This file is indexed.

/usr/include/trilinos/Zoltan2_AlgND.hpp is in libtrilinos-zoltan2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//                    Michael Wolf (mmwolf@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

//MMW need to specify that this requires Zoltan                  

#ifndef _ZOLTAN2_ALGND_HPP_
#define _ZOLTAN2_ALGND_HPP_

#include <Zoltan2_IdentifierModel.hpp>
#include <Zoltan2_PartitioningSolution.hpp>
#include <Zoltan2_Algorithm.hpp>
#include <Zoltan2_AlgZoltan.hpp>

#include <Zoltan2_MatcherHelper.hpp>


#include <sstream>
#include <string>
#include <bitset>

/*! \file Zoltan2_AlgND.hpp
 *  \brief The algorithm for ND based ordering
 */


void buildPartTree(int level, int leftPart, int splitPart, int rightPart, std::vector<int> &partTree);


namespace Zoltan2
{

////////////////////////////////////////////////////////////////////////////////
/*! Nested dissection based ordering method.
 *
 *  \param env   library configuration and problem parameters
 *  \param problemComm  the communicator for the problem
 *  \param ids    an Identifier model
 *
 *  Preconditions: The parameters in the environment have been
 *    processed (committed).  No special requirements on the
 *    identifiers.
 *
 */
////////////////////////////////////////////////////////////////////////////////
template <typename Adapter>
class AlgND : public Algorithm<typename Adapter::base_adapter_t>
//class AlgND : public Algorithm<Adapter>
{

private:

  typedef typename Adapter::part_t part_t;

  typedef typename Adapter::lno_t lno_t;
  typedef typename Adapter::gno_t gno_t;


  const RCP<const Environment> mEnv;
  const RCP<const Comm<int> > mProblemComm;

  //  const RCP<const GraphModel<Adapter> > mGraphModel;
  const RCP<GraphModel<typename Adapter::base_adapter_t> > mGraphModel;
  //  const RCP<const CoordinateModel<Adapter> > mIds;
  const RCP<CoordinateModel<typename Adapter::base_adapter_t> > mIds;

  //const RCP<const Adapter> mBaseInputAdapter;
  //const RCP<const Adapter> mInputAdapter;
  const RCP<const typename Adapter::base_adapter_t> mBaseInputAdapter;                                                                                                                                 

  void getBoundLayer(int levelIndx, const std::vector<part_t> &partMap,
		     const part_t * parts, 
		     const std::set<int> &excVerts,
		     int &bigraphNumS, int &bigraphNumT, int &bigraphNumE,
		     std::vector<int> &bigraphCRSRowPtr, std::vector<int> &bigraphCRSCols,
	             std::vector<int> &bigraphVMapU, std::vector<int> &bigraphVMapV);


public:
  // Constructor
  AlgND(const RCP<const Environment> &env_,
        const RCP<const Comm<int> > &problemComm_,
	const RCP<GraphModel<typename Adapter::base_adapter_t> > &gModel_,
	const RCP<CoordinateModel<typename Adapter::base_adapter_t> > &cModel_,
	const RCP<const typename Adapter::base_adapter_t> baseInputAdapter_
       )
    :mEnv(env_), mProblemComm(problemComm_), mGraphModel(gModel_), 
     mIds(cModel_), mBaseInputAdapter(baseInputAdapter_)
  {
#ifndef INCLUDE_ZOLTAN2_EXPERIMENTAL
    Z2_THROW_EXPERIMENTAL("Zoltan2 AlgND is strictly experimental software ")
#endif

#ifndef INCLUDE_ZOLTAN2_EXPERIMENTAL_WOLF
    Z2_THROW_EXPERIMENTAL_WOLF("Zoltan2 algND is strictly experimental software ")
#endif

    if(mProblemComm->getSize()!=1)
    {
      Z2_THROW_SERIAL("Zoltan2 AlgND is strictly serial!");
    }

  }

  // Ordering method
  int order(const RCP<OrderingSolution<lno_t, gno_t> > &solution_);

};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
template <typename Adapter>
int AlgND<Adapter>::order(const RCP<OrderingSolution<lno_t, gno_t> > &solution_)
{
    // typedef typename Adapter::lno_t lno_t;     // local ids
    // typedef typename Adapter::gno_t gno_t;     // global ids
    // typedef typename Adapter::scalar_t scalar_t;   // scalars

    mEnv->debug(DETAILED_STATUS, std::string("Entering AlgND"));

    //////////////////////////////////////////////////////////////////////
    // First, let's partition with RCB using Zoltan.  Eventually, we will change this
    // to use PHG
    //////////////////////////////////////////////////////////////////////

    RCP<PartitioningSolution<Adapter> > partSoln;
    int nUserWts=0;

       std::cout << "HERE1" << std::endl;

    partSoln =
      RCP<PartitioningSolution<Adapter> > (new PartitioningSolution<Adapter>(this->mEnv, mProblemComm, nUserWts));

       AlgZoltan<Adapter> algZoltan(this->mEnv, mProblemComm, this->mBaseInputAdapter);

       std::cout << "HERE2" << std::endl;

    algZoltan.partition(partSoln);

       std::cout << "HERE3" << std::endl;


    size_t numGlobalParts = partSoln->getTargetGlobalNumberOfParts();

    const part_t *parts = partSoln->getPartListView();
    //////////////////////////////////////////////////////////////////////

    //////////////////////////////////////////////////////////////////////
    // Build up tree that represents partitioning subproblems, which will 
    // be used for determining separators at each level
    //   -- for now, this is built up artificially
    //   -- eventually this will be obtained from PHG output
    //
    // Each separator i is represented by 4 integers/part_t? in the partTree
    // structure:  partTree[4*i], partTree[4*i+1], partTree[4*i+2], partTree[4*i+3]
    // These 4 integers are level of separator, smallest part in 1st half of separator,
    // smallest part in 2nd half of separator, largest part in 2nd half of separator + 1
    //////////////////////////////////////////////////////////////////////
    // change int to something, part_t?

       std::cout << "HERE4" << std::endl;


    std::vector<int> partTree;

    buildPartTree( 0, 0, (numGlobalParts-1)/2 + 1, numGlobalParts, partTree);
    unsigned int numSeparators = partTree.size() / 4;

    for(unsigned int i=0;i<partTree.size(); i++)
    {
      std::cout << "partTree: " << partTree[i] << std::endl;
    }
    std::cout << "NumSeparators: " << numSeparators << std::endl;

       std::cout << "HERE5" << std::endl;

    //////////////////////////////////////////////////////////////////////


    //////////////////////////////////////////////////////////////////////
    // Create a map that maps each part number to a new number based on
    // the level of the hiearchy of the separator tree.  This allows us
    // to easily identify the boundary value vertices
    //////////////////////////////////////////////////////////////////////
       std::cout << "HERE6" << std::endl;


    int numLevels = partTree[4*(numSeparators-1)]+1;

    std::vector<std::vector<int> > partLevelMap(numLevels,std::vector<int>(numGlobalParts));

    std::vector<int> sepsInLev(numLevels,0);

    for(unsigned int i=0;i<numSeparators;i++)
    {
      int level = partTree[4*i];
      int leftPart = partTree[4*i+1];
      int splitPart = partTree[4*i+2];
      int rightPart = partTree[4*i+3];
      
      for(int part=leftPart; part<splitPart; part++)
      {
        partLevelMap[level][part] = 2*sepsInLev[level];
      }

      for(int part=splitPart; part<rightPart; part++)
      {
        partLevelMap[level][part] = 2*sepsInLev[level]+1;
      }

      sepsInLev[level]++;
    }

    std::cout << "partLevelMap[0][0] = " << partLevelMap[0][0] << std::endl; 
    std::cout << "partLevelMap[0][1] = " << partLevelMap[0][1] << std::endl; 

       std::cout << "HERE7" << std::endl;

    //////////////////////////////////////////////////////////////////////

    // Set of separator vertices.  Used to keep track of what vertices are
    // already in previous calculated separators.  These vertices should be
    // excluded from future separator calculations
    const std::set<int> sepVerts;

    //////////////////////////////////////////////////////////////////////
    // Loop over each cut
    //    1. Build boundary layer between parts
    //    2. Build vertex separator from boundary layer
    //////////////////////////////////////////////////////////////////////
    std::cout << "HERE8" << std::endl;

    for(unsigned int level=0;level<numLevels;level++)
    {
      for(unsigned int levIndx=0;levIndx<sepsInLev[level];levIndx++)
      {
        ///////////////////////////////////////////////////////////////
        // Build boundary layer between parts (edge separator)
        ///////////////////////////////////////////////////////////////
	std::cout << "HERE9" << std::endl;

        int bigraphNumU=0, bigraphNumV=0, bigraphNumE=0;
	std::vector<int> bigraphVMapU; 
        std::vector<int> bigraphVMapV;

	std::vector<int> bigraphCRSRowPtr;
	std::vector<int> bigraphCRSCols;


        getBoundLayer(levIndx, partLevelMap[level], parts, sepVerts,
		      bigraphNumU,bigraphNumV,bigraphNumE,
		      bigraphCRSRowPtr, bigraphCRSCols,
		      bigraphVMapU,bigraphVMapV);

	std::cout << "Bipartite graph: " << bigraphNumU << " " << bigraphNumV << " " 
		  << bigraphNumE << std::endl;

        for (unsigned int i=0;i<bigraphVMapU.size();i++)
	{
	  std::cout << "boundVertU: " << bigraphVMapU[i] << std::endl;
        }

        for (unsigned int i=0;i<bigraphVMapV.size();i++)
	{
	  std::cout << "boundVertV: " << bigraphVMapV[i] << std::endl;
        }



        for (int rownum=0;rownum<bigraphNumU;rownum++)
	{

           for (int eIdx=bigraphCRSRowPtr[rownum];eIdx<bigraphCRSRowPtr[rownum+1];eIdx++)
	   {          
	      std::cout << "bipartite E: " << bigraphVMapU[rownum] << ", " << bigraphVMapV[ bigraphCRSCols[eIdx]]
			<< " ( "  << rownum << "," << bigraphCRSCols[eIdx] << " )" << std::endl;
           }

	}
	std::cout << "HERE10" << std::endl;
        ///////////////////////////////////////////////////////////////

        ///////////////////////////////////////////////////////////////
        // Calculate bipartite matching from boundary layer
        ///////////////////////////////////////////////////////////////
	Matcher bpMatch(bigraphCRSRowPtr.data(), bigraphCRSCols.data(), bigraphNumU, bigraphNumV, bigraphNumE);
        bpMatch.match();

	const std::vector<int> &vertUMatches = bpMatch.getVertexUMatches();
	const std::vector<int> &vertVMatches = bpMatch.getVertexVMatches();
        ///////////////////////////////////////////////////////////////

        ///////////////////////////////////////////////////////////////
        // Calculate vertex cover (which is vertex separator) from matching
        ///////////////////////////////////////////////////////////////
	std::vector<int> VC;

        getVCfromMatching(bigraphCRSRowPtr,bigraphCRSCols,vertUMatches,vertVMatches,
			  bigraphVMapU,bigraphVMapV,VC);

        for(unsigned int i=0;i<VC.size();i++)
	{
	  std::cout << "VC: " << VC[i] << std::endl;
	}        
        ///////////////////////////////////////////////////////////////



      }
    }

       std::cout << "HERE20" << std::endl;

    //////////////////////////////////////////////////////////////////////

    // //TODO: calculate vertex separator for each layer, 
    // //TODO: using vertex separators, compute new ordering and store in solution
    // //TODO: move to ordering directory

    mEnv->debug(DETAILED_STATUS, std::string("Exiting AlgND"));
    return 0;
}
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
// Create boundary layer of vertices between 2 partitions
//
// Could improve the efficiency here by first creating a boundary layer graph
// between all parts
////////////////////////////////////////////////////////////////////////////////
template <typename Adapter>
void AlgND<Adapter>::getBoundLayer(int levelIndx, const std::vector<part_t> &partMap,
				   const part_t * parts,
				   const std::set<int> &excVerts,
				   int &bigraphNumS, int &bigraphNumT, int &bigraphNumE,
				   std::vector<int> &bigraphCRSRowPtr, std::vector<int> &bigraphCRSCols,
				   std::vector<int> &bigraphVMapS, std::vector<int> &bigraphVMapT)
{
  std::cout << "HI1" << std::endl;

  typedef typename Adapter::lno_t lno_t;         // local ids
  typedef typename Adapter::scalar_t scalar_t;   // scalars
  typedef StridedData<lno_t, scalar_t> input_t;

  int numVerts = mGraphModel->getLocalNumVertices();

  //Teuchos ArrayView
  ArrayView< const lno_t > eIDs;
  ArrayView< const lno_t > vOffsets;
  ArrayView< input_t > wgts;

  // For some reason getLocalEdgeList seems to be returning empty eIDs
  //size_t numEdges = ( (GraphModel<typename Adapter::base_adapter_t>)  *mGraphModel).getLocalEdgeList(eIDs, vOffsets, wgts);

  //size_t numEdges = ( (GraphModel<typename Adapter::base_adapter_t>)  *mGraphModel).getEdgeList(eIDs, vOffsets, wgts);
  ( (GraphModel<typename Adapter::base_adapter_t>)  *mGraphModel).getEdgeList(eIDs, vOffsets, wgts);


  std::map<int,std::set<int> > bigraphEs;
  std::set<int> vSetS;
  std::set<int> vSetT;

  bigraphNumE=0;

  for(int v1=0;v1<numVerts;v1++)
  {

    part_t vpart1 = partMap[parts[v1]];

    bool correctBL = (vpart1 >= 2*levelIndx && vpart1 < 2*(levelIndx+1) );

    // if vertex is not in the correct range of parts, it cannot be a member of 
    // this boundary layer
    if(!correctBL)
    {
      continue;
    }

    // Ignore vertices that belong to set of vertices to exclude
    if(excVerts.find(v1)!=excVerts.end())
    {
      continue;
    }

    //Loop over edges connected to v1
    //MMW figure out how to get this from Zoltan2
    for(int j=vOffsets[v1];j<vOffsets[v1+1];j++)
    {

      int v2 = eIDs[j];

      part_t vpart2 = partMap[parts[v2]];

      correctBL = (vpart2 >= 2*levelIndx && vpart2 < 2*(levelIndx+1) );

      // if vertex is not in the correct range of parts, it cannot be a member of 
      // this boundary layer
      if(!correctBL)
      {
        continue;
      }

      // Ignore vertices that belong to set of vertices to exclude
      if(excVerts.find(v2)!=excVerts.end())
      {
        continue;
      }

      if ( vpart1 !=  vpart2  )
      {
        // Vertex added to 1st set of boundary vertices
	if(vpart1<vpart2)
        {
          vSetS.insert(v1);

          // v1, v2          
          if(bigraphEs.find(v1)==bigraphEs.end())
	  {
            bigraphEs[v1] = std::set<int>();
	  }
          bigraphEs[v1].insert(v2);
          bigraphNumE++;

	}
        // Vertex added to 2nd set of boundary vertices
	else
	{
          vSetT.insert(v1);
	}
      }

    }
  }

  /////////////////////////////////////////////////////////////////////////
  // Set size of two vertex sets for bipartite graph
  /////////////////////////////////////////////////////////////////////////
  bigraphNumS = vSetS.size();
  bigraphNumT = vSetT.size();
  /////////////////////////////////////////////////////////////////////////

  /////////////////////////////////////////////////////////////////////////
  /////////////////////////////////////////////////////////////////////////

  bigraphVMapS.resize(bigraphNumS);

  std::map<int,int> glob2LocTMap;

  unsigned int indx=0;
  for(std::set<int>::const_iterator iter=vSetS.begin(); iter!=vSetS.end(); ++iter)
  {
    bigraphVMapS[indx] = *iter;
    indx++;
  }


  bigraphVMapT.resize(bigraphNumT);
  indx=0;
  for(std::set<int>::const_iterator iter=vSetT.begin();iter!=vSetT.end();++iter)
  {
    bigraphVMapT[indx] = *iter;
    glob2LocTMap[*iter]=indx;
    indx++;
  }
  /////////////////////////////////////////////////////////////////////////


  /////////////////////////////////////////////////////////////////////////
  // Set sizes for bipartite graph data structures
  /////////////////////////////////////////////////////////////////////////
  bigraphCRSRowPtr.resize(bigraphNumS+1);
  bigraphCRSCols.resize(bigraphNumE);
  /////////////////////////////////////////////////////////////////////////

  /////////////////////////////////////////////////////////////////////////
  // Copy bipartite graph edges into CRS format
  /////////////////////////////////////////////////////////////////////////
  bigraphCRSRowPtr[0]=0;

  unsigned int rownum=0;
  unsigned int nzIndx=0;
  std::map<int,std::set<int> >::const_iterator iterM;
  for (iterM=bigraphEs.begin();iterM!=bigraphEs.end();++iterM)
  {
    bigraphCRSRowPtr[rownum+1] = bigraphCRSRowPtr[rownum] + (*iterM).second.size();

    for(std::set<int>::const_iterator iter=(*iterM).second.begin(); iter!=(*iterM).second.end(); ++iter)
    {
      bigraphCRSCols[nzIndx] = glob2LocTMap[(*iter)];

      nzIndx++;
    }
 
    rownum++;
  }
  /////////////////////////////////////////////////////////////////////////

}
//////////////////////////////////////////////////////////////////////////////


////////////////////////////////////////////////////////////////////////////////
// Create boundary layer of vertices between 2 partitions
////////////////////////////////////////////////////////////////////////////////
// template <typename Adapter>
// void AlgND<Adapter>::getBoundLayer(int levelIndx, const std::vector<part_t> &partMap,
// 				      const part_t * parts,
// 				      const std::set<int> &excVerts,
// 				      std::vector<int> &boundVerts,
// 				      std::vector<std::vector<int> > &boundVertsST)

// {
//   std::cout << "HI1" << std::endl;

//   typedef typename Adapter::lno_t lno_t;         // local ids
//   typedef typename Adapter::scalar_t scalar_t;   // scalars
//   typedef StridedData<lno_t, scalar_t> input_t;

//   int numVerts = mGraphModel->getLocalNumVertices();

//   std::cout << "NumVerts: " << numVerts << std::endl;

//   //Teuchos ArrayView
//   ArrayView< const lno_t > eIDs;
//   ArrayView< const lno_t > vOffsets;
//   ArrayView< input_t > wgts;

//   // For some reason getLocalEdgeList seems to be returning empty eIDs
//   //size_t numEdges = ( (GraphModel<typename Adapter::base_adapter_t>)  *mGraphModel).getLocalEdgeList(eIDs, vOffsets, wgts);

//   size_t numEdges = ( (GraphModel<typename Adapter::base_adapter_t>)  *mGraphModel).getEdgeList(eIDs, vOffsets, wgts);

//   for(int v1=0;v1<numVerts;v1++)
//   {

//     part_t vpart1 = partMap[parts[v1]];

//     bool correctBL = (vpart1 >= 2*levelIndx && vpart1 < 2*(levelIndx+1) );

//     // if vertex is not in the correct range of parts, it cannot be a member of 
//     // this boundary layer
//     if(!correctBL)
//     {
//       continue;
//     }

//     // Ignore vertices that belong to set of vertices to exclude
//     if(excVerts.find(v1)!=excVerts.end())
//     {
//       continue;
//     }

//     //Loop over edges connected to v1
//     //MMW figure out how to get this from Zoltan2
//     for(int j=vOffsets[v1];j<vOffsets[v1+1];j++)
//     {

//       int v2 = eIDs[j];

//       part_t vpart2 = partMap[parts[v2]];

//       correctBL = (vpart2 >= 2*levelIndx && vpart2 < 2*(levelIndx+1) );

//       // if vertex is not in the correct range of parts, it cannot be a member of 
//       // this boundary layer
//       if(!correctBL)
//       {
//         continue;
//       }

//       // Ignore vertices that belong to set of vertices to exclude
//       if(excVerts.find(v2)!=excVerts.end())
//       {
//         continue;
//       }

//       if ( vpart1 !=  vpart2  )
//       {
//         // Vertex added to set of all boundary vertices
//         boundVerts.push_back(v1);

//         // Vertex added to 1st set of boundary vertices
// 	if(vpart1<vpart2)
//         {
// 	  boundVertsST[0].push_back(v1);
// 	}
//         // Vertex added to 2nd set of boundary vertices
// 	else
// 	{
// 	  boundVertsST[1].push_back(v1);
// 	}
// 	break;
//       }

//     }
//   }

// }
//////////////////////////////////////////////////////////////////////////////

}   // namespace Zoltan2


////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
void buildPartTree(int level, int leftPart, int splitPart, int rightPart, std::vector<int> &partTree)
{
  // Insert information for this separator
  partTree.push_back(level);
  partTree.push_back(leftPart);
  partTree.push_back(splitPart);
  partTree.push_back(rightPart);

  // Recurse down left side of tree
  if(splitPart-leftPart > 1)
  {
    int newSplit = leftPart+(splitPart-leftPart-1)/2 + 1;
    buildPartTree(level+1,leftPart,newSplit,splitPart,partTree);
  }

  // Recurse down right side of tree
  if(rightPart-splitPart>1)
  {
    int newSplit = splitPart+(rightPart-splitPart-1)/2 + 1;
    buildPartTree(level+1,splitPart,newSplit,rightPart,partTree);
  }
}
////////////////////////////////////////////////////////////////////////////////




#endif