert, it)
      max = std::max(max, it->first);
    PCU_Max_Ints(&max, 1); // this is type-dependent
    return max;
  }
  void constructResidence(apf::GlobalToVert& globalToVert)
  {
    int max = getMax(globalToVert);
    int total = max + 1;
    int peers = PCU_Comm_Peers();
    int quotient = total / peers;
    int remainder = total % peers;
    int mySize = quotient;
    int self = PCU_Comm_Self();
    if (self == (peers - 1))
      mySize += remainder;
    typedef std::vector< std::vector<int> > TmpParts;
    TmpParts tmpParts(mySize);
    /* if we have a vertex, send its global id to the
       broker for that global id */
    PCU_Comm_Begin();
    APF_ITERATE(apf::GlobalToVert, globalToVert, it) {
      int gid = it->first;
      int to = std::min(peers - 1, gid / quotient);
      PCU_COMM_PACK(to, gid);
    }
    PCU_Comm_Send();
    int myOffset = self * quotient;
    /* brokers store all the part ids that sent messages
       for each global id */
    while (PCU_Comm_Receive()) {
      int gid;
      PCU_COMM_UNPACK(gid);
      int from = PCU_Comm_Sender();
      tmpParts.at(gid - myOffset).push_back(from);
    }
    /* for each global id, send all associated part ids
       to all associated parts */
    PCU_Comm_Begin();
    for (int i = 0; i < mySize; ++i) {
      std::vector<int>& parts = tmpParts[i];
      for (size_t j = 0; j < parts.size(); ++j) {
	int to = parts[j];
	int gid = i + myOffset;
	int nparts = parts.size();
	PCU_COMM_PACK(to, gid);
	PCU_COMM_PACK(to, nparts);
	for (size_t k = 0; k < parts.size(); ++k)
	  PCU_COMM_PACK(to, parts[k]);
      }
    }
    PCU_Comm_Send();
    /* receiving a global id and associated parts,
     lookup the vertex and classify it on the partition
     model entity for that set of parts */
    while (PCU_Comm_Receive()) {
      int gid;
      PCU_COMM_UNPACK(gid);
      int nparts;
      PCU_COMM_UNPACK(nparts);
      apf::Parts residence;
      for (int i = 0; i < nparts; ++i) {
	int part;
	PCU_COMM_UNPACK(part);
	residence.insert(part);
      }
      apf::MeshEntity* vert = globalToVert[gid];
      m->setResidence(vert, residence);
    }
  }

  /* given correct residence from the above algorithm,
   negotiate remote copies by exchanging (gid,pointer)
   pairs with parts in the residence of the vertex */
  void constructRemotes(apf::GlobalToVert& globalToVert)
  {
    int self = PCU_Comm_Self();
    PCU_Comm_Begin();
    APF_ITERATE(apf::GlobalToVert, globalToVert, it) {
      int gid = it->first;
      apf::MeshEntity* vert = it->second;
      apf::Parts residence;
      m->getResidence(vert, residence);
      APF_ITERATE(apf::Parts, residence, rit)
	if (*rit != self) {
	  PCU_COMM_PACK(*rit, gid);
	  PCU_COMM_PACK(*rit, vert);
	}
    }
    PCU_Comm_Send();
    while (PCU_Comm_Receive()) {
      int gid;
      PCU_COMM_UNPACK(gid);
      apf::MeshEntity* remote;
      PCU_COMM_UNPACK(remote);
      int from = PCU_Comm_Sender();
      apf::MeshEntity* vert = globalToVert[gid];
      m->addRemote(vert, from, remote);
    }
  }

public:

  /*! ParMA constructor
   *  \param env  parameters for the problem and library configuration
   *  \param problemComm  the communicator for the problem
   *  \param adapter  the user's input adapter (MeshAdapter)
   */
  AlgParMA(const RCP<const Environment> &env__,
            const RCP<const Comm<int> > &problemComm__,
            const RCP<const IdentifierAdapter<user_t> > &adapter__)
  { 
    throw std::runtime_error("ParMA needs a MeshAdapter but you haven't given it one");
  }

  AlgParMA(const RCP<const Environment> &env__,
            const RCP<const Comm<int> > &problemComm__,
            const RCP<const VectorAdapter<user_t> > &adapter__) 
  { 
    throw std::runtime_error("ParMA needs a MeshAdapter but you haven't given it one");
  }

  AlgParMA(const RCP<const Environment> &env__,
            const RCP<const Comm<int> > &problemComm__,
            const RCP<const GraphAdapter<user_t,userCoord_t> > &adapter__) 
  { 
    throw std::runtime_error("ParMA needs a MeshAdapter but you haven't given it one");
  }

  AlgParMA(const RCP<const Environment> &env__,
            const RCP<const Comm<int> > &problemComm__,
            const RCP<const MatrixAdapter<user_t,userCoord_t> > &adapter__)
  { 
    throw std::runtime_error("ParMA needs a MeshAdapter but you haven't given it one");
    
  }

  AlgParMA(const RCP<const Environment> &env__,
            const RCP<const Comm<int> > &problemComm__,
            const RCP<const MeshAdapter<user_t> > &adapter__) :
    env(env__), problemComm(problemComm__), adapter(adapter__)
  { 
    setMPIComm(problemComm__);
   
    //Setup PCU communications
    //If PCU was already initialized outside (EX: for the APFMeshAdapter) 
    // we don't initialize it again.
    pcu_outside=false;
    if (!PCU_Comm_Initialized())
      PCU_Comm_Init();
    else
      pcu_outside=true;
    PCU_Switch_Comm(mpicomm);

    //Find the mesh dimension based on if there are any regions or faces in the part
    // an all reduce is needed in case one part is empty (Ex: after hypergraph partitioning)
    int dim;
    if (adapter->getLocalNumOf(MESH_REGION)>0)
      dim=3;
    else if (adapter->getLocalNumOf(MESH_FACE)>0)
      dim=2;
    else
      dim=0;
    PCU_Max_Ints(&dim,1);
    if (dim<2)
      throw std::runtime_error("ParMA neeeds faces or region information");
    
    //GFD Currently not allowing ParMA to balance non element primary types
    if (dim!=adapter->getPrimaryEntityType())
      throw std::runtime_error("ParMA only supports balancing primary type==mesh element");
    
    //Create empty apf mesh
    gmi_register_null();
    gmi_model* g = gmi_load(".null");
    enum MeshEntityType primary_type = entityAPFtoZ2(dim);
    m = apf::makeEmptyMdsMesh(g,dim,false);

    //Get entity topology types
    const EntityTopologyType* tops;
    try {
      adapter->getTopologyViewOf(primary_type,tops);
    }
    Z2_FORWARD_EXCEPTIONS
    
    //Get element global ids and part ids
    const gno_t* element_gids;
    const part_t* part_ids;
    adapter->getIDsViewOf(primary_type,element_gids);
    adapter->getPartsView(part_ids);
    for (size_t i =0;i<adapter->getLocalNumOf(primary_type);i++)
      mapping_elm_gids_index[element_gids[i]] = i;
    
    //get vertex global ids
    const gno_t* vertex_gids;
    adapter->getIDsViewOf(MESH_VERTEX,vertex_gids);
    
    //Get vertex coordinates
    int c_dim = adapter->getDimension();
    const scalar_t ** vertex_coords = new const scalar_t*[c_dim];
    int* strides = new int[c_dim];
    for (int i=0;i<c_dim;i++)
      adapter->getCoordinatesViewOf(MESH_VERTEX,vertex_coords[i],strides[i],i);

    //Get first adjacencies from elements to vertices
    if (!adapter->availAdjs(primary_type,MESH_VERTEX))
      throw "APF needs adjacency information from elements to vertices";
    const lno_t* offsets;
    const gno_t* adjacent_vertex_gids;
    adapter->getAdjsView(primary_type, MESH_VERTEX,offsets,adjacent_vertex_gids);
    
    //build the apf mesh
    apf::GlobalToVert vertex_mapping;
    apf::ModelEntity* interior = m->findModelEntity(m->getDimension(), 0);
    for (size_t i=0;i<adapter->getLocalNumOf(MESH_VERTEX);i++) {
      apf::MeshEntity* vtx = m->createVert_(interior);
      scalar_t temp_coords[3];
      for (int k=0;k<c_dim&&k<3;k++) 
	temp_coords[k] = vertex_coords[k][i*strides[k]];

      for (int k=c_dim;k<3;k++)
	temp_coords[k] = 0;  
      apf::Vector3 point(temp_coords[0],temp_coords[1],temp_coords[2]);    
      m->setPoint(vtx,0,point);
      vertex_mapping[vertex_gids[i]] = vtx;
    }
    //Call modified helper functions to build the mesh from element to vertex adjacency
    constructElements(adjacent_vertex_gids, adapter->getLocalNumOf(primary_type), offsets, tops, vertex_mapping);
    constructResidence(vertex_mapping);
    constructRemotes(vertex_mapping);
    stitchMesh(m);
    m->acceptChanges();
    
    
    //Setup numberings of global ids and original part ids
    // for use after ParMA is run
    apf::FieldShape* s = apf::getConstant(dim);
    gids = apf::createNumbering(m,"global_ids",s,1);
    origin_part_ids = apf::createNumbering(m,"origin",s,1);

    //number the global ids and original part ids
    apf::MeshIterator* itr = m->begin(dim);
    apf::MeshEntity* ent;
    int i = 0;
    while ((ent = m->iterate(itr))) {
      apf::number(gids,ent,0,0,element_gids[i]);
      apf::number(origin_part_ids,ent,0,0,PCU_Comm_Self());
      i++; 
    }
    m->end(itr);

    //final setup for apf mesh
    apf::alignMdsRemotes(m);
    apf::deriveMdsModel(m);
    m->acceptChanges();
    m->verify();

    //cleanup temp storage
    delete [] vertex_coords;
    delete [] strides;
  }
  void partition(const RCP<PartitioningSolution<Adapter> > &solution);
  
};

/////////////////////////////////////////////////////////////////////////////
template <typename Adapter>
void AlgParMA<Adapter>::partition(
  const RCP<PartitioningSolution<Adapter> > &solution
)
{
  //Get parameters
  std::string alg_name = "VtxElm";
  double imbalance = 1.1;
  double step = .5;
  int ghost_layers=3;
  int ghost_bridge=m->getDimension()-1;
 
  //Get the parameters for ParMA
  const Teuchos::ParameterList &pl = env->getParameters();
  try {
    const Teuchos::ParameterList &ppl = pl.sublist("parma_parameters");
    for (ParameterList::ConstIterator iter =  ppl.begin();
	 iter != ppl.end(); iter++) {
      const std::string &zname = pl.name(iter);
      if (zname == "parma_method") {
	std::string zval = pl.entry(iter).getValue(&zval);
	alg_name = zval;
      }
      else if (zname == "step_size") {
	double zval = pl.entry(iter).getValue(&zval);
	step = zval;
      }
      else if (zname=="ghost_layers" || zname=="ghost_bridge") {
	int zval = pl.entry(iter).getValue(&zval);
	if (zname=="ghost_layers")
	  ghost_layers = zval;
	else
	  ghost_bridge = zval;
      }
    }
  }
  catch (std::exception &e) {
    //No parma_parameters sublist found
  }

  const Teuchos::ParameterEntry *pe2 = pl.getEntryPtr("imbalance_tolerance");
  if (pe2){
    imbalance = pe2->getValue<double>(&imbalance);
  }

  //booleans for which dimensions need weights
  bool weightVertex,weightEdge,weightFace,weightElement;
  weightVertex=weightEdge=weightFace=weightElement=false;

  //Build the selected balancer
  apf::Balancer* balancer;
  const int verbose = 1;
  if (alg_name=="Vertex") {
    balancer = Parma_MakeVtxBalancer(m, step, verbose);
    weightVertex = true;
  }
  else if (alg_name=="Element") {
    balancer = Parma_MakeElmBalancer(m, step, verbose);
    weightElement=true;
  }
  else if (alg_name=="VtxElm") {
    balancer = Parma_MakeVtxElmBalancer(m,step,verbose);
    weightVertex = weightElement=true;
  }
  else if (alg_name=="VtxEdgeElm") {
    balancer = Parma_MakeVtxEdgeElmBalancer(m, step, verbose);
    weightVertex=weightEdge=weightElement=true;    
  }
  else if (alg_name=="Ghost") {
    balancer = Parma_MakeGhostDiffuser(m, ghost_layers, ghost_bridge, step, verbose);
    weightVertex=weightEdge=weightFace=true;
    if (3 == m->getDimension()) {
      weightElement=true;
    }
  }
  else if (alg_name=="Shape") {
    balancer = Parma_MakeShapeOptimizer(m,step,verbose);
    weightElement=true;
  }
  else if (alg_name=="Centroid") {
    balancer = Parma_MakeCentroidDiffuser(m,step,verbose);
    weightElement=true;
  }
  else  {
    throw std::runtime_error("No such parma method defined");
  }
  
  //build the weights
  apf::MeshTag* weights = setWeights(weightVertex,weightEdge,weightFace,weightElement);

  //balance the apf mesh
  balancer->balance(weights, imbalance);
  delete balancer;

  // Load answer into the solution.
  int num_local = adapter->getLocalNumOf(adapter->getPrimaryEntityType());
  ArrayRCP<part_t> partList(new part_t[num_local], 0, num_local, true);

  //Setup for communication
  PCU_Comm_Begin();
  apf::MeshEntity* ent;
  apf::MeshIterator* itr = m->begin(m->getDimension());
  //Pack information back to each elements original owner
  while ((ent=m->iterate(itr))) {
    if (m->isOwned(ent)) {
      part_t target_part_id = apf::getNumber(origin_part_ids,ent,0,0);
      gno_t element_gid = apf::getNumber(gids,ent,0,0);
      PCU_COMM_PACK(target_part_id,element_gid);
    }
  }
  m->end(itr);

  //Send information off
  PCU_Comm_Send();

  //Unpack information and set new part ids
  while (PCU_Comm_Receive()) {
    gno_t global_id;
    PCU_COMM_UNPACK(global_id);
    lno_t local_id = mapping_elm_gids_index[global_id];
    part_t new_part_id = PCU_Comm_Sender();
    partList[local_id] = new_part_id;
  }
  //construct partition solution
  solution->setParts(partList);
  
  // Clean up
  apf::destroyNumbering(gids);
  apf::destroyNumbering(origin_part_ids);
  apf::removeTagFromDimension(m, weights, m->getDimension());
  m->destroyTag(weights);
  m->destroyNative();
  apf::destroyMesh(m);
  //only free PCU if it isn't being used outside
  if (!pcu_outside)
    PCU_Comm_Free();
}

} // namespace Zoltan2

#endif // HAVE_ZOLTAN2_PARMA

#endif