/usr/include/trilinos/Zoltan2_AlgMultiJagged.hpp is in libtrilinos-zoltan2-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/*! \file Zoltan2_AlgMultiJagged.hpp
\brief Contains the Multi-jagged algorthm.
*/
#ifndef _ZOLTAN2_ALGMultiJagged_HPP_
#define _ZOLTAN2_ALGMultiJagged_HPP_
#include <Zoltan2_MultiJagged_ReductionOps.hpp>
#include <Zoltan2_CoordinateModel.hpp>
#include <Zoltan2_Parameters.hpp>
#include <Zoltan2_Algorithm.hpp>
#include <Zoltan2_IntegerRangeList.hpp>
#include <Teuchos_StandardParameterEntryValidators.hpp>
#include <Tpetra_Distributor.hpp>
#include <Teuchos_ParameterList.hpp>
#include <Zoltan2_CoordinatePartitioningGraph.hpp>
#include <new> // ::operator new[]
#include <algorithm> // std::sort
#include <Zoltan2_Util.hpp>
#include <vector>
#if defined(__cplusplus) && __cplusplus >= 201103L
#include <unordered_map>
#else
#include <Teuchos_Hashtable.hpp>
#endif // C++11 is enabled
#ifdef ZOLTAN2_USEZOLTANCOMM
#ifdef HAVE_ZOLTAN2_MPI
#define ENABLE_ZOLTAN_MIGRATION
#include "zoltan_comm_cpp.h"
#include "zoltan_types.h" // for error codes
#endif
#endif
#ifdef HAVE_ZOLTAN2_OMP
#include <omp.h>
#endif
#define LEAST_SIGNIFICANCE 0.0001
#define SIGNIFICANCE_MUL 1000
//if the (last dimension reduce all count) x the mpi world size
//estimated to be bigger than this number then migration will be forced
//in earlier iterations.
#define FUTURE_REDUCEALL_CUTOFF 1500000
//if parts right before last dimension are estimated to have less than
//MIN_WORK_LAST_DIM many coords, migration will be forced in earlier iterations.
#define MIN_WORK_LAST_DIM 1000
#define ZOLTAN2_ABS(x) ((x) >= 0 ? (x) : -(x))
//imbalance calculation. Wreal / Wexpected - 1
#define imbalanceOf(Wachieved, totalW, expectedRatio) \
(Wachieved) / ((totalW) * (expectedRatio)) - 1
#define imbalanceOf2(Wachieved, wExpected) \
(Wachieved) / (wExpected) - 1
#define ZOLTAN2_ALGMULTIJAGGED_SWAP(a,b,temp) temp=(a);(a)=(b);(b)=temp;
namespace Teuchos{
/*! \brief Zoltan2_BoxBoundaries is a reduction operation
* to all reduce the all box boundaries.
*/
template <typename Ordinal, typename T>
class Zoltan2_BoxBoundaries : public ValueTypeReductionOp<Ordinal,T>
{
private:
Ordinal size;
T _EPSILON;
public:
/*! \brief Default Constructor
*/
Zoltan2_BoxBoundaries ():size(0), _EPSILON (std::numeric_limits<T>::epsilon()){}
/*! \brief Constructor
* \param nsum the count of how many sums will be computed at the
* start of the list.
* \param nmin following the sums, this many minimums will be computed.
* \param nmax following the minimums, this many maximums will be computed.
*/
Zoltan2_BoxBoundaries (Ordinal s_):
size(s_), _EPSILON (std::numeric_limits<T>::epsilon()){}
/*! \brief Implement Teuchos::ValueTypeReductionOp interface
*/
void reduce( const Ordinal count, const T inBuffer[], T inoutBuffer[]) const
{
for (Ordinal i=0; i < count; i++){
if (Z2_ABS(inBuffer[i]) > _EPSILON){
inoutBuffer[i] = inBuffer[i];
}
}
}
};
} // namespace Teuchos
namespace Zoltan2{
/*! \brief Allocates memory for the given size.
*
*/
template <typename T>
T *allocMemory(size_t size){
if (size > 0){
T * a = new T[size];
if (a == NULL) {
throw "cannot allocate memory";
}
return a;
}
else {
return NULL;
}
}
/*! \brief Frees the given array.
*
*/
template <typename T>
void freeArray(T *&array){
if(array != NULL){
delete [] array;
array = NULL;
}
}
/*! \brief Class for sorting items with multiple values.
* First sorting with respect to val[0], then val[1] then ... val[count-1].
* The last tie breaking is done with index values.
* Used for task mapping partitioning where the points on a cut line needs to be
* distributed consistently.
*
*/
template <typename IT, typename CT, typename WT>
class uMultiSortItem
{
public:
IT index;
CT count;
//unsigned int val;
WT *val;
WT _EPSILON;
uMultiSortItem(){
this->index = 0;
this->count = 0;
this->val = NULL;
this->_EPSILON = std::numeric_limits<WT>::epsilon() * 100;
}
uMultiSortItem(IT index_ ,CT count_, WT *vals_){
this->index = index_;
this->count = count_;
this->val = vals_;
this->_EPSILON = std::numeric_limits<WT>::epsilon() * 100;
}
uMultiSortItem( const uMultiSortItem<IT,CT,WT>& other ){
this->index = other.index;
this->count = other.count;
this->val = other.val;
this->_EPSILON = other._EPSILON;
}
~uMultiSortItem(){
//freeArray<WT>(this->val);
}
void set(IT index_ ,CT count_, WT *vals_){
this->index = index_;
this->count = count_;
this->val = vals_;
}
uMultiSortItem<IT,CT,WT> operator=(const uMultiSortItem<IT,CT,WT>& other){
this->index = other.index;
this->count = other.count;
this->val = other.val;
return *(this);
}
bool operator<(const uMultiSortItem<IT,CT,WT>& other) const{
assert (this->count == other.count);
for(CT i = 0; i < this->count; ++i){
//if the values are equal go to next one.
if (ZOLTAN2_ABS(this->val[i] - other.val[i]) < this->_EPSILON){
continue;
}
//if next value is smaller return true;
if(this->val[i] < other.val[i]){
return true;
}
//if next value is bigger return false;
else {
return false;
}
}
//if they are totally equal.
return this->index < other.index;
}
bool operator>(const uMultiSortItem<IT,CT,WT>& other) const{
assert (this->count == other.count);
for(CT i = 0; i < this->count; ++i){
//if the values are equal go to next one.
if (ZOLTAN2_ABS(this->val[i] - other.val[i]) < this->_EPSILON){
continue;
}
//if next value is bigger return true;
if(this->val[i] > other.val[i]){
return true;
}
//if next value is smaller return false;
else //(this->val[i] > other.val[i])
{
return false;
}
}
//if they are totally equal.
return this->index > other.index;
}
};// uSortItem;
/*! \brief Sort items for quick sort function.
*
*/
template <class IT, class WT>
struct uSortItem
{
IT id;
//unsigned int val;
WT val;
};// uSortItem;
/*! \brief Quick sort function.
* Sorts the arr of uSortItems, with respect to increasing vals.
*/
template <class IT, class WT>
void uqsort(IT n, uSortItem<IT, WT> * arr)
{
int NSTACK = 50;
int M = 7;
IT i, ir=n, j, k, l=1;
IT jstack=0, istack[50];
WT aval;
uSortItem<IT,WT> a, temp;
--arr;
for (;;)
{
if (ir-l < M)
{
for (j=l+1;j<=ir;j++)
{
a=arr[j];
aval = a.val;
for (i=j-1;i>=1;i--)
{
if (arr[i].val <= aval)
break;
arr[i+1] = arr[i];
}
arr[i+1]=a;
}
if (jstack == 0)
break;
ir=istack[jstack--];
l=istack[jstack--];
}
else
{
k=(l+ir) >> 1;
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[k],arr[l+1], temp)
if (arr[l+1].val > arr[ir].val)
{
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[l+1],arr[ir],temp)
}
if (arr[l].val > arr[ir].val)
{
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[l],arr[ir],temp)
}
if (arr[l+1].val > arr[l].val)
{
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[l+1],arr[l],temp)
}
i=l+1;
j=ir;
a=arr[l];
aval = a.val;
for (;;)
{
do i++; while (arr[i].val < aval);
do j--; while (arr[j].val > aval);
if (j < i) break;
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[i],arr[j],temp);
}
arr[l]=arr[j];
arr[j]=a;
jstack += 2;
if (jstack > NSTACK){
std::cout << "uqsort: NSTACK too small in sort." << std::endl;
exit(1);
}
if (ir-i+1 >= j-l)
{
istack[jstack]=ir;
istack[jstack-1]=i;
ir=j-1;
}
else
{
istack[jstack]=j-1;
istack[jstack-1]=l;
l=i;
}
}
}
}
template <class IT, class WT, class SIGN>
struct uSignedSortItem
{
IT id;
//unsigned int val;
WT val;
SIGN signbit; // 1 means positive, 0 means negative.
bool operator<(const uSignedSortItem<IT, WT, SIGN>& rhs) const {
/*if I am negative, the other is positive*/
if (this->signbit < rhs.signbit){
return true;
}
/*if both has the same sign*/
else if (this->signbit == rhs.signbit){
if (this->val < rhs.val){//if my value is smaller,
return this->signbit;//then if we both are positive return true.
//if we both are negative, return false.
}
else if (this->val > rhs.val){//if my value is larger,
return !this->signbit; //then if we both are positive return false.
//if we both are negative, return true.
}
else { //if both are equal.
return false;
}
}
else {
/*if I am positive, the other is negative*/
return false;
}
}
bool operator>(const uSignedSortItem<IT, WT, SIGN>& rhs) const {
/*if I am positive, the other is negative*/
if (this->signbit > rhs.signbit){
return true;
}
/*if both has the same sign*/
else if (this->signbit == rhs.signbit){
if (this->val < rhs.val){//if my value is smaller,
return !this->signbit;//then if we both are positive return false.
//if we both are negative, return true.
}
else if (this->val > rhs.val){//if my value is larger,
return this->signbit; //then if we both are positive return true.
//if we both are negative, return false.
}
else { // if they are equal
return false;
}
}
else {
/*if I am negative, the other is positive*/
return false;
}
}
bool operator<=(const uSignedSortItem<IT, WT, SIGN>& rhs){
return !(*this > rhs);}
bool operator>=(const uSignedSortItem<IT, WT, SIGN>& rhs){
return !(*this < rhs);}
};
/*! \brief Quick sort function.
* Sorts the arr of uSignedSortItems, with respect to increasing vals.
*/
template <class IT, class WT, class SIGN>
void uqSignsort(IT n, uSignedSortItem<IT, WT, SIGN> * arr){
IT NSTACK = 50;
IT M = 7;
IT i, ir=n, j, k, l=1;
IT jstack=0, istack[50];
uSignedSortItem<IT,WT,SIGN> a, temp;
--arr;
for (;;)
{
if (ir < M + l)
{
for (j=l+1;j<=ir;j++)
{
a=arr[j];
for (i=j-1;i>=1;i--)
{
if (arr[i] <= a)
{
break;
}
arr[i+1] = arr[i];
}
arr[i+1]=a;
}
if (jstack == 0)
break;
ir=istack[jstack--];
l=istack[jstack--];
}
else
{
k=(l+ir) >> 1;
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[k],arr[l+1], temp)
if (arr[l+1] > arr[ir])
{
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[l+1],arr[ir],temp)
}
if (arr[l] > arr[ir])
{
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[l],arr[ir],temp)
}
if (arr[l+1] > arr[l])
{
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[l+1],arr[l],temp)
}
i=l+1;
j=ir;
a=arr[l];
for (;;)
{
do i++; while (arr[i] < a);
do j--; while (arr[j] > a);
if (j < i) break;
ZOLTAN2_ALGMULTIJAGGED_SWAP(arr[i],arr[j],temp);
}
arr[l]=arr[j];
arr[j]=a;
jstack += 2;
if (jstack > NSTACK){
std::cout << "uqsort: NSTACK too small in sort." << std::endl;
exit(1);
}
if (ir+l+1 >= j+i)
{
istack[jstack]=ir;
istack[jstack-1]=i;
ir=j-1;
}
else
{
istack[jstack]=j-1;
istack[jstack-1]=l;
l=i;
}
}
}
}
/*! \brief Multi Jagged coordinate partitioning algorithm.
*
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
class AlgMJ
{
private:
typedef coordinateModelPartBox<mj_scalar_t, mj_part_t> mj_partBox_t;
typedef std::vector<mj_partBox_t> mj_partBoxVector_t;
RCP<const Environment> mj_env; //the environment object
RCP<const Comm<int> > mj_problemComm; //initial comm object
double imbalance_tolerance; //input imbalance tolerance.
mj_part_t *part_no_array; //input part array specifying num part to divide along each dim.
int recursion_depth; //the number of steps that partitioning will be solved in.
int coord_dim, num_weights_per_coord; //coordinate dim and # of weights per coord
size_t initial_num_loc_coords; //initial num local coords.
global_size_t initial_num_glob_coords; //initial num global coords.
mj_lno_t num_local_coords; //number of local coords.
mj_gno_t num_global_coords; //number of global coords.
mj_scalar_t **mj_coordinates; //two dimension coordinate array
mj_scalar_t **mj_weights; //two dimension weight array
bool *mj_uniform_parts; //if the target parts are uniform
mj_scalar_t **mj_part_sizes; //target part weight sizes.
bool *mj_uniform_weights; //if the coordinates have uniform weights.
ArrayView<const mj_gno_t> mj_gnos; //global ids of the coordinates, comes from the input
size_t num_global_parts; //the targeted number of parts
mj_gno_t *initial_mj_gnos; //initial global ids of the coordinates.
mj_gno_t *current_mj_gnos; //current global ids of the coordinates, might change during migration.
int *owner_of_coordinate; //the actual processor owner of the coordinate, to track after migrations.
mj_lno_t *coordinate_permutations; //permutation of coordinates, for partitioning.
mj_lno_t *new_coordinate_permutations; //permutation work array.
mj_part_t *assigned_part_ids; //the part ids assigned to coordinates.
mj_lno_t *part_xadj; //beginning and end of each part.
mj_lno_t *new_part_xadj; // work array for beginning and end of each part.
//get mj specific parameters.
bool distribute_points_on_cut_lines; //if partitioning can distribute points on same coordiante to different parts.
mj_part_t max_concurrent_part_calculation; // how many parts we can calculate concurrently.
bool mj_run_as_rcb; //if this is set, then recursion depth is adjusted to its maximum value.
int mj_user_recursion_depth; //the recursion depth value provided by user.
bool mj_keep_part_boxes; //if the boxes need to be kept.
int check_migrate_avoid_migration_option; //whether to migrate=1, avoid migrate=2, or leave decision to MJ=0
mj_scalar_t minimum_migration_imbalance; //when MJ decides whether to migrate, the minimum imbalance for migration.
int num_threads; //num threads
mj_part_t total_num_cut ; //how many cuts will be totally
mj_part_t total_num_part; //how many parts will be totally
mj_part_t max_num_part_along_dim ; //maximum part count along a dimension.
mj_part_t max_num_cut_along_dim; //maximum cut count along a dimension.
size_t max_num_total_part_along_dim; //maximum part+cut count along a dimension.
mj_part_t total_dim_num_reduce_all; //estimate on #reduceAlls can be done.
mj_part_t last_dim_num_part; //max no of parts that might occur
//during the partition before the
//last partitioning dimension.
RCP<Comm<int> > comm; //comm object than can be altered during execution
float fEpsilon; //epsilon for float
mj_scalar_t sEpsilon; //epsilon for mj_scalar_t
mj_scalar_t maxScalar_t; //max possible scalar
mj_scalar_t minScalar_t; //min scalar
mj_scalar_t *all_cut_coordinates;
mj_scalar_t *max_min_coords;
mj_scalar_t *process_cut_line_weight_to_put_left; //how much weight should a MPI put left side of the each cutline
mj_scalar_t **thread_cut_line_weight_to_put_left; //how much weight percentage should each thread in MPI put left side of the each outline
// work array to manipulate coordinate of cutlines in different iterations.
//necessary because previous cut line information is used for determining
//the next cutline information. therefore, cannot update the cut work array
//until all cutlines are determined.
mj_scalar_t *cut_coordinates_work_array;
//cumulative part weight array.
mj_scalar_t *target_part_weights;
mj_scalar_t *cut_upper_bound_coordinates ; //upper bound coordinate of a cut line
mj_scalar_t *cut_lower_bound_coordinates ; //lower bound coordinate of a cut line
mj_scalar_t *cut_lower_bound_weights ; //lower bound weight of a cut line
mj_scalar_t *cut_upper_bound_weights ; //upper bound weight of a cut line
mj_scalar_t *process_local_min_max_coord_total_weight ; //combined array to exchange the min and max coordinate, and total weight of part.
mj_scalar_t *global_min_max_coord_total_weight ;//global combined array with the results for min, max and total weight.
//isDone is used to determine if a cutline is determined already.
//If a cut line is already determined, the next iterations will skip this cut line.
bool *is_cut_line_determined;
//my_incomplete_cut_count count holds the number of cutlines that have not been finalized for each part
//when concurrentPartCount>1, using this information, if my_incomplete_cut_count[x]==0, then no work is done for this part.
mj_part_t *my_incomplete_cut_count;
//local part weights of each thread.
double **thread_part_weights;
//the work manupulation array for partweights.
double **thread_part_weight_work;
//thread_cut_left_closest_point to hold the closest coordinate to a cutline from left (for each thread).
mj_scalar_t **thread_cut_left_closest_point;
//thread_cut_right_closest_point to hold the closest coordinate to a cutline from right (for each thread)
mj_scalar_t **thread_cut_right_closest_point;
//to store how many points in each part a thread has.
mj_lno_t **thread_point_counts;
mj_scalar_t *process_rectilinear_cut_weight;
mj_scalar_t *global_rectilinear_cut_weight;
//for faster communication, concatanation of
//totalPartWeights sized 2P-1, since there are P parts and P-1 cut lines
//leftClosest distances sized P-1, since P-1 cut lines
//rightClosest distances size P-1, since P-1 cut lines.
mj_scalar_t *total_part_weight_left_right_closests ;
mj_scalar_t *global_total_part_weight_left_right_closests;
RCP<mj_partBoxVector_t> kept_boxes; // vector of all boxes for all parts;
// constructed only if
// mj_keep_part_boxes == true
RCP<mj_partBox_t> global_box;
int myRank, myActualRank; //processor rank, and initial rank
/* \brief Either the mj array (part_no_array) or num_global_parts should be provided in
* the input. part_no_array takes
* precedence if both are provided.
* Depending on these parameters, total cut/part number,
* maximum part/cut number along a dimension, estimated number of reduceAlls,
* and the number of parts before the last dimension is calculated.
* */
void set_part_specifications();
/* \brief Tries to determine the part number for current dimension,
* by trying to make the partitioning as square as possible.
* \param num_total_future how many more partitionings are required.
* \param root how many more recursion depth is left.
*/
inline mj_part_t get_part_count(
mj_part_t num_total_future,
double root);
/* \brief Allocates the all required memory for the mj partitioning algorithm.
*
*/
void allocate_set_work_memory();
/* \brief for part communication we keep track of the box boundaries.
* This is performed when either asked specifically, or when geometric mapping is performed afterwards.
* This function initializes a single box with all global min and max coordinates.
* \param initial_partitioning_boxes the input and output vector for boxes.
*/
void init_part_boxes(RCP<mj_partBoxVector_t> & outPartBoxes);
/* \brief compute global bounding box: min/max coords of global domain */
void compute_global_box();
/* \brief Function returns how many parts that will be obtained after this dimension partitioning.
* It sets how many parts each current part will be partitioned into in this dimension to num_partitioning_in_current_dim vector,
* sets how many total future parts each obtained part will be partitioned into in next_future_num_parts_in_parts vector,
* If part boxes are kept, then sets initializes the output_part_boxes as its ancestor.
*
* \param num_partitioning_in_current_dim: output. How many parts each current part will be partitioned into.
* \param future_num_part_in_parts: input, how many future parts each current part will be partitioned into.
* \param next_future_num_parts_in_parts: output, how many future parts each obtained part will be partitioned into.
* \param future_num_parts: output, max number of future parts that will be obtained from a single
* \param current_num_parts: input, how many parts are there currently.
* \param current_iteration: input, current dimension iteration number.
* \param input_part_boxes: input, if boxes are kept, current boxes.
* \param output_part_boxes: output, if boxes are kept, the initial box boundaries for obtained parts.
*/
mj_part_t update_part_num_arrays(
std::vector<mj_part_t> &num_partitioning_in_current_dim, //assumes this vector is empty.
std::vector<mj_part_t> *future_num_part_in_parts,
std::vector<mj_part_t> *next_future_num_parts_in_parts, //assumes this vector is empty.
mj_part_t &future_num_parts,
mj_part_t current_num_parts,
int current_iteration,
RCP<mj_partBoxVector_t> input_part_boxes,
RCP<mj_partBoxVector_t> output_part_boxes);
/*! \brief Function to determine the local minimum and maximum coordinate, and local total weight
* in the given set of local points.
* \param coordinate_begin_index is the start index of the given partition on partitionedPointPermutations.
* \param coordinate_end_index is the end index of the given partition on partitionedPointPermutations.
* \param mj_current_coordinate_permutations is the permutation array that point to the actual coordinate index. Sized as numLocalCoords.
* \param mj_current_dim_coords float-like array representing the coordinates in a single dimension. Sized as numLocalCoords.
* \param min_coordinate is the output to represent the local minimumCoordinate in given range of coordinates.
* \param max_coordinate is the output to represent the local maximum coordinate in the given range of coordinates.
* \param total_weight is the output to represent the local total weight in the coordinate in the given range of coordinates.
*
*/
void mj_get_local_min_max_coord_totW(
mj_lno_t coordinate_begin_index,
mj_lno_t coordinate_end_index,
mj_lno_t *mj_current_coordinate_permutations,
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t &min_coordinate,
mj_scalar_t &max_coordinate,
mj_scalar_t &total_weight);
/*! \brief Function that reduces global minimum and maximum coordinates with global total weight from given local arrays.
* \param current_concurrent_num_parts is the number of parts whose cut lines will be calculated concurrently.
* \param local_min_max_total is the array holding local min and max coordinate values with local total weight.
* First current_concurrent_num_parts entries are minimums of the parts, next current_concurrent_num_parts entries are max, and then the total weights.
* \param global_min_max_total is the output array holding global min and global coordinate values with global total weight.
* The structure is same as local_min_max_total.
*/
void mj_get_global_min_max_coord_totW(
mj_part_t current_concurrent_num_parts,
mj_scalar_t *local_min_max_total,
mj_scalar_t *global_min_max_total);
/*! \brief Function that calculates the new coordinates for the cut lines. Function is called inside the parallel region.
* \param min_coord minimum coordinate in the range.
* \param max_coord maximum coordinate in the range.
*
* \param num_cuts holds the number of cuts in the current partitioning dimension.
* \param global_weight holds the global total weight in the current part.
*
* \param initial_cut_coords is the output array for the initial cut lines.
* \param target_part_weights is the output array holding the cumulative ratios of parts in current partitioning.
* For partitioning to 4 uniformly, target_part_weights will be (0.25 * globalTotalWeight, 0.5 *globalTotalWeight , 0.75 * globalTotalWeight, globalTotalWeight).
*
* \param future_num_part_in_parts is the vector that holds how many more parts each part will be divided into more
* for the parts at the beginning of this coordinate partitioning
* \param next_future_num_parts_in_parts is the vector that holds how many more parts each part will be divided into more
* for the parts that will be obtained at the end of this coordinate partitioning.
* \param concurrent_current_part is the index of the part in the future_num_part_in_parts vector.
* \param obtained_part_index holds the amount of shift in the next_future_num_parts_in_parts for the output parts.
*/
void mj_get_initial_cut_coords_target_weights(
mj_scalar_t min_coord,
mj_scalar_t max_coord,
mj_part_t num_cuts/*p-1*/ ,
mj_scalar_t global_weight,
mj_scalar_t *initial_cut_coords /*p - 1 sized, coordinate of each cut line*/,
mj_scalar_t *target_part_weights /*cumulative weights, at left side of each cut line. p-1 sized*/,
std::vector <mj_part_t> *future_num_part_in_parts, //the vecto
std::vector <mj_part_t> *next_future_num_parts_in_parts,
mj_part_t concurrent_current_part,
mj_part_t obtained_part_index);
/*! \brief Function that calculates the new coordinates for the cut lines. Function is called inside the parallel region.
* \param max_coordinate maximum coordinate in the range.
* \param min_coordinate minimum coordinate in the range.
*
* \param concurrent_current_part_index is the index of the part in the inTotalCounts vector.
* \param coordinate_begin_index holds the beginning of the coordinates in current part.
* \param coordinate_end_index holds end of the coordinates in current part.
* \param mj_current_coordinate_permutations is the permutation array, holds the real indices of coordinates on mj_current_dim_coords array.
* \param mj_current_dim_coords is the 1D array holding the coordinates.
* \param mj_part_ids is the array holding the partIds of each coordinate.
* \param partition_count is the number of parts that the current part will be partitioned into.
*/
void set_initial_coordinate_parts(
mj_scalar_t &max_coordinate,
mj_scalar_t &min_coordinate,
mj_part_t &concurrent_current_part_index,
mj_lno_t coordinate_begin_index,
mj_lno_t coordinate_end_index,
mj_lno_t *mj_current_coordinate_permutations,
mj_scalar_t *mj_current_dim_coords,
mj_part_t *mj_part_ids,
mj_part_t &partition_count);
/*! \brief Function that is responsible from 1D partitioning of the given range of coordinates.
* \param mj_current_dim_coords is 1 dimensional array holding coordinate values.
* \param imbalanceTolerance is the maximum allowed imbalance ratio.
* \param current_work_part is the beginning index of concurrentPartCount parts.
* \param current_concurrent_num_parts is the number of parts whose cut lines will be calculated concurrently.
* \param current_cut_coordinates is the array holding the coordinates of the cut.
* \param total_incomplete_cut_count is the number of cut lines whose positions should be calculated.
* \param num_partitioning_in_current_dim is the vector that holds how many parts each part will be divided into.
*
*/
void mj_1D_part(
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t imbalanceTolerance,
mj_part_t current_work_part,
mj_part_t current_concurrent_num_parts,
mj_scalar_t *current_cut_coordinates,
mj_part_t total_incomplete_cut_count,
std::vector <mj_part_t> &num_partitioning_in_current_dim);
/*! \brief Function that calculates the weights of each part according to given part cut coordinates.
* Function is called inside the parallel region. Thread specific work arrays are provided
* as function parameter.
*
* \param total_part_count is the sum of number of cutlines and number of parts. Simply it is 2*P - 1.
* \param num_cuts is the number of cut lines. P - 1.
* \param max_coord is the maximum coordinate in the part.
* \param min_coord is the min coordinate in the part.
* \param coordinate_begin_index is the index of the first coordinate in current part.
* \param coordinate_end_index is the index of the last coordinate in current part.
* \param mj_current_dim_coords is 1 dimensional array holding coordinate values.
*
* \param temp_current_cut_coords is the array holding the coordinates of each cut line. Sized P - 1.
* \param current_cut_status is the boolean array to determine if the correct position for a cut line is found.
* \param my_current_part_weights is the array holding the part weights for the calling thread.
* \param my_current_left_closest is the array holding the coordinate of the closest points to the cut lines from left for the calling thread..
* \param my_current_right_closest is the array holding the coordinate of the closest points to the cut lines from right for the calling thread.
* \param partIds is the array that holds the part ids of the coordinates
*/
void mj_1D_part_get_thread_part_weights(
size_t total_part_count,
mj_part_t num_cuts,
mj_scalar_t max_coord,
mj_scalar_t min_coord,
mj_lno_t coordinate_begin_index,
mj_lno_t coordinate_end_index,
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t *temp_current_cut_coords,
bool *current_cut_status,
double *my_current_part_weights,
mj_scalar_t *my_current_left_closest,
mj_scalar_t *my_current_right_closest);
/*! \brief Function that reduces the result of multiple threads
* for left and right closest points and part weights in a single mpi process.
*
* \param num_partitioning_in_current_dim is the vector that holds the number of cut lines in current dimension for each part.
* \param current_work_part holds the index of the first part (important when concurrent parts are used.)
* \param current_concurrent_num_parts is the number of parts whose cut lines will be calculated concurrently.
*/
void mj_accumulate_thread_results(
const std::vector <mj_part_t> &num_partitioning_in_current_dim,
mj_part_t current_work_part,
mj_part_t current_concurrent_num_parts);
/*! \brief Function that calculates the new coordinates for the cut lines.
* Function is called inside the parallel region. Write the new cut coordinates
* to new_current_cut_coordinates, and determines if the final position of a cut is found.
*
* \param num_total_part is the sum of number of cutlines and number of parts. Simply it is 2*P - 1.
* \param num_cuts is the number of cut lines. P - 1.
* \param max_coordinate is the maximum coordinate in the current range of coordinates and in the current dimension.
* \param min_coordinate is the maximum coordinate in the current range of coordinates and in the current dimension.
* \param global_total_weight is the global total weight in the current range of coordinates.
* \param used_imbalance_tolerance is the maximum allowed imbalance ratio.
*
*
* \param current_global_part_weights is the array holding the weight of parts. Assumes there are 2*P - 1 parts (cut lines are seperate parts).
* \param current_local_part_weights is the local totalweight of the processor.
* \param current_part_target_weights are the desired cumulative part ratios, sized P.
* \param current_cut_line_determined is the boolean array to determine if the correct position for a cut line is found.
*
* \param current_cut_coordinates is the array holding the coordinates of each cut line. Sized P - 1.
* \param current_cut_upper_bounds is the array holding the upper bound coordinate for each cut line. Sized P - 1.
* \param current_cut_lower_bounds is the array holding the lower bound coordinate for each cut line. Sized P - 1.
* \param current_global_left_closest_points is the array holding the closest points to the cut lines from left.
* \param current_global_right_closest_points is the array holding the closest points to the cut lines from right.
* \param current_cut_lower_bound_weights is the array holding the weight of the parts at the left of lower bound coordinates.
* \param current_cut_upper_weights is the array holding the weight of the parts at the left of upper bound coordinates.
* \param new_current_cut_coordinates is the work array, sized P - 1.
*
* \param current_part_cut_line_weight_ratio holds how much weight of the coordinates on the cutline should be put on left side.
* \param rectilinear_cut_count is the count of cut lines whose balance can be achived via distributing the points in same coordinate to different parts.
* \param my_num_incomplete_cut is the number of cutlines whose position has not been determined yet. For K > 1 it is the count in a single part (whose cut lines are determined).
*/
void mj_get_new_cut_coordinates(
const size_t &num_total_part,
const mj_part_t &num_cuts,
const mj_scalar_t &max_coordinate,
const mj_scalar_t &min_coordinate,
const mj_scalar_t &global_total_weight,
const mj_scalar_t &used_imbalance_tolerance,
mj_scalar_t * current_global_part_weights,
const mj_scalar_t * current_local_part_weights,
const mj_scalar_t *current_part_target_weights,
bool *current_cut_line_determined,
mj_scalar_t *current_cut_coordinates,
mj_scalar_t *current_cut_upper_bounds,
mj_scalar_t *current_cut_lower_bounds,
mj_scalar_t *current_global_left_closest_points,
mj_scalar_t *current_global_right_closest_points,
mj_scalar_t * current_cut_lower_bound_weights,
mj_scalar_t * current_cut_upper_weights,
mj_scalar_t *new_current_cut_coordinates,
mj_scalar_t *current_part_cut_line_weight_to_put_left,
mj_part_t *rectilinear_cut_count,
mj_part_t &my_num_incomplete_cut);
/*! \brief
* Function that calculates the next pivot position,
* according to given coordinates of upper bound and lower bound, the weights at upper and lower bounds, and the expected weight.
* \param cut_upper_bound is the upper bound coordinate of the cut.
* \param cut_lower_bound is the lower bound coordinate of the cut.
* \param cut_upper_weight is the weights at the upper bound of the cut.
* \param cut_lower_weight is the weights at the lower bound of the cut.
* \param expected_weight is the expected weight that should be placed on the left of the cut line.
*/
void mj_calculate_new_cut_position (
mj_scalar_t cut_upper_bound,
mj_scalar_t cut_lower_bound,
mj_scalar_t cut_upper_weight,
mj_scalar_t cut_lower_weight,
mj_scalar_t expected_weight,
mj_scalar_t &new_cut_position);
/*! \brief Function that determines the permutation indices of the coordinates.
* \param num_parts is the number of parts.
* \param mj_current_dim_coords is 1 dimensional array holding the coordinate values.
* \param current_concurrent_cut_coordinate is 1 dimensional array holding the cut coordinates.
* \param coordinate_begin is the start index of the given partition on partitionedPointPermutations.
* \param coordinate_end is the end index of the given partition on partitionedPointPermutations.
* \param used_local_cut_line_weight_to_left holds how much weight of the coordinates on the cutline should be put on left side.
* \param used_thread_part_weight_work is the two dimensional array holding the weight of parts for each thread. Assumes there are 2*P - 1 parts (cut lines are seperate parts).
* \param out_part_xadj is the indices of coordinates calculated for the partition on next dimension.
*/
void mj_create_new_partitions(
mj_part_t num_parts,
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t *current_concurrent_cut_coordinate,
mj_lno_t coordinate_begin,
mj_lno_t coordinate_end,
mj_scalar_t *used_local_cut_line_weight_to_left,
double **used_thread_part_weight_work,
mj_lno_t *out_part_xadj);
/*! \brief Function checks if should do migration or not.
* It returns true to point that migration should be done when
* -migration_reduce_all_population are higher than a predetermined value
* -num_coords_for_last_dim_part that left for the last dimension partitioning is less than a predetermined value
* -the imbalance of the processors on the parts are higher than given threshold.
* \param input_num_parts is the number of parts when migration is called.
* \param output_num_parts is the output number of parts after migration.
* \param next_future_num_parts_in_parts is the number of total future parts each
* part is partitioned into. This will be updated when migration is performed.
* \param output_part_begin_index is the number that will be used as beginning part number
* when final solution part numbers are assigned.
* \param migration_reduce_all_population is the estimated total number of reduceall operations
* multiplied with number of processors to be used for determining migration.
*
* \param num_coords_for_last_dim_part is the estimated number of points in each part,
* when last dimension partitioning is performed.
* \param iteration is the string that gives information about the dimension for printing purposes.
* \param input_part_boxes is the array that holds the part boxes after the migration. (swapped)
* \param output_part_boxes is the array that holds the part boxes before the migration. (swapped)
*
*/
bool mj_perform_migration(
mj_part_t in_num_parts, //current umb parts
mj_part_t &out_num_parts, //output umb parts.
std::vector<mj_part_t> *next_future_num_parts_in_parts,
mj_part_t &output_part_begin_index,
size_t migration_reduce_all_population,
mj_lno_t num_coords_for_last_dim_part,
std::string iteration,
RCP<mj_partBoxVector_t> &input_part_boxes,
RCP<mj_partBoxVector_t> &output_part_boxes);
/*! \brief Function fills up the num_points_in_all_processor_parts, so that
* it has the number of coordinates in each processor of each part.
* to access how many points processor i has on part j, num_points_in_all_processor_parts[i * num_parts + j].
*
* \param num_procs is the number of processor attending to migration operation.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_points_in_all_processor_parts is the output array that holds
* the number of coordinates in each part in each processor.
*/
void get_processor_num_points_in_parts(
mj_part_t num_procs,
mj_part_t num_parts,
mj_gno_t *&num_points_in_all_processor_parts);
/*! \brief Function checks if should do migration or not.
* It returns true to point that migration should be done when
* -migration_reduce_all_population are higher than a predetermined value
* -num_coords_for_last_dim_part that left for the last dimension partitioning is less than a predetermined value
* -the imbalance of the processors on the parts are higher than given threshold.
* \param migration_reduce_all_population is the multiplication of the number of reduceall operations estimated and the number of processors.
* \param num_coords_for_last_dim_part is the estimated number of coordinates in a part per processor in the last dimension partitioning.
* \param num_procs is the number of processor attending to migration operation.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_points_in_all_processor_parts is the input array that holds
* the number of coordinates in each part in each processor.
*/
bool mj_check_to_migrate(
size_t migration_reduce_all_population,
mj_lno_t num_coords_for_last_dim_part,
mj_part_t num_procs,
mj_part_t num_parts,
mj_gno_t *num_points_in_all_processor_parts);
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent. In addition it calculates
* the shift amount (output_part_numbering_begin_index) to be done when
* final numberings of the parts are performed.
*
* \param num_points_in_all_processor_parts is the array holding the num points in each part in each proc.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_procs is the number of processor attending to migration operation.
* \param send_count_to_each_proc array array storing the number of points to be sent to each part.
* \param processor_ranks_for_subcomm is the ranks of the processors that will be in the subcommunicator with me.
* \param next_future_num_parts_in_parts is the vector, how many more parts each part will be divided into in the future.
* \param out_num_part is the number of parts assigned to the process.
* \param out_part_indices is the indices of the part to which the processor is assigned.
* \param output_part_numbering_begin_index is how much the numbers should be shifted when numbering the result parts.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
*/
void mj_migration_part_proc_assignment(
mj_gno_t * num_points_in_all_processor_parts,
mj_part_t num_parts,
mj_part_t num_procs,
mj_lno_t *send_count_to_each_proc,
std::vector<mj_part_t> &processor_ranks_for_subcomm,
std::vector<mj_part_t> *next_future_num_parts_in_parts,
mj_part_t &out_num_part,
std::vector<mj_part_t> &out_part_indices,
mj_part_t &output_part_numbering_begin_index,
int *coordinate_destinations);
/*! \brief Function that assigned the processors to parts, when there are more processors then parts.
* sets the destination of each coordinate in coordinate_destinations, also edits output_part_numbering_begin_index,
* and out_part_index, and returns the processor_ranks_for_subcomm which represents the ranks of the processors
* that will be used for creating the subcommunicator.
*
* \param num_points_in_all_processor_parts is the array holding the num points in each part in each proc.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_procs is the number of processor attending to migration operation.
* \param send_count_to_each_proc array array storing the number of points to be sent to each part.
* \param processor_ranks_for_subcomm is the ranks of the processors that will be in the subcommunicator with me.
* \param next_future_num_parts_in_parts is the vector, how many more parts each part will be divided into in the future.
* \param out_part_index is the index of the part to which the processor is assigned.
* \param output_part_numbering_begin_index is how much the numbers should be shifted when numbering the result parts.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
*/
void mj_assign_proc_to_parts(
mj_gno_t * num_points_in_all_processor_parts,
mj_part_t num_parts,
mj_part_t num_procs,
mj_lno_t *send_count_to_each_proc,
std::vector<mj_part_t> &processor_ranks_for_subcomm,
std::vector<mj_part_t> *next_future_num_parts_in_parts,
mj_part_t &out_part_index,
mj_part_t &output_part_numbering_begin_index,
int *coordinate_destinations);
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent.
*
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_procs is the number of processor attending to migration operation.
* \param part_assignment_proc_begin_indices ([i]) points to the first processor index that part i will be sent to.
* \param processor_chains_in_parts the array that holds the linked list structure, started from part_assignment_proc_begin_indices ([i]).
* \param send_count_to_each_proc array array storing the number of points to be sent to each part.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
*/
void assign_send_destinations(
mj_part_t num_parts,
mj_part_t *part_assignment_proc_begin_indices,
mj_part_t *processor_chains_in_parts,
mj_lno_t *send_count_to_each_proc,
int *coordinate_destinations);
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent. In addition it calculates
* the shift amount (output_part_numbering_begin_index) to be done when
* final numberings of the parts are performed.
*
* \param num_parts is the number of parts that exist in the current partitioning.
* \param sort_item_part_to_proc_assignment is the sorted parts with respect to the assigned processors.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
* \param output_part_numbering_begin_index is how much the numbers should be shifted when numbering the result parts.
* \param next_future_num_parts_in_parts is the vector, how many more parts each part will be divided into in the future.
*
*/
void assign_send_destinations2(
mj_part_t num_parts,
uSortItem<mj_part_t, mj_part_t> * sort_item_part_to_proc_assignment, //input sorted wrt processors
int *coordinate_destinations,
mj_part_t &output_part_numbering_begin_index,
std::vector<mj_part_t> *next_future_num_parts_in_parts);
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent. In addition it calculates
* the shift amount (output_part_numbering_begin_index) to be done when
* final numberings of the parts are performed.
*
* \param num_points_in_all_processor_parts is the array holding the num points in each part in each proc.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_procs is the number of processor attending to migration operation.
* \param send_count_to_each_proc array array storing the number of points to be sent to each part.
* \param next_future_num_parts_in_parts is the vector, how many more parts each part will be divided into in the future.
* \param out_num_part is the number of parts assigned to the process.
* \param out_part_indices is the indices of the part to which the processor is assigned.
* \param output_part_numbering_begin_index is how much the numbers should be shifted when numbering the result parts.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
*/
void mj_assign_parts_to_procs(
mj_gno_t * num_points_in_all_processor_parts,
mj_part_t num_parts,
mj_part_t num_procs,
mj_lno_t *send_count_to_each_proc, //output: sized nprocs, show the number of send point counts to each proc.
std::vector<mj_part_t> *next_future_num_parts_in_parts,//input how many more partitions the part will be partitioned into.
mj_part_t &out_num_part, //output, how many parts the processor will have. this is always 1 for this function.
std::vector<mj_part_t> &out_part_indices, //output: the part indices which the processor is assigned to.
mj_part_t &output_part_numbering_begin_index, //output: how much the part number should be shifted when setting the solution
int *coordinate_destinations);
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent. In addition it calculates
* the shift amount (output_part_numbering_begin_index) to be done when
* final numberings of the parts are performed.
*
*
* \param num_procs is the number of processor attending to migration operation.
* \param num_new_local_points is the output to represent the new number of local points.
* \param iteration is the string for the current iteration.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
* \param num_parts is the number of parts that exist in the current partitioning.
*/
void mj_migrate_coords(
mj_part_t num_procs,
mj_lno_t &num_new_local_points,
std::string iteration,
int *coordinate_destinations,
mj_part_t num_parts);
/*! \brief Function creates the new subcomminicator for the processors
* given in processor_ranks_for_subcomm.
*
* \param processor_ranks_for_subcomm is the vector that has the ranks of
* the processors that will be in the same group.
*/
void create_sub_communicator(std::vector<mj_part_t> &processor_ranks_for_subcomm);
/*! \brief Function writes the new permutation arrays after the migration.
*
* \param output_num_parts is the number of parts that is assigned to the processor.
* \param num_parts is the number of parts right before migration.
*/
void fill_permutation_array(
mj_part_t output_num_parts,
mj_part_t num_parts);
/*! \brief Function checks if should do migration or not.
* \param current_num_parts is the number of parts in the process.
* \param output_part_begin_index is the number that will be used as beginning part number
* \param output_part_boxes is the array that holds the part boxes
* \param is_data_ever_migrated is the boolean value which is true
* if the data is ever migrated during the partitioning.
*
*/
void set_final_parts(
mj_part_t current_num_parts,
mj_part_t output_part_begin_index,
RCP<mj_partBoxVector_t> &output_part_boxes,
bool is_data_ever_migrated);
/*! \brief Function frees all allocated work memory.
*/
void free_work_memory();
/*! \brief Function creates consistent chunks for task partitioning. Used only in the case of
* sequential task partitioning, where consistent handle of the points on the cuts are required.
*
* \param num_parts is the number of parts.
* \param mj_current_dim_coords is 1 dimensional array holding the coordinate values.
* \param current_concurrent_cut_coordinate is 1 dimensional array holding the cut coordinates.
* \param coordinate_begin is the start index of the given partition on partitionedPointPermutations.
* \param coordinate_end is the end index of the given partition on partitionedPointPermutations.
* \param used_local_cut_line_weight_to_left holds how much weight of the coordinates on the cutline should be put on left side.
*
* \param out_part_xadj is the indices of begginning and end of the parts in the output partition.
* \param coordInd is the index according to which the partitioning is done.
*/
void create_consistent_chunks(
mj_part_t num_parts,
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t *current_concurrent_cut_coordinate,
mj_lno_t coordinate_begin,
mj_lno_t coordinate_end,
mj_scalar_t *used_local_cut_line_weight_to_left,
mj_lno_t *out_part_xadj,
int coordInd);
public:
AlgMJ();
/*! \brief Multi Jagged coordinate partitioning algorithm.
*
* \param env library configuration and problem parameters
* \param problemComm the communicator for the problem
* \param imbalance_tolerance : the input provided imbalance tolerance.
* \param num_global_parts: number of target global parts.
* \param part_no_array: part no array, if provided this will be used for partitioning.
* \param recursion_depth: if part no array is provided, it is the length of part no array,
* if part no is not provided than it is the number of steps that algorithm will divide into num_global_parts parts.
*
* \param coord_dim: coordinate dimension
* \param num_local_coords: number of local coordinates
* \param num_global_coords: number of global coordinates
* \param initial_mj_gnos: the list of initial global id's
* \param mj_coordinates: the two dimensional coordinate array.
*
* \param num_weights_per_coord: number of weights per coordinate
* \param mj_uniform_weights: if weight index [i] has uniform weight or not.
* \param mj_weights: the two dimensional array for weights
* \param mj_uniform_parts: if the target partitioning aims uniform parts
* \param mj_part_sizes: if the target partitioning does not aim uniform parts, then weight of each part.
*
* \param result_assigned_part_ids: Output - 1D pointer, should be provided as null.
* the result partids corresponding to the coordinates given in result_mj_gnos.
* \param result_mj_gnos: Output - 1D pointer, should be provided as null.
* the result coordinate global id's corresponding to the part_ids array.
*
*/
void multi_jagged_part(
const RCP<const Environment> &env,
RCP<const Comm<int> > &problemComm,
double imbalance_tolerance,
size_t num_global_parts,
mj_part_t *part_no_array,
int recursion_depth,
int coord_dim,
mj_lno_t num_local_coords,
mj_gno_t num_global_coords,
const mj_gno_t *initial_mj_gnos,
mj_scalar_t **mj_coordinates,
int num_weights_per_coord,
bool *mj_uniform_weights,
mj_scalar_t **mj_weights,
bool *mj_uniform_parts,
mj_scalar_t **mj_part_sizes,
mj_part_t *&result_assigned_part_ids,
mj_gno_t *&result_mj_gnos
);
/*! \brief Multi Jagged coordinate partitioning algorithm.
*
* \param distribute_points_on_cut_lines_ : if partitioning can distribute points on same coordinate to different parts.
* \param max_concurrent_part_calculation_ : how many parts we can calculate concurrently.
* \param check_migrate_avoid_migration_option_ : whether to migrate=1, avoid migrate=2, or leave decision to MJ=0
* \param minimum_migration_imbalance_ : when MJ decides whether to migrate, the minimum imbalance for migration.
*/
void set_partitioning_parameters(
bool distribute_points_on_cut_lines_,
int max_concurrent_part_calculation_,
int check_migrate_avoid_migration_option_,
mj_scalar_t minimum_migration_imbalance_);
/*! \brief Function call, if the part boxes are intended to be kept.
*
*/
void set_to_keep_part_boxes();
/*! \brief Return the global bounding box: min/max coords of global domain
*/
RCP<mj_partBox_t> get_global_box() const;
RCP<mj_partBoxVector_t> get_kept_boxes() const;
RCP<mj_partBoxVector_t> compute_global_box_boundaries(
RCP<mj_partBoxVector_t> &localPartBoxes) const;
/*! \brief Special function for partitioning for task mapping.
* Runs sequential, and performs deterministic partitioning for the
* partitioning the points along a cutline.
*
* \param env library configuration and problem parameters
* \param num_total_coords number of total coordinates
* \param num_selected_coords : the number of selected coordinates. This is to set,
* if there are n processors, but only m<n processors
* are selected for mapping.
*
* \param num_target_part: number of target global parts.
* \param coord_dim_: coordinate dimension for coordinates
* \param mj_coordinates_: the coordinates
*
* \param inital_adjList_output_adjlist: Array allocated by caller, in the size of num_total_coords,
* first num_selected_coords elements should list the indices of the selected processors.
* This is output for output permutation array.
* \param output_xadj: The output part xadj array, pointing beginning and end of each part on
* output permutation array (inital_adjList_output_adjlist).
* Returned in CSR format: part i's info in output_xadj[i] : output_xadj[i+1]
*
* \param rd: recursion depth
* \param part_no_array_: possibly null part_no_array, specifying how many parts each should be divided during partitioning.
*/
void sequential_task_partitioning(
const RCP<const Environment> &env,
mj_lno_t num_total_coords,
mj_lno_t num_selected_coords,
size_t num_target_part,
int coord_dim,
mj_scalar_t **mj_coordinates,
mj_lno_t *initial_selected_coords_output_permutation,
mj_lno_t *output_xadj,
int recursion_depth,
const mj_part_t *part_no_array,
bool partition_along_longest_dim);
};
/*! \brief Special function for partitioning for task mapping.
* Runs sequential, and performs deterministic partitioning for the
* partitioning the points along a cutline.
*
* \param env library configuration and problem parameters
* \param num_total_coords number of total coordinates
* \param num_selected_coords : the number of selected coordinates. This is to set,
* if there are n processors, but only m<n processors
* are selected for mapping.
*
* \param num_target_part: number of target global parts.
* \param coord_dim_: coordinate dimension for coordinates
* \param mj_coordinates_: the coordinates
*
* \param inital_adjList_output_adjlist: Array allocated by caller, in the size of num_total_coords,
* first num_selected_coords elements should list the indices of the selected processors.
* This is output for output permutation array.
* \param output_xadj: The output part xadj array, pointing beginning and end of each part on
* output permutation array (inital_adjList_output_adjlist).
* Returned in CSR format: part i's info in output_xadj[i] : output_xadj[i+1]
*
* \param rd: recursion depth
* \param part_no_array_: possibly null part_no_array, specifying how many parts each should be divided during partitioning.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::sequential_task_partitioning(
const RCP<const Environment> &env,
mj_lno_t num_total_coords,
mj_lno_t num_selected_coords,
size_t num_target_part,
int coord_dim_,
mj_scalar_t **mj_coordinates_,
mj_lno_t *inital_adjList_output_adjlist,
mj_lno_t *output_xadj,
int rd,
const mj_part_t *part_no_array_,
bool partition_along_longest_dim
){
this->mj_env = env;
const RCP<Comm<int> > commN;
this->mj_problemComm =
Teuchos::DefaultComm<int>::getDefaultSerialComm(commN);
this->comm =
Teuchos::rcp_const_cast<Comm<int> >(this->mj_problemComm);
this->myActualRank = this->myRank = 1;
#ifdef HAVE_ZOLTAN2_OMP
int actual_num_threads = omp_get_num_threads();
omp_set_num_threads(1);
#endif
//weights are uniform for task mapping
//parts are uniform for task mapping
//as input indices.
this->imbalance_tolerance = 0;
this->num_global_parts = num_target_part;
this->part_no_array = (mj_part_t *)part_no_array_;
this->recursion_depth = rd;
this->coord_dim = coord_dim_;
this->num_local_coords = num_total_coords;
this->num_global_coords = num_total_coords;
this->mj_coordinates = mj_coordinates_; //will copy the memory to this->mj_coordinates.
////temporary memory. It is not used here, but the functions require these to be allocated.
////will copy the memory to this->current_mj_gnos[j].
this->initial_mj_gnos = allocMemory<mj_gno_t>(this->num_local_coords);
this->num_weights_per_coord = 0;
bool *tmp_mj_uniform_weights = new bool[1];
this->mj_uniform_weights = tmp_mj_uniform_weights ;
this->mj_uniform_weights[0] = true;
mj_scalar_t **tmp_mj_weights = new mj_scalar_t *[1];
this->mj_weights = tmp_mj_weights; //will copy the memory to this->mj_weights
bool *tmp_mj_uniform_parts = new bool[1];
this->mj_uniform_parts = tmp_mj_uniform_parts;
this->mj_uniform_parts[0] = true;
mj_scalar_t **tmp_mj_part_sizes = new mj_scalar_t * [1];
this->mj_part_sizes = tmp_mj_part_sizes;
this->mj_part_sizes[0] = NULL;
this->num_threads = 1;
this->set_part_specifications();
this->allocate_set_work_memory();
//the end of the initial partition is the end of coordinates.
this->part_xadj[0] = static_cast<mj_lno_t>(num_selected_coords);
for(size_t i = 0; i < static_cast<size_t>(num_total_coords); ++i){
this->coordinate_permutations[i] = inital_adjList_output_adjlist[i];
}
mj_part_t current_num_parts = 1;
mj_scalar_t *current_cut_coordinates = this->all_cut_coordinates;
mj_part_t future_num_parts = this->total_num_part;
std::vector<mj_part_t> *future_num_part_in_parts = new std::vector<mj_part_t> ();
std::vector<mj_part_t> *next_future_num_parts_in_parts = new std::vector<mj_part_t> ();
next_future_num_parts_in_parts->push_back(this->num_global_parts);
RCP<mj_partBoxVector_t> t1;
RCP<mj_partBoxVector_t> t2;
std::vector <uSignedSortItem<int, mj_scalar_t, char> > coord_dimension_range_sorted(this->coord_dim);
uSignedSortItem<int, mj_scalar_t, char> *p_coord_dimension_range_sorted = &(coord_dimension_range_sorted[0]);
std::vector <mj_scalar_t> coord_dim_mins(this->coord_dim);
std::vector <mj_scalar_t> coord_dim_maxs(this->coord_dim);
for (int i = 0; i < this->recursion_depth; ++i){
//partitioning array. size will be as the number of current partitions and this
//holds how many parts that each part will be in the current dimension partitioning.
std::vector <mj_part_t> num_partitioning_in_current_dim;
//number of parts that will be obtained at the end of this partitioning.
//future_num_part_in_parts is as the size of current number of parts.
//holds how many more parts each should be divided in the further
//iterations. this will be used to calculate num_partitioning_in_current_dim,
//as the number of parts that the part will be partitioned
//in the current dimension partitioning.
//next_future_num_parts_in_parts will be as the size of outnumParts,
//and this will hold how many more parts that each output part
//should be divided. this array will also be used to determine the weight ratios
//of the parts.
//swap the arrays to use iteratively..
std::vector<mj_part_t> *tmpPartVect= future_num_part_in_parts;
future_num_part_in_parts = next_future_num_parts_in_parts;
next_future_num_parts_in_parts = tmpPartVect;
//clear next_future_num_parts_in_parts array as
//getPartitionArrays expects it to be empty.
//it also expects num_partitioning_in_current_dim to be empty as well.
next_future_num_parts_in_parts->clear();
//returns the total number of output parts for this dimension partitioning.
mj_part_t output_part_count_in_dimension =
this->update_part_num_arrays(
num_partitioning_in_current_dim,
future_num_part_in_parts,
next_future_num_parts_in_parts,
future_num_parts,
current_num_parts,
i,
t1,
t2);
//if the number of obtained parts equal to current number of parts,
//skip this dimension. For example, this happens when 1 is given in the input
//part array is given. P=4,5,1,2
if(output_part_count_in_dimension == current_num_parts) {
tmpPartVect= future_num_part_in_parts;
future_num_part_in_parts = next_future_num_parts_in_parts;
next_future_num_parts_in_parts = tmpPartVect;
continue;
}
//convert i to string to be used for debugging purposes.
std::string istring = Teuchos::toString<int>(i);
//alloc Memory to point the indices
//of the parts in the permutation array.
this->new_part_xadj = allocMemory<mj_lno_t>(output_part_count_in_dimension);
//the index where in the outtotalCounts will be written.
mj_part_t output_part_index = 0;
//whatever is written to outTotalCounts will be added with previousEnd
//so that the points will be shifted.
mj_part_t output_coordinate_end_index = 0;
mj_part_t current_work_part = 0;
mj_part_t current_concurrent_num_parts = 1;
mj_part_t obtained_part_index = 0;
//get the coordinate axis along which the partitioning will be done.
int coordInd = i % this->coord_dim;
mj_scalar_t * mj_current_dim_coords = this->mj_coordinates[coordInd];
//run for all available parts.
for (; current_work_part < current_num_parts;
current_work_part += current_concurrent_num_parts){
//current_concurrent_num_parts = std::min(current_num_parts - current_work_part,
//this->max_concurrent_part_calculation);
mj_part_t actual_work_part_count = 0;
//initialization for 1D partitioning.
//get the min and max coordinates of each part
//together with the part weights of each part.
for(int kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_part_t current_work_part_in_concurrent_parts = current_work_part + kk;
//if this part wont be partitioned any further
//dont do any work for this part.
if (num_partitioning_in_current_dim[current_work_part_in_concurrent_parts] == 1){
continue;
}
++actual_work_part_count;
mj_lno_t coordinate_end_index= this->part_xadj[current_work_part_in_concurrent_parts];
mj_lno_t coordinate_begin_index = current_work_part_in_concurrent_parts==0 ? 0: this->part_xadj[current_work_part_in_concurrent_parts -1];
/*
std::cout << "i:" << i << " j:" << current_work_part + kk
<< " coordinate_begin_index:" << coordinate_begin_index
<< " coordinate_end_index:" << coordinate_end_index
<< " total:" << coordinate_end_index - coordinate_begin_index<< std::endl;
*/
if(partition_along_longest_dim){
mj_scalar_t best_weight_coord = 0;
for (int coord_traverse_ind = 0; coord_traverse_ind < this->coord_dim; ++coord_traverse_ind){
mj_scalar_t best_min_coord = 0;
mj_scalar_t best_max_coord = 0;
//MD:same for all coordinates, but I will still use this for now.
this->mj_get_local_min_max_coord_totW(
coordinate_begin_index,
coordinate_end_index,
this->coordinate_permutations,
this->mj_coordinates[coord_traverse_ind],
best_min_coord, //min coordinate
best_max_coord, //max coordinate
best_weight_coord //total weight);
);
coord_dim_mins[coord_traverse_ind] = best_min_coord;
coord_dim_maxs[coord_traverse_ind] = best_max_coord;
mj_scalar_t best_range = best_max_coord - best_min_coord;
coord_dimension_range_sorted[coord_traverse_ind].id = coord_traverse_ind;
coord_dimension_range_sorted[coord_traverse_ind].val = best_range;
coord_dimension_range_sorted[coord_traverse_ind].signbit = 1;
}
uqSignsort(this->coord_dim, p_coord_dimension_range_sorted);
coordInd = p_coord_dimension_range_sorted[this->coord_dim - 1].id;
/*
for (int coord_traverse_ind = 0; coord_traverse_ind < this->coord_dim; ++coord_traverse_ind){
std::cout << "i:" << p_coord_dimension_range_sorted[coord_traverse_ind].id << " range:" << p_coord_dimension_range_sorted[coord_traverse_ind].val << std::endl;
std::cout << "i:" << p_coord_dimension_range_sorted[coord_traverse_ind].id << " coord_dim_mins:" << coord_dim_mins[p_coord_dimension_range_sorted[coord_traverse_ind].id]<< std::endl;
std::cout << "i:" << p_coord_dimension_range_sorted[coord_traverse_ind].id << " coord_dim_maxs:" << coord_dim_maxs[p_coord_dimension_range_sorted[coord_traverse_ind].id] << std::endl;
}
*/
mj_current_dim_coords = this->mj_coordinates[coordInd];
this->process_local_min_max_coord_total_weight[kk] = coord_dim_mins[coordInd];
this->process_local_min_max_coord_total_weight[kk+ current_concurrent_num_parts] = coord_dim_maxs[coordInd];
this->process_local_min_max_coord_total_weight[kk + 2*current_concurrent_num_parts] = best_weight_coord;
}
else{
this->mj_get_local_min_max_coord_totW(
coordinate_begin_index,
coordinate_end_index,
this->coordinate_permutations,
mj_current_dim_coords,
this->process_local_min_max_coord_total_weight[kk], //min coordinate
this->process_local_min_max_coord_total_weight[kk + current_concurrent_num_parts], //max coordinate
this->process_local_min_max_coord_total_weight[kk + 2*current_concurrent_num_parts] //total weight);
);
}
}
//1D partitioning
if (actual_work_part_count > 0){
//obtain global Min max of the part.
this->mj_get_global_min_max_coord_totW(
current_concurrent_num_parts,
this->process_local_min_max_coord_total_weight,
this->global_min_max_coord_total_weight);
//represents the total number of cutlines
//whose coordinate should be determined.
mj_part_t total_incomplete_cut_count = 0;
//Compute weight ratios for parts & cuts:
//e.g., 0.25 0.25 0.5 0.5 0.75 0.75 1
//part0 cut0 part1 cut1 part2 cut2 part3
mj_part_t concurrent_part_cut_shift = 0;
mj_part_t concurrent_part_part_shift = 0;
for(int kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_scalar_t min_coordinate = this->global_min_max_coord_total_weight[kk];
mj_scalar_t max_coordinate = this->global_min_max_coord_total_weight[kk +
current_concurrent_num_parts];
mj_scalar_t global_total_weight =
this->global_min_max_coord_total_weight[kk +
2 * current_concurrent_num_parts];
mj_part_t concurrent_current_part_index = current_work_part + kk;
mj_part_t partition_count = num_partitioning_in_current_dim[concurrent_current_part_index];
mj_scalar_t *usedCutCoordinate = current_cut_coordinates + concurrent_part_cut_shift;
mj_scalar_t *current_target_part_weights = this->target_part_weights +
concurrent_part_part_shift;
//shift the usedCutCoordinate array as noCuts.
concurrent_part_cut_shift += partition_count - 1;
//shift the partRatio array as noParts.
concurrent_part_part_shift += partition_count;
//calculate only if part is not empty,
//and part will be further partitioend.
if(partition_count > 1 && min_coordinate <= max_coordinate){
//increase allDone by the number of cuts of the current
//part's cut line number.
total_incomplete_cut_count += partition_count - 1;
//set the number of cut lines that should be determined
//for this part.
this->my_incomplete_cut_count[kk] = partition_count - 1;
//get the target weights of the parts.
this->mj_get_initial_cut_coords_target_weights(
min_coordinate,
max_coordinate,
partition_count - 1,
global_total_weight,
usedCutCoordinate,
current_target_part_weights,
future_num_part_in_parts,
next_future_num_parts_in_parts,
concurrent_current_part_index,
obtained_part_index);
mj_lno_t coordinate_end_index= this->part_xadj[concurrent_current_part_index];
mj_lno_t coordinate_begin_index = concurrent_current_part_index==0 ? 0: this->part_xadj[concurrent_current_part_index -1];
//get the initial estimated part assignments of the coordinates.
this->set_initial_coordinate_parts(
max_coordinate,
min_coordinate,
concurrent_current_part_index,
coordinate_begin_index, coordinate_end_index,
this->coordinate_permutations,
mj_current_dim_coords,
this->assigned_part_ids,
partition_count);
}
else {
// e.g., if have fewer coordinates than parts, don't need to do next dim.
this->my_incomplete_cut_count[kk] = 0;
}
obtained_part_index += partition_count;
}
//used imbalance, it is always 0, as it is difficult to estimate a range.
mj_scalar_t used_imbalance = 0;
// Determine cut lines for k parts here.
this->mj_1D_part(
mj_current_dim_coords,
used_imbalance,
current_work_part,
current_concurrent_num_parts,
current_cut_coordinates,
total_incomplete_cut_count,
num_partitioning_in_current_dim);
}
//create part chunks
{
mj_part_t output_array_shift = 0;
mj_part_t cut_shift = 0;
size_t tlr_shift = 0;
size_t partweight_array_shift = 0;
for(int kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_part_t current_concurrent_work_part = current_work_part + kk;
mj_part_t num_parts = num_partitioning_in_current_dim[current_concurrent_work_part];
//if the part is empty, skip the part.
if((num_parts != 1 ) && this->global_min_max_coord_total_weight[kk] >
this->global_min_max_coord_total_weight[kk + current_concurrent_num_parts]) {
for(mj_part_t jj = 0; jj < num_parts; ++jj){
this->new_part_xadj[output_part_index + output_array_shift + jj] = 0;
}
cut_shift += num_parts - 1;
tlr_shift += (4 *(num_parts - 1) + 1);
output_array_shift += num_parts;
partweight_array_shift += (2 * (num_parts - 1) + 1);
continue;
}
mj_lno_t coordinate_end = this->part_xadj[current_concurrent_work_part];
mj_lno_t coordinate_begin = current_concurrent_work_part==0 ? 0: this->part_xadj[current_concurrent_work_part
-1];
mj_scalar_t *current_concurrent_cut_coordinate = current_cut_coordinates + cut_shift;
mj_scalar_t *used_local_cut_line_weight_to_left = this->process_cut_line_weight_to_put_left +
cut_shift;
for(int ii = 0; ii < this->num_threads; ++ii){
this->thread_part_weight_work[ii] = this->thread_part_weights[ii] + partweight_array_shift;
}
if(num_parts > 1){
// Rewrite the indices based on the computed cuts.
this->create_consistent_chunks(
num_parts,
mj_current_dim_coords,
current_concurrent_cut_coordinate,
coordinate_begin,
coordinate_end,
used_local_cut_line_weight_to_left,
this->new_part_xadj + output_part_index + output_array_shift,
coordInd );
}
else {
//if this part is partitioned into 1 then just copy
//the old values.
mj_lno_t part_size = coordinate_end - coordinate_begin;
*(this->new_part_xadj + output_part_index + output_array_shift) = part_size;
memcpy(this->new_coordinate_permutations + coordinate_begin,
this->coordinate_permutations + coordinate_begin,
part_size * sizeof(mj_lno_t));
}
cut_shift += num_parts - 1;
tlr_shift += (4 *(num_parts - 1) + 1);
output_array_shift += num_parts;
partweight_array_shift += (2 * (num_parts - 1) + 1);
}
//shift cut coordinates so that all cut coordinates are stored.
//current_cut_coordinates += cutShift;
//getChunks from coordinates partitioned the parts and
//wrote the indices as if there were a single part.
//now we need to shift the beginning indices.
for(mj_part_t kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_part_t num_parts = num_partitioning_in_current_dim[ current_work_part + kk];
for (mj_part_t ii = 0;ii < num_parts ; ++ii){
//shift it by previousCount
this->new_part_xadj[output_part_index+ii] += output_coordinate_end_index;
if (ii % 2 == 1){
mj_lno_t coordinate_end = this->new_part_xadj[output_part_index+ii];
mj_lno_t coordinate_begin = this->new_part_xadj[output_part_index];
for (mj_lno_t task_traverse = coordinate_begin; task_traverse < coordinate_end; ++task_traverse){
mj_lno_t l = this->new_coordinate_permutations[task_traverse];
mj_current_dim_coords[l] = -mj_current_dim_coords[l];
}
}
}
//increase the previous count by current end.
output_coordinate_end_index = this->new_part_xadj[output_part_index + num_parts - 1];
//increase the current out.
output_part_index += num_parts ;
}
}
}
// end of this partitioning dimension
//set the current num parts for next dim partitioning
current_num_parts = output_part_count_in_dimension;
//swap the coordinate permutations for the next dimension.
mj_lno_t * tmp = this->coordinate_permutations;
this->coordinate_permutations = this->new_coordinate_permutations;
this->new_coordinate_permutations = tmp;
freeArray<mj_lno_t>(this->part_xadj);
this->part_xadj = this->new_part_xadj;
this->new_part_xadj = NULL;
}
for(mj_lno_t i = 0; i < num_total_coords; ++i){
inital_adjList_output_adjlist[i] = this->coordinate_permutations[i];
}
// Return output_xadj in CSR format
output_xadj[0] = 0;
for(size_t i = 0; i < this->num_global_parts ; ++i){
output_xadj[i+1] = this->part_xadj[i];
}
delete future_num_part_in_parts;
delete next_future_num_parts_in_parts;
//free the extra memory that we allocated.
freeArray<mj_part_t>(this->assigned_part_ids);
freeArray<mj_gno_t>(this->initial_mj_gnos);
freeArray<mj_gno_t>(this->current_mj_gnos);
freeArray<bool>(tmp_mj_uniform_weights);
freeArray<bool>(tmp_mj_uniform_parts);
freeArray<mj_scalar_t *>(tmp_mj_weights);
freeArray<mj_scalar_t *>(tmp_mj_part_sizes);
this->free_work_memory();
#ifdef HAVE_ZOLTAN2_OMP
omp_set_num_threads(actual_num_threads);
#endif
}
/*! \brief Multi Jagged coordinate partitioning algorithm default constructor.
*
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::AlgMJ():
mj_env(), mj_problemComm(), imbalance_tolerance(0),
part_no_array(NULL), recursion_depth(0), coord_dim(0),
num_weights_per_coord(0), initial_num_loc_coords(0),
initial_num_glob_coords(0),
num_local_coords(0), num_global_coords(0), mj_coordinates(NULL),
mj_weights(NULL), mj_uniform_parts(NULL), mj_part_sizes(NULL),
mj_uniform_weights(NULL), mj_gnos(), num_global_parts(1),
initial_mj_gnos(NULL), current_mj_gnos(NULL), owner_of_coordinate(NULL),
coordinate_permutations(NULL), new_coordinate_permutations(NULL),
assigned_part_ids(NULL), part_xadj(NULL), new_part_xadj(NULL),
distribute_points_on_cut_lines(true), max_concurrent_part_calculation(1),
mj_run_as_rcb(false), mj_user_recursion_depth(0), mj_keep_part_boxes(false),
check_migrate_avoid_migration_option(0), minimum_migration_imbalance(0.30),
num_threads(1), total_num_cut(0), total_num_part(0), max_num_part_along_dim(0),
max_num_cut_along_dim(0), max_num_total_part_along_dim(0), total_dim_num_reduce_all(0),
last_dim_num_part(0), comm(), fEpsilon(0), sEpsilon(0), maxScalar_t(0), minScalar_t(0),
all_cut_coordinates(NULL), max_min_coords(NULL), process_cut_line_weight_to_put_left(NULL),
thread_cut_line_weight_to_put_left(NULL), cut_coordinates_work_array(NULL),
target_part_weights(NULL), cut_upper_bound_coordinates(NULL), cut_lower_bound_coordinates(NULL),
cut_lower_bound_weights(NULL), cut_upper_bound_weights(NULL),
process_local_min_max_coord_total_weight(NULL), global_min_max_coord_total_weight(NULL),
is_cut_line_determined(NULL), my_incomplete_cut_count(NULL),
thread_part_weights(NULL), thread_part_weight_work(NULL),
thread_cut_left_closest_point(NULL), thread_cut_right_closest_point(NULL),
thread_point_counts(NULL), process_rectilinear_cut_weight(NULL),
global_rectilinear_cut_weight(NULL),total_part_weight_left_right_closests(NULL),
global_total_part_weight_left_right_closests(NULL),
kept_boxes(),global_box(),
myRank(0), myActualRank(0)
{
this->fEpsilon = std::numeric_limits<float>::epsilon();
this->sEpsilon = std::numeric_limits<mj_scalar_t>::epsilon() * 100;
this->maxScalar_t = std::numeric_limits<mj_scalar_t>::max();
this->minScalar_t = -std::numeric_limits<mj_scalar_t>::max();
}
/*! \brief Function returns the part boxes stored
* returns null if boxes are not stored, and prints warning mesage.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
RCP<typename AlgMJ<mj_scalar_t,mj_lno_t,mj_gno_t,mj_part_t>::mj_partBox_t>
AlgMJ<mj_scalar_t,mj_lno_t,mj_gno_t,mj_part_t>::get_global_box() const
{
return this->global_box;
}
/*! \brief Function call, if the part boxes are intended to be kept.
*
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::set_to_keep_part_boxes(){
this->mj_keep_part_boxes = true;
}
/* \brief Either the mj array (part_no_array) or num_global_parts should be provided in
* the input. part_no_array takes
* precedence if both are provided.
* Depending on these parameters, total cut/part number,
* maximum part/cut number along a dimension, estimated number of reduceAlls,
* and the number of parts before the last dimension is calculated.
* */
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::set_part_specifications(){
this->total_num_cut = 0; //how many cuts will be totally
this->total_num_part = 1; //how many parts will be totally
this->max_num_part_along_dim = 0; //maximum part count along a dimension.
this->total_dim_num_reduce_all = 0; //estimate on #reduceAlls can be done.
this->last_dim_num_part = 1; //max no of parts that might occur
//during the partition before the
//last partitioning dimension.
this->max_num_cut_along_dim = 0;
this->max_num_total_part_along_dim = 0;
if (this->part_no_array){
//if user provided part array, traverse the array and set variables.
for (int i = 0; i < this->recursion_depth; ++i){
this->total_dim_num_reduce_all += this->total_num_part;
this->total_num_part *= this->part_no_array[i];
if(this->part_no_array[i] > this->max_num_part_along_dim) {
this->max_num_part_along_dim = this->part_no_array[i];
}
}
this->last_dim_num_part = this->total_num_part / this->part_no_array[recursion_depth-1];
this->num_global_parts = this->total_num_part;
} else {
mj_part_t future_num_parts = this->num_global_parts;
//we need to calculate the part numbers now, to determine the maximum along the dimensions.
for (int i = 0; i < this->recursion_depth; ++i){
mj_part_t maxNoPartAlongI = this->get_part_count(
future_num_parts, 1.0f / (this->recursion_depth - i));
if (maxNoPartAlongI > this->max_num_part_along_dim){
this->max_num_part_along_dim = maxNoPartAlongI;
}
mj_part_t nfutureNumParts = future_num_parts / maxNoPartAlongI;
if (future_num_parts % maxNoPartAlongI){
++nfutureNumParts;
}
future_num_parts = nfutureNumParts;
}
this->total_num_part = this->num_global_parts;
//estimate reduceAll Count here.
//we find the upperbound instead.
mj_part_t p = 1;
for (int i = 0; i < this->recursion_depth; ++i){
this->total_dim_num_reduce_all += p;
p *= this->max_num_part_along_dim;
}
this->last_dim_num_part = p / this->max_num_part_along_dim;
}
this->total_num_cut = this->total_num_part - 1;
this->max_num_cut_along_dim = this->max_num_part_along_dim - 1;
this->max_num_total_part_along_dim = this->max_num_part_along_dim + size_t(this->max_num_cut_along_dim);
//maxPartNo is P, maxCutNo = P-1, matTotalPartcount = 2P-1
//refine the concurrent part count, if it is given bigger than the maximum possible part count.
if(this->max_concurrent_part_calculation > this->last_dim_num_part){
if(this->mj_problemComm->getRank() == 0){
std::cerr << "Warning: Concurrent part count ("<< this->max_concurrent_part_calculation <<
") has been set bigger than maximum amount that can be used." <<
" Setting to:" << this->last_dim_num_part << "." << std::endl;
}
this->max_concurrent_part_calculation = this->last_dim_num_part;
}
}
/* \brief Tries to determine the part number for current dimension,
* by trying to make the partitioning as square as possible.
* \param num_total_future how many more partitionings are required.
* \param root how many more recursion depth is left.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
inline mj_part_t AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::get_part_count(
mj_part_t num_total_future,
double root)
{
double fp = pow(num_total_future, root);
mj_part_t ip = mj_part_t (fp);
if (fp - ip < this->fEpsilon * 100){
return ip;
}
else {
return ip + 1;
}
}
/* \brief Function returns how many parts that will be obtained after this dimension partitioning.
* It sets how many parts each current part will be partitioned into in this dimension to num_partitioning_in_current_dim vector,
* sets how many total future parts each obtained part will be partitioned into in next_future_num_parts_in_parts vector,
* If part boxes are kept, then sets initializes the output_part_boxes as its ancestor.
*
* \param num_partitioning_in_current_dim: output. How many parts each current part will be partitioned into.
* \param future_num_part_in_parts: input, how many future parts each current part will be partitioned into.
* \param next_future_num_parts_in_parts: output, how many future parts each obtained part will be partitioned into.
* \param future_num_parts: output, max number of future parts that will be obtained from a single
* \param current_num_parts: input, how many parts are there currently.
* \param current_iteration: input, current dimension iteration number.
* \param input_part_boxes: input, if boxes are kept, current boxes.
* \param output_part_boxes: output, if boxes are kept, the initial box boundaries for obtained parts.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
mj_part_t AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::update_part_num_arrays(
std::vector <mj_part_t> &num_partitioning_in_current_dim, //assumes this vector is empty.
std::vector<mj_part_t> *future_num_part_in_parts,
std::vector<mj_part_t> *next_future_num_parts_in_parts, //assumes this vector is empty.
mj_part_t &future_num_parts,
mj_part_t current_num_parts,
int current_iteration,
RCP<mj_partBoxVector_t> input_part_boxes,
RCP<mj_partBoxVector_t> output_part_boxes
){
//how many parts that will be obtained after this dimension.
mj_part_t output_num_parts = 0;
if(this->part_no_array){
//when the partNo array is provided as input,
//each current partition will be partition to the same number of parts.
//we dont need to use the future_num_part_in_parts vector in this case.
mj_part_t p = this->part_no_array[current_iteration];
if (p < 1){
std::cout << "i:" << current_iteration << " p is given as:" << p << std::endl;
exit(1);
}
if (p == 1){
return current_num_parts;
}
for (mj_part_t ii = 0; ii < current_num_parts; ++ii){
num_partitioning_in_current_dim.push_back(p);
}
//cout << "me:" << this->myRank << " current_iteration" << current_iteration <<
//" current_num_parts:" << current_num_parts << std::endl;
//cout << "num_partitioning_in_current_dim[0]:" << num_partitioning_in_current_dim[0] << std::endl;
//set the new value of future_num_parts.
/*
cout << "\tfuture_num_parts:" << future_num_parts
<< " num_partitioning_in_current_dim[0]:" << num_partitioning_in_current_dim[0]
<< future_num_parts/ num_partitioning_in_current_dim[0] << std::endl;
*/
future_num_parts /= num_partitioning_in_current_dim[0];
output_num_parts = current_num_parts * num_partitioning_in_current_dim[0];
if (this->mj_keep_part_boxes){
for (mj_part_t k = 0; k < current_num_parts; ++k){
//initialized the output boxes as its ancestor.
for (mj_part_t j = 0; j < num_partitioning_in_current_dim[0]; ++j){
output_part_boxes->push_back((*input_part_boxes)[k]);
}
}
}
//set the how many more parts each part will be divided.
//this is obvious when partNo array is provided as input.
//however, fill this so that weights will be calculated according to this array.
for (mj_part_t ii = 0; ii < output_num_parts; ++ii){
next_future_num_parts_in_parts->push_back(future_num_parts);
}
}
else {
//if partNo array is not provided as input,
//future_num_part_in_parts holds how many parts each part should be divided.
//initially it holds a single number equal to the total number of global parts.
//calculate the future_num_parts from beginning,
//since each part might be divided into different number of parts.
future_num_parts = 1;
//cout << "i:" << i << std::endl;
for (mj_part_t ii = 0; ii < current_num_parts; ++ii){
//get how many parts a part should be divided.
mj_part_t future_num_parts_of_part_ii = (*future_num_part_in_parts)[ii];
//get the ideal number of parts that is close to the
//(recursion_depth - i) root of the future_num_parts_of_part_ii.
mj_part_t num_partitions_in_current_dim =
this->get_part_count(
future_num_parts_of_part_ii,
1.0 / (this->recursion_depth - current_iteration)
);
if (num_partitions_in_current_dim > this->max_num_part_along_dim){
std::cerr << "ERROR: maxPartNo calculation is wrong." << std::endl;
exit(1);
}
//add this number to num_partitioning_in_current_dim vector.
num_partitioning_in_current_dim.push_back(num_partitions_in_current_dim);
//increase the output number of parts.
output_num_parts += num_partitions_in_current_dim;
//ideal number of future partitions for each part.
mj_part_t ideal_num_future_parts_in_part = future_num_parts_of_part_ii / num_partitions_in_current_dim;
for (mj_part_t iii = 0; iii < num_partitions_in_current_dim; ++iii){
mj_part_t num_future_parts_for_part_iii = ideal_num_future_parts_in_part;
//if there is a remainder in the part increase the part weight.
if (iii < future_num_parts_of_part_ii % num_partitions_in_current_dim){
//if not uniform, add 1 for the extra parts.
++num_future_parts_for_part_iii;
}
next_future_num_parts_in_parts->push_back(num_future_parts_for_part_iii);
//if part boxes are stored, initialize the box of the parts as the ancestor.
if (this->mj_keep_part_boxes){
output_part_boxes->push_back((*input_part_boxes)[ii]);
}
//set num future_num_parts to maximum in this part.
if (num_future_parts_for_part_iii > future_num_parts) future_num_parts = num_future_parts_for_part_iii;
}
}
}
return output_num_parts;
}
/* \brief Allocates and initializes the work memory that will be used by MJ.
*
* */
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::allocate_set_work_memory(){
//points to process that initially owns the coordinate.
this->owner_of_coordinate = NULL;
//Throughout the partitioning execution,
//instead of the moving the coordinates, hold a permutation array for parts.
//coordinate_permutations holds the current permutation.
this->coordinate_permutations = allocMemory< mj_lno_t>(this->num_local_coords);
//initial configuration, set each pointer-i to i.
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel for
#endif
for(mj_lno_t i = 0; i < this->num_local_coords; ++i){
this->coordinate_permutations[i] = i;
}
//new_coordinate_permutations holds the current permutation.
this->new_coordinate_permutations = allocMemory< mj_lno_t>(this->num_local_coords);
this->assigned_part_ids = NULL;
if(this->num_local_coords > 0){
this->assigned_part_ids = allocMemory<mj_part_t>(this->num_local_coords);
}
//single partition starts at index-0, and ends at numLocalCoords
//inTotalCounts array holds the end points in coordinate_permutations array
//for each partition. Initially sized 1, and single element is set to numLocalCoords.
this->part_xadj = allocMemory<mj_lno_t>(1);
this->part_xadj[0] = static_cast<mj_lno_t>(this->num_local_coords);//the end of the initial partition is the end of coordinates.
//the ends points of the output, this is allocated later.
this->new_part_xadj = NULL;
// only store this much if cuts are needed to be stored.
//this->all_cut_coordinates = allocMemory< mj_scalar_t>(this->total_num_cut);
this->all_cut_coordinates = allocMemory< mj_scalar_t>(this->max_num_cut_along_dim * this->max_concurrent_part_calculation);
this->max_min_coords = allocMemory< mj_scalar_t>(this->num_threads * 2);
this->process_cut_line_weight_to_put_left = NULL; //how much weight percentage should a MPI put left side of the each cutline
this->thread_cut_line_weight_to_put_left = NULL; //how much weight percentage should each thread in MPI put left side of the each outline
//distribute_points_on_cut_lines = false;
if(this->distribute_points_on_cut_lines){
this->process_cut_line_weight_to_put_left = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim * this->max_concurrent_part_calculation);
this->thread_cut_line_weight_to_put_left = allocMemory<mj_scalar_t *>(this->num_threads);
for(int i = 0; i < this->num_threads; ++i){
this->thread_cut_line_weight_to_put_left[i] = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim);
}
this->process_rectilinear_cut_weight = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim);
this->global_rectilinear_cut_weight = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim);
}
// work array to manipulate coordinate of cutlines in different iterations.
//necessary because previous cut line information is used for determining
//the next cutline information. therefore, cannot update the cut work array
//until all cutlines are determined.
this->cut_coordinates_work_array = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim *
this->max_concurrent_part_calculation);
//cumulative part weight array.
this->target_part_weights = allocMemory<mj_scalar_t>(
this->max_num_part_along_dim * this->max_concurrent_part_calculation);
// the weight from left to write.
this->cut_upper_bound_coordinates = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim * this->max_concurrent_part_calculation); //upper bound coordinate of a cut line
this->cut_lower_bound_coordinates = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim* this->max_concurrent_part_calculation); //lower bound coordinate of a cut line
this->cut_lower_bound_weights = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim* this->max_concurrent_part_calculation); //lower bound weight of a cut line
this->cut_upper_bound_weights = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim* this->max_concurrent_part_calculation); //upper bound weight of a cut line
this->process_local_min_max_coord_total_weight = allocMemory<mj_scalar_t>(3 * this->max_concurrent_part_calculation); //combined array to exchange the min and max coordinate, and total weight of part.
this->global_min_max_coord_total_weight = allocMemory<mj_scalar_t>(3 * this->max_concurrent_part_calculation);//global combined array with the results for min, max and total weight.
//is_cut_line_determined is used to determine if a cutline is determined already.
//If a cut line is already determined, the next iterations will skip this cut line.
this->is_cut_line_determined = allocMemory<bool>(this->max_num_cut_along_dim * this->max_concurrent_part_calculation);
//my_incomplete_cut_count count holds the number of cutlines that have not been finalized for each part
//when concurrentPartCount>1, using this information, if my_incomplete_cut_count[x]==0, then no work is done for this part.
this->my_incomplete_cut_count = allocMemory<mj_part_t>(this->max_concurrent_part_calculation);
//local part weights of each thread.
this->thread_part_weights = allocMemory<double *>(this->num_threads);
//the work manupulation array for partweights.
this->thread_part_weight_work = allocMemory<double *>(this->num_threads);
//thread_cut_left_closest_point to hold the closest coordinate to a cutline from left (for each thread).
this->thread_cut_left_closest_point = allocMemory<mj_scalar_t *>(this->num_threads);
//thread_cut_right_closest_point to hold the closest coordinate to a cutline from right (for each thread)
this->thread_cut_right_closest_point = allocMemory<mj_scalar_t *>(this->num_threads);
//to store how many points in each part a thread has.
this->thread_point_counts = allocMemory<mj_lno_t *>(this->num_threads);
for(int i = 0; i < this->num_threads; ++i){
//partWeights[i] = allocMemory<mj_scalar_t>(maxTotalPartCount);
this->thread_part_weights[i] = allocMemory < double >(this->max_num_total_part_along_dim * this->max_concurrent_part_calculation);
this->thread_cut_right_closest_point[i] = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim * this->max_concurrent_part_calculation);
this->thread_cut_left_closest_point[i] = allocMemory<mj_scalar_t>(this->max_num_cut_along_dim * this->max_concurrent_part_calculation);
this->thread_point_counts[i] = allocMemory<mj_lno_t>(this->max_num_part_along_dim);
}
//for faster communication, concatanation of
//totalPartWeights sized 2P-1, since there are P parts and P-1 cut lines
//leftClosest distances sized P-1, since P-1 cut lines
//rightClosest distances size P-1, since P-1 cut lines.
this->total_part_weight_left_right_closests = allocMemory<mj_scalar_t>((this->max_num_total_part_along_dim + this->max_num_cut_along_dim * 2) * this->max_concurrent_part_calculation);
this->global_total_part_weight_left_right_closests = allocMemory<mj_scalar_t>((this->max_num_total_part_along_dim + this->max_num_cut_along_dim * 2) * this->max_concurrent_part_calculation);
mj_scalar_t **coord = allocMemory<mj_scalar_t *>(this->coord_dim);
for (int i=0; i < this->coord_dim; i++){
coord[i] = allocMemory<mj_scalar_t>(this->num_local_coords);
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel for
#endif
for (mj_lno_t j=0; j < this->num_local_coords; j++)
coord[i][j] = this->mj_coordinates[i][j];
}
this->mj_coordinates = coord;
int criteria_dim = (this->num_weights_per_coord ? this->num_weights_per_coord : 1);
mj_scalar_t **weights = allocMemory<mj_scalar_t *>(criteria_dim);
for (int i=0; i < criteria_dim; i++){
weights[i] = NULL;
}
for (int i=0; i < this->num_weights_per_coord; i++){
weights[i] = allocMemory<mj_scalar_t>(this->num_local_coords);
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel for
#endif
for (mj_lno_t j=0; j < this->num_local_coords; j++)
weights[i][j] = this->mj_weights[i][j];
}
this->mj_weights = weights;
this->current_mj_gnos = allocMemory<mj_gno_t>(this->num_local_coords);
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel for
#endif
for (mj_lno_t j=0; j < this->num_local_coords; j++)
this->current_mj_gnos[j] = this->initial_mj_gnos[j];
this->owner_of_coordinate = allocMemory<int>(this->num_local_coords);
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel for
#endif
for (mj_lno_t j=0; j < this->num_local_coords; j++)
this->owner_of_coordinate[j] = this->myActualRank;
}
/* \brief compute the global bounding box
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t,mj_lno_t,mj_gno_t,mj_part_t>::compute_global_box()
{
//local min coords
mj_scalar_t *mins = allocMemory<mj_scalar_t>(this->coord_dim);
//global min coords
mj_scalar_t *gmins = allocMemory<mj_scalar_t>(this->coord_dim);
//local max coords
mj_scalar_t *maxs = allocMemory<mj_scalar_t>(this->coord_dim);
//global max coords
mj_scalar_t *gmaxs = allocMemory<mj_scalar_t>(this->coord_dim);
for (int i = 0; i < this->coord_dim; ++i){
mj_scalar_t localMin = std::numeric_limits<mj_scalar_t>::max();
mj_scalar_t localMax = -localMin;
if (localMax > 0) localMax = 0;
for (mj_lno_t j = 0; j < this->num_local_coords; ++j){
if (this->mj_coordinates[i][j] < localMin){
localMin = this->mj_coordinates[i][j];
}
if (this->mj_coordinates[i][j] > localMax){
localMax = this->mj_coordinates[i][j];
}
}
//cout << " localMin:" << localMin << endl;
//cout << " localMax:" << localMax << endl;
mins[i] = localMin;
maxs[i] = localMax;
}
reduceAll<int, mj_scalar_t>(*this->comm, Teuchos::REDUCE_MIN,
this->coord_dim, mins, gmins
);
reduceAll<int, mj_scalar_t>(*this->comm, Teuchos::REDUCE_MAX,
this->coord_dim, maxs, gmaxs
);
//create single box with all areas.
global_box = rcp(new mj_partBox_t(0,this->coord_dim,gmins,gmaxs));
//coordinateModelPartBox <mj_scalar_t, mj_part_t> tmpBox (0, coordDim);
freeArray<mj_scalar_t>(mins);
freeArray<mj_scalar_t>(gmins);
freeArray<mj_scalar_t>(maxs);
freeArray<mj_scalar_t>(gmaxs);
}
/* \brief for part communication we keep track of the box boundaries.
* This is performed when either asked specifically, or when geometric mapping is performed afterwards.
* This function initializes a single box with all global min and max coordinates.
* \param initial_partitioning_boxes the input and output vector for boxes.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::init_part_boxes(
RCP<mj_partBoxVector_t> & initial_partitioning_boxes
)
{
mj_partBox_t tmp_box(*global_box);
initial_partitioning_boxes->push_back(tmp_box);
}
/*! \brief Function to determine the local minimum and maximum coordinate, and local total weight
* in the given set of local points.
* \param coordinate_begin_index is the start index of the given partition on partitionedPointPermutations.
* \param coordinate_end_index is the end index of the given partition on partitionedPointPermutations.
* \param mj_current_coordinate_permutations is the permutation array that point to the actual coordinate index. Sized as numLocalCoords.
* \param mj_current_dim_coords float-like array representing the coordinates in a single dimension. Sized as numLocalCoords.
* \param min_coordinate is the output to represent the local minimumCoordinate in given range of coordinates.
* \param max_coordinate is the output to represent the local maximum coordinate in the given range of coordinates.
* \param total_weight is the output to represent the local total weight in the coordinate in the given range of coordinates.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_get_local_min_max_coord_totW(
mj_lno_t coordinate_begin_index,
mj_lno_t coordinate_end_index,
mj_lno_t *mj_current_coordinate_permutations,
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t &min_coordinate,
mj_scalar_t &max_coordinate,
mj_scalar_t &total_weight){
//if the part is empty.
//set the min and max coordinates as reverse.
if(coordinate_begin_index >= coordinate_end_index)
{
min_coordinate = this->maxScalar_t;
max_coordinate = this->minScalar_t;
total_weight = 0;
}
else {
mj_scalar_t my_total_weight = 0;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel
#endif
{
//if uniform weights are used, then weight is equal to count.
if (this->mj_uniform_weights[0]) {
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp single
#endif
{
my_total_weight = coordinate_end_index - coordinate_begin_index;
}
}
else {
//if not uniform, then weights are reducted from threads.
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp for reduction(+:my_total_weight)
#endif
for (mj_lno_t ii = coordinate_begin_index; ii < coordinate_end_index; ++ii){
int i = mj_current_coordinate_permutations[ii];
my_total_weight += this->mj_weights[0][i];
}
}
int my_thread_id = 0;
#ifdef HAVE_ZOLTAN2_OMP
my_thread_id = omp_get_thread_num();
#endif
mj_scalar_t my_thread_min_coord, my_thread_max_coord;
my_thread_min_coord=my_thread_max_coord
=mj_current_dim_coords[mj_current_coordinate_permutations[coordinate_begin_index]];
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp for
#endif
for(mj_lno_t j = coordinate_begin_index + 1; j < coordinate_end_index; ++j){
int i = mj_current_coordinate_permutations[j];
if(mj_current_dim_coords[i] > my_thread_max_coord)
my_thread_max_coord = mj_current_dim_coords[i];
if(mj_current_dim_coords[i] < my_thread_min_coord)
my_thread_min_coord = mj_current_dim_coords[i];
}
this->max_min_coords[my_thread_id] = my_thread_min_coord;
this->max_min_coords[my_thread_id + this->num_threads] = my_thread_max_coord;
#ifdef HAVE_ZOLTAN2_OMP
//we need a barrier here, because max_min_array might not be filled by some of the threads.
#pragma omp barrier
#pragma omp single nowait
#endif
{
min_coordinate = this->max_min_coords[0];
for(int i = 1; i < this->num_threads; ++i){
if(this->max_min_coords[i] < min_coordinate)
min_coordinate = this->max_min_coords[i];
}
}
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp single nowait
#endif
{
max_coordinate = this->max_min_coords[this->num_threads];
for(int i = this->num_threads + 1; i < this->num_threads * 2; ++i){
if(this->max_min_coords[i] > max_coordinate)
max_coordinate = this->max_min_coords[i];
}
}
}
total_weight = my_total_weight;
}
}
/*! \brief Function that reduces global minimum and maximum coordinates with global total weight from given local arrays.
* \param current_concurrent_num_parts is the number of parts whose cut lines will be calculated concurrently.
* \param local_min_max_total is the array holding local min and max coordinate values with local total weight.
* First concurrentPartCount entries are minimums of the parts, next concurrentPartCount entries are max, and then the total weights.
* \param global_min_max_total is the output array holding global min and global coordinate values with global total weight.
* The structure is same as localMinMaxTotal.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_get_global_min_max_coord_totW(
mj_part_t current_concurrent_num_parts,
mj_scalar_t *local_min_max_total,
mj_scalar_t *global_min_max_total){
//reduce min for first current_concurrent_num_parts elements, reduce max for next
//concurrentPartCount elements,
//reduce sum for the last concurrentPartCount elements.
if(this->comm->getSize() > 1){
Teuchos::MultiJaggedCombinedMinMaxTotalReductionOp<int, mj_scalar_t>
reductionOp(
current_concurrent_num_parts,
current_concurrent_num_parts,
current_concurrent_num_parts);
try{
reduceAll<int, mj_scalar_t>(
*(this->comm),
reductionOp,
3 * current_concurrent_num_parts,
local_min_max_total,
global_min_max_total);
}
Z2_THROW_OUTSIDE_ERROR(*(this->mj_env))
}
else {
mj_part_t s = 3 * current_concurrent_num_parts;
for (mj_part_t i = 0; i < s; ++i){
global_min_max_total[i] = local_min_max_total[i];
}
}
}
/*! \brief Function that calculates the new coordinates for the cut lines. Function is called inside the parallel region.
* \param min_coord minimum coordinate in the range.
* \param max_coord maximum coordinate in the range.
*
* \param num_cuts holds the number of cuts in the current partitioning dimension.
* \param global_weight holds the global total weight in the current part.
*
* \param initial_cut_coords is the output array for the initial cut lines.
* \param target_part_weights is the output array holding the cumulative ratios of parts in current partitioning.
* For partitioning to 4 uniformly, target_part_weights will be (0.25 * globalTotalWeight, 0.5 *globalTotalWeight , 0.75 * globalTotalWeight, globalTotalWeight).
*
* \param future_num_part_in_parts is the vector that holds how many more parts each part will be divided into more
* for the parts at the beginning of this coordinate partitioning
* \param next_future_num_parts_in_parts is the vector that holds how many more parts each part will be divided into more
* for the parts that will be obtained at the end of this coordinate partitioning.
* \param concurrent_current_part is the index of the part in the future_num_part_in_parts vector.
* \param obtained_part_index holds the amount of shift in the next_future_num_parts_in_parts for the output parts.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_get_initial_cut_coords_target_weights(
mj_scalar_t min_coord,
mj_scalar_t max_coord,
mj_part_t num_cuts/*p-1*/ ,
mj_scalar_t global_weight,
mj_scalar_t *initial_cut_coords /*p - 1 sized, coordinate of each cut line*/,
mj_scalar_t *current_target_part_weights /*cumulative weights, at left side of each cut line. p-1 sized*/,
std::vector <mj_part_t> *future_num_part_in_parts, //the vecto
std::vector <mj_part_t> *next_future_num_parts_in_parts,
mj_part_t concurrent_current_part,
mj_part_t obtained_part_index
){
mj_scalar_t coord_range = max_coord - min_coord;
if(this->mj_uniform_parts[0]){
{
mj_part_t cumulative = 0;
//how many total future parts the part will be partitioned into.
mj_scalar_t total_future_part_count_in_part = mj_scalar_t((*future_num_part_in_parts)[concurrent_current_part]);
//how much each part should weigh in ideal case.
mj_scalar_t unit_part_weight = global_weight / total_future_part_count_in_part;
/*
cout << "total_future_part_count_in_part:" << total_future_part_count_in_part << endl;
cout << "global_weight:" << global_weight << endl;
cout << "unit_part_weight" << unit_part_weight <<endl;
*/
for(mj_part_t i = 0; i < num_cuts; ++i){
cumulative += (*next_future_num_parts_in_parts)[i + obtained_part_index];
/*
cout << "obtained_part_index:" << obtained_part_index <<
" (*next_future_num_parts_in_parts)[i + obtained_part_index]:" << (*next_future_num_parts_in_parts)[i + obtained_part_index] <<
" cumulative:" << cumulative << endl;
*/
//set target part weight.
current_target_part_weights[i] = cumulative * unit_part_weight;
//cout <<"i:" << i << " current_target_part_weights:" << current_target_part_weights[i] << endl;
//set initial cut coordinate.
initial_cut_coords[i] = min_coord + (coord_range *
cumulative) / total_future_part_count_in_part;
}
current_target_part_weights[num_cuts] = 1;
}
//round the target part weights.
if (this->mj_uniform_weights[0]){
for(mj_part_t i = 0; i < num_cuts + 1; ++i){
current_target_part_weights[i] = long(current_target_part_weights[i] + 0.5);
}
}
}
else {
std::cerr << "MJ does not support non uniform part weights" << std::endl;
exit(1);
}
}
/*! \brief Function that calculates the new coordinates for the cut lines. Function is called inside the parallel region.
* \param max_coordinate maximum coordinate in the range.
* \param min_coordinate minimum coordinate in the range.
*
* \param concurrent_current_part_index is the index of the part in the inTotalCounts vector.
* \param coordinate_begin_index holds the beginning of the coordinates in current part.
* \param coordinate_end_index holds end of the coordinates in current part.
* \param mj_current_coordinate_permutations is the permutation array, holds the real indices of coordinates on mj_current_dim_coords array.
* \param mj_current_dim_coords is the 1D array holding the coordinates.
* \param mj_part_ids is the array holding the partIds of each coordinate.
* \param partition_count is the number of parts that the current part will be partitioned into.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::set_initial_coordinate_parts(
mj_scalar_t &max_coordinate,
mj_scalar_t &min_coordinate,
mj_part_t &concurrent_current_part_index,
mj_lno_t coordinate_begin_index,
mj_lno_t coordinate_end_index,
mj_lno_t *mj_current_coordinate_permutations,
mj_scalar_t *mj_current_dim_coords,
mj_part_t *mj_part_ids,
mj_part_t &partition_count
){
mj_scalar_t coordinate_range = max_coordinate - min_coordinate;
//if there is single point, or if all points are along a line.
//set initial part to 0 for all.
if(ZOLTAN2_ABS(coordinate_range) < this->sEpsilon ){
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel for
#endif
for(mj_lno_t ii = coordinate_begin_index; ii < coordinate_end_index; ++ii){
mj_part_ids[mj_current_coordinate_permutations[ii]] = 0;
}
}
else{
//otherwise estimate an initial part for each coordinate.
//assuming uniform distribution of points.
mj_scalar_t slice = coordinate_range / partition_count;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel for
#endif
for(mj_lno_t ii = coordinate_begin_index; ii < coordinate_end_index; ++ii){
mj_lno_t iii = mj_current_coordinate_permutations[ii];
mj_part_t pp = mj_part_t((mj_current_dim_coords[iii] - min_coordinate) / slice);
mj_part_ids[iii] = 2 * pp;
}
}
}
/*! \brief Function that is responsible from 1D partitioning of the given range of coordinates.
* \param mj_current_dim_coords is 1 dimensional array holding coordinate values.
* \param imbalanceTolerance is the maximum allowed imbalance ratio.
* \param current_work_part is the beginning index of concurrentPartCount parts.
* \param current_concurrent_num_parts is the number of parts whose cut lines will be calculated concurrently.
* \param current_cut_coordinates is the array holding the coordinates of the cut.
* \param total_incomplete_cut_count is the number of cut lines whose positions should be calculated.
* \param num_partitioning_in_current_dim is the vector that holds how many parts each part will be divided into.
*
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_1D_part(
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t used_imbalance_tolerance,
mj_part_t current_work_part,
mj_part_t current_concurrent_num_parts,
mj_scalar_t *current_cut_coordinates,
mj_part_t total_incomplete_cut_count,
std::vector <mj_part_t> &num_partitioning_in_current_dim
){
mj_part_t rectilinear_cut_count = 0;
mj_scalar_t *temp_cut_coords = current_cut_coordinates;
Teuchos::MultiJaggedCombinedReductionOp<mj_part_t, mj_scalar_t>
*reductionOp = NULL;
reductionOp = new Teuchos::MultiJaggedCombinedReductionOp
<mj_part_t, mj_scalar_t>(
&num_partitioning_in_current_dim ,
current_work_part ,
current_concurrent_num_parts);
size_t total_reduction_size = 0;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel shared(total_incomplete_cut_count, rectilinear_cut_count)
#endif
{
int me = 0;
#ifdef HAVE_ZOLTAN2_OMP
me = omp_get_thread_num();
#endif
double *my_thread_part_weights = this->thread_part_weights[me];
mj_scalar_t *my_thread_left_closest = this->thread_cut_left_closest_point[me];
mj_scalar_t *my_thread_right_closest = this->thread_cut_right_closest_point[me];
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp single
#endif
{
//initialize the lower and upper bounds of the cuts.
mj_part_t next = 0;
for(mj_part_t i = 0; i < current_concurrent_num_parts; ++i){
mj_part_t num_part_in_dim = num_partitioning_in_current_dim[current_work_part + i];
mj_part_t num_cut_in_dim = num_part_in_dim - 1;
total_reduction_size += (4 * num_cut_in_dim + 1);
for(mj_part_t ii = 0; ii < num_cut_in_dim; ++ii){
this->is_cut_line_determined[next] = false;
this->cut_lower_bound_coordinates[next] = global_min_max_coord_total_weight[i]; //min coordinate
this->cut_upper_bound_coordinates[next] = global_min_max_coord_total_weight[i + current_concurrent_num_parts]; //max coordinate
this->cut_upper_bound_weights[next] = global_min_max_coord_total_weight[i + 2 * current_concurrent_num_parts]; //total weight
this->cut_lower_bound_weights[next] = 0;
if(this->distribute_points_on_cut_lines){
this->process_cut_line_weight_to_put_left[next] = 0;
}
++next;
}
}
}
//no need to have barrier here.
//pragma omp single have implicit barrier.
int iteration = 0;
while (total_incomplete_cut_count != 0){
iteration += 1;
//cout << "\niteration:" << iteration << " ";
mj_part_t concurrent_cut_shifts = 0;
size_t total_part_shift = 0;
for (mj_part_t kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_part_t num_parts = -1;
num_parts = num_partitioning_in_current_dim[current_work_part + kk];
mj_part_t num_cuts = num_parts - 1;
size_t total_part_count = num_parts + size_t (num_cuts) ;
if (this->my_incomplete_cut_count[kk] > 0){
//although isDone shared, currentDone is private and same for all.
bool *current_cut_status = this->is_cut_line_determined + concurrent_cut_shifts;
double *my_current_part_weights = my_thread_part_weights + total_part_shift;
mj_scalar_t *my_current_left_closest = my_thread_left_closest + concurrent_cut_shifts;
mj_scalar_t *my_current_right_closest = my_thread_right_closest + concurrent_cut_shifts;
mj_part_t conccurent_current_part = current_work_part + kk;
mj_lno_t coordinate_begin_index = conccurent_current_part ==0 ? 0: this->part_xadj[conccurent_current_part -1];
mj_lno_t coordinate_end_index = this->part_xadj[conccurent_current_part];
mj_scalar_t *temp_current_cut_coords = temp_cut_coords + concurrent_cut_shifts;
mj_scalar_t min_coord = global_min_max_coord_total_weight[kk];
mj_scalar_t max_coord = global_min_max_coord_total_weight[kk + current_concurrent_num_parts];
// compute part weights using existing cuts
this->mj_1D_part_get_thread_part_weights(
total_part_count,
num_cuts,
max_coord,//globalMinMaxTotal[kk + concurrentPartCount],//maxScalar,
min_coord,//globalMinMaxTotal[kk]//minScalar,
coordinate_begin_index,
coordinate_end_index,
mj_current_dim_coords,
temp_current_cut_coords,
current_cut_status,
my_current_part_weights,
my_current_left_closest,
my_current_right_closest);
}
concurrent_cut_shifts += num_cuts;
total_part_shift += total_part_count;
}
//sum up the results of threads
this->mj_accumulate_thread_results(
num_partitioning_in_current_dim,
current_work_part,
current_concurrent_num_parts);
//now sum up the results of mpi processors.
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp single
#endif
{
if(this->comm->getSize() > 1){
reduceAll<int, mj_scalar_t>( *(this->comm), *reductionOp,
total_reduction_size,
this->total_part_weight_left_right_closests,
this->global_total_part_weight_left_right_closests);
}
else {
memcpy(
this->global_total_part_weight_left_right_closests,
this->total_part_weight_left_right_closests,
total_reduction_size * sizeof(mj_scalar_t));
}
}
//how much cut will be shifted for the next part in the concurrent part calculation.
mj_part_t cut_shift = 0;
//how much the concantaneted array will be shifted for the next part in concurrent part calculation.
size_t tlr_shift = 0;
for (mj_part_t kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_part_t num_parts = num_partitioning_in_current_dim[current_work_part + kk];
mj_part_t num_cuts = num_parts - 1;
size_t num_total_part = num_parts + size_t (num_cuts) ;
//if the cuts of this cut has already been completed.
//nothing to do for this part.
//just update the shift amount and proceed.
if (this->my_incomplete_cut_count[kk] == 0) {
cut_shift += num_cuts;
tlr_shift += (num_total_part + 2 * num_cuts);
continue;
}
mj_scalar_t *current_local_part_weights = this->total_part_weight_left_right_closests + tlr_shift ;
mj_scalar_t *current_global_tlr = this->global_total_part_weight_left_right_closests + tlr_shift;
mj_scalar_t *current_global_left_closest_points = current_global_tlr + num_total_part; //left closest points
mj_scalar_t *current_global_right_closest_points = current_global_tlr + num_total_part + num_cuts; //right closest points
mj_scalar_t *current_global_part_weights = current_global_tlr;
bool *current_cut_line_determined = this->is_cut_line_determined + cut_shift;
mj_scalar_t *current_part_target_weights = this->target_part_weights + cut_shift + kk;
mj_scalar_t *current_part_cut_line_weight_to_put_left = this->process_cut_line_weight_to_put_left + cut_shift;
mj_scalar_t min_coordinate = global_min_max_coord_total_weight[kk];
mj_scalar_t max_coordinate = global_min_max_coord_total_weight[kk + current_concurrent_num_parts];
mj_scalar_t global_total_weight = global_min_max_coord_total_weight[kk + current_concurrent_num_parts * 2];
mj_scalar_t *current_cut_lower_bound_weights = this->cut_lower_bound_weights + cut_shift;
mj_scalar_t *current_cut_upper_weights = this->cut_upper_bound_weights + cut_shift;
mj_scalar_t *current_cut_upper_bounds = this->cut_upper_bound_coordinates + cut_shift;
mj_scalar_t *current_cut_lower_bounds = this->cut_lower_bound_coordinates + cut_shift;
mj_part_t initial_incomplete_cut_count = this->my_incomplete_cut_count[kk];
// Now compute the new cut coordinates.
this->mj_get_new_cut_coordinates(
num_total_part,
num_cuts,
max_coordinate,
min_coordinate,
global_total_weight,
used_imbalance_tolerance,
current_global_part_weights,
current_local_part_weights,
current_part_target_weights,
current_cut_line_determined,
temp_cut_coords + cut_shift,
current_cut_upper_bounds,
current_cut_lower_bounds,
current_global_left_closest_points,
current_global_right_closest_points,
current_cut_lower_bound_weights,
current_cut_upper_weights,
this->cut_coordinates_work_array +cut_shift, //new cut coordinates
current_part_cut_line_weight_to_put_left,
&rectilinear_cut_count,
this->my_incomplete_cut_count[kk]);
cut_shift += num_cuts;
tlr_shift += (num_total_part + 2 * num_cuts);
mj_part_t iteration_complete_cut_count = initial_incomplete_cut_count - this->my_incomplete_cut_count[kk];
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp single
#endif
{
total_incomplete_cut_count -= iteration_complete_cut_count;
}
}
{ //This unnecessary bracket works around a compiler bug in NVCC when compiling with OpenMP enabled
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp barrier
#pragma omp single
#endif
{
//swap the cut coordinates for next iteration.
mj_scalar_t *t = temp_cut_coords;
temp_cut_coords = this->cut_coordinates_work_array;
this->cut_coordinates_work_array = t;
}
}
}
// Needed only if keep_cuts; otherwise can simply swap array pointers
// cutCoordinates and cutCoordinatesWork.
// (at first iteration, cutCoordinates == cutCoorindates_tmp).
// computed cuts must be in cutCoordinates.
if (current_cut_coordinates != temp_cut_coords){
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp single
#endif
{
mj_part_t next = 0;
for(mj_part_t i = 0; i < current_concurrent_num_parts; ++i){
mj_part_t num_parts = -1;
num_parts = num_partitioning_in_current_dim[current_work_part + i];
mj_part_t num_cuts = num_parts - 1;
for(mj_part_t ii = 0; ii < num_cuts; ++ii){
current_cut_coordinates[next + ii] = temp_cut_coords[next + ii];
}
next += num_cuts;
}
}
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp single
#endif
{
this->cut_coordinates_work_array = temp_cut_coords;
}
}
}
delete reductionOp;
}
/*! \brief Function that calculates the weights of each part according to given part cut coordinates.
* Function is called inside the parallel region. Thread specific work arrays are provided
* as function parameter.
*
* \param total_part_count is the sum of number of cutlines and number of parts. Simply it is 2*P - 1.
* \param num_cuts is the number of cut lines. P - 1.
* \param max_coord is the maximum coordinate in the part.
* \param min_coord is the min coordinate in the part.
* \param coordinate_begin_index is the index of the first coordinate in current part.
* \param coordinate_end_index is the index of the last coordinate in current part.
* \param mj_current_dim_coords is 1 dimensional array holding coordinate values.
*
* \param temp_current_cut_coords is the array holding the coordinates of each cut line. Sized P - 1.
* \param current_cut_status is the boolean array to determine if the correct position for a cut line is found.
* \param my_current_part_weights is the array holding the part weights for the calling thread.
* \param my_current_left_closest is the array holding the coordinate of the closest points to the cut lines from left for the calling thread..
* \param my_current_right_closest is the array holding the coordinate of the closest points to the cut lines from right for the calling thread.
* \param partIds is the array that holds the part ids of the coordinates
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_1D_part_get_thread_part_weights(
size_t total_part_count,
mj_part_t num_cuts,
mj_scalar_t max_coord,
mj_scalar_t min_coord,
mj_lno_t coordinate_begin_index,
mj_lno_t coordinate_end_index,
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t *temp_current_cut_coords,
bool *current_cut_status,
double *my_current_part_weights,
mj_scalar_t *my_current_left_closest,
mj_scalar_t *my_current_right_closest){
// initializations for part weights, left/right closest
for (size_t i = 0; i < total_part_count; ++i){
my_current_part_weights[i] = 0;
}
//initialize the left and right closest coordinates
//to their max value.
for(mj_part_t i = 0; i < num_cuts; ++i){
my_current_left_closest[i] = min_coord - 1;
my_current_right_closest[i] = max_coord + 1;
}
//mj_lno_t comparison_count = 0;
mj_scalar_t minus_EPSILON = -this->sEpsilon;
#ifdef HAVE_ZOLTAN2_OMP
//no need for the barrier as all threads uses their local memories.
//dont change the static scheduling here, as it is assumed when the new
//partitions are created later.
#pragma omp for
#endif
for (mj_lno_t ii = coordinate_begin_index; ii < coordinate_end_index; ++ii){
int i = this->coordinate_permutations[ii];
//the accesses to assigned_part_ids are thread safe
//since each coordinate is assigned to only a single thread.
mj_part_t j = this->assigned_part_ids[i] / 2;
if(j >= num_cuts){
j = num_cuts - 1;
}
mj_part_t lower_cut_index = 0;
mj_part_t upper_cut_index = num_cuts - 1;
mj_scalar_t w = this->mj_uniform_weights[0]? 1:this->mj_weights[0][i];
bool is_inserted = false;
bool is_on_left_of_cut = false;
bool is_on_right_of_cut = false;
mj_part_t last_compared_part = -1;
mj_scalar_t coord = mj_current_dim_coords[i];
while(upper_cut_index >= lower_cut_index)
{
//comparison_count++;
last_compared_part = -1;
is_on_left_of_cut = false;
is_on_right_of_cut = false;
mj_scalar_t cut = temp_current_cut_coords[j];
mj_scalar_t distance_to_cut = coord - cut;
mj_scalar_t abs_distance_to_cut = ZOLTAN2_ABS(distance_to_cut);
//if it is on the line.
if(abs_distance_to_cut < this->sEpsilon){
my_current_part_weights[j * 2 + 1] += w;
this->assigned_part_ids[i] = j * 2 + 1;
//assign left and right closest point to cut as the point is on the cut.
my_current_left_closest[j] = coord;
my_current_right_closest[j] = coord;
//now we need to check if there are other cuts on the same cut coordinate.
//if there are, then we add the weight of the cut to all cuts in the same coordinate.
mj_part_t kk = j + 1;
while(kk < num_cuts){
// Needed when cuts shared the same position
distance_to_cut =ZOLTAN2_ABS(temp_current_cut_coords[kk] - cut);
if(distance_to_cut < this->sEpsilon){
my_current_part_weights[2 * kk + 1] += w;
my_current_left_closest[kk] = coord;
my_current_right_closest[kk] = coord;
kk++;
}
else{
//cut is far away.
//just check the left closest point for the next cut.
if(coord - my_current_left_closest[kk] > this->sEpsilon){
my_current_left_closest[kk] = coord;
}
break;
}
}
kk = j - 1;
//continue checking for the cuts on the left if they share the same coordinate.
while(kk >= 0){
distance_to_cut =ZOLTAN2_ABS(temp_current_cut_coords[kk] - cut);
if(distance_to_cut < this->sEpsilon){
my_current_part_weights[2 * kk + 1] += w;
//try to write the partId as the leftmost cut.
this->assigned_part_ids[i] = kk * 2 + 1;
my_current_left_closest[kk] = coord;
my_current_right_closest[kk] = coord;
kk--;
}
else{
//if cut is far away on the left of the point.
//then just compare for right closest point.
if(my_current_right_closest[kk] - coord > this->sEpsilon){
my_current_right_closest[kk] = coord;
}
break;
}
}
is_inserted = true;
break;
}
else {
//if point is on the left of the cut.
if (distance_to_cut < 0) {
bool _break = false;
if(j > 0){
//check distance to the cut on the left the current cut compared.
//if point is on the right, then we find the part of the point.
mj_scalar_t distance_to_next_cut = coord - temp_current_cut_coords[j - 1];
if(distance_to_next_cut > this->sEpsilon){
_break = true;
}
}
//if point is not on the right of the next cut, then
//set the upper bound to this cut.
upper_cut_index = j - 1;
//set the last part, and mark it as on the left of the last part.
is_on_left_of_cut = true;
last_compared_part = j;
if(_break) break;
}
else {
//if point is on the right of the cut.
bool _break = false;
if(j < num_cuts - 1){
//check distance to the cut on the left the current cut compared.
//if point is on the right, then we find the part of the point.
mj_scalar_t distance_to_next_cut = coord - temp_current_cut_coords[j + 1];
if(distance_to_next_cut < minus_EPSILON){
_break = true;
}
}
//if point is not on the left of the next cut, then
//set the upper bound to this cut.
lower_cut_index = j + 1;
//set the last part, and mark it as on the right of the last part.
is_on_right_of_cut = true;
last_compared_part = j;
if(_break) break;
}
}
j = (upper_cut_index + lower_cut_index) / 2;
}
if(!is_inserted){
if(is_on_right_of_cut){
//add it to the right of the last compared part.
my_current_part_weights[2 * last_compared_part + 2] += w;
this->assigned_part_ids[i] = 2 * last_compared_part + 2;
//update the right closest point of last compared cut.
if(my_current_right_closest[last_compared_part] - coord > this->sEpsilon){
my_current_right_closest[last_compared_part] = coord;
}
//update the left closest point of the cut on the right of the last compared cut.
if(last_compared_part+1 < num_cuts){
if(coord - my_current_left_closest[last_compared_part + 1] > this->sEpsilon){
my_current_left_closest[last_compared_part + 1] = coord;
}
}
}
else if(is_on_left_of_cut){
//add it to the left of the last compared part.
my_current_part_weights[2 * last_compared_part] += w;
this->assigned_part_ids[i] = 2 * last_compared_part;
//update the left closest point of last compared cut.
if(coord - my_current_left_closest[last_compared_part] > this->sEpsilon){
my_current_left_closest[last_compared_part] = coord;
}
//update the right closest point of the cut on the left of the last compared cut.
if(last_compared_part-1 >= 0){
if(my_current_right_closest[last_compared_part -1] - coord > this->sEpsilon){
my_current_right_closest[last_compared_part -1] = coord;
}
}
}
}
}
// prefix sum computation.
//we need prefix sum for each part to determine cut positions.
for (size_t i = 1; i < total_part_count; ++i){
// check for cuts sharing the same position; all cuts sharing a position
// have the same weight == total weight for all cuts sharing the position.
// don't want to accumulate that total weight more than once.
if(i % 2 == 0 && i > 1 && i < total_part_count - 1 &&
ZOLTAN2_ABS(temp_current_cut_coords[i / 2] - temp_current_cut_coords[i /2 - 1])
< this->sEpsilon){
//i % 2 = 0 when part i represents the cut coordinate.
//if it is a cut, and if the next cut also have the same coordinate, then
//dont addup.
my_current_part_weights[i] = my_current_part_weights[i-2];
continue;
}
//otherwise do the prefix sum.
my_current_part_weights[i] += my_current_part_weights[i-1];
}
}
/*! \brief Function that reduces the result of multiple threads
* for left and right closest points and part weights in a single mpi process.
*
* \param num_partitioning_in_current_dim is the vector that holds the number of cut lines in current dimension for each part.
* \param current_work_part holds the index of the first part (important when concurrent parts are used.)
* \param current_concurrent_num_parts is the number of parts whose cut lines will be calculated concurrently.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_accumulate_thread_results(
const std::vector <mj_part_t> &num_partitioning_in_current_dim,
mj_part_t current_work_part,
mj_part_t current_concurrent_num_parts){
#ifdef HAVE_ZOLTAN2_OMP
//needs barrier here, as it requires all threads to finish mj_1D_part_get_thread_part_weights
//using parallel region here reduces the performance because of the cache invalidates.
#pragma omp barrier
#pragma omp single
#endif
{
size_t tlr_array_shift = 0;
mj_part_t cut_shift = 0;
//iterate for all concurrent parts to find the left and right closest points in the process.
for(mj_part_t i = 0; i < current_concurrent_num_parts; ++i){
mj_part_t num_parts_in_part = num_partitioning_in_current_dim[current_work_part + i];
mj_part_t num_cuts_in_part = num_parts_in_part - 1;
size_t num_total_part_in_part = num_parts_in_part + size_t (num_cuts_in_part) ;
//iterate for cuts in a single part.
for(mj_part_t ii = 0; ii < num_cuts_in_part ; ++ii){
mj_part_t next = tlr_array_shift + ii;
mj_part_t cut_index = cut_shift + ii;
if(this->is_cut_line_determined[cut_index]) continue;
mj_scalar_t left_closest_in_process = this->thread_cut_left_closest_point[0][cut_index],
right_closest_in_process = this->thread_cut_right_closest_point[0][cut_index];
//find the closest points from left and right for the cut in the process.
for (int j = 1; j < this->num_threads; ++j){
if (this->thread_cut_right_closest_point[j][cut_index] < right_closest_in_process ){
right_closest_in_process = this->thread_cut_right_closest_point[j][cut_index];
}
if (this->thread_cut_left_closest_point[j][cut_index] > left_closest_in_process ){
left_closest_in_process = this->thread_cut_left_closest_point[j][cut_index];
}
}
//store the left and right closes points.
this->total_part_weight_left_right_closests[num_total_part_in_part +
next] = left_closest_in_process;
this->total_part_weight_left_right_closests[num_total_part_in_part +
num_cuts_in_part + next] = right_closest_in_process;
}
//set the shift position in the arrays
tlr_array_shift += (num_total_part_in_part + 2 * num_cuts_in_part);
cut_shift += num_cuts_in_part;
}
tlr_array_shift = 0;
cut_shift = 0;
size_t total_part_array_shift = 0;
//iterate for all concurrent parts to find the total weight in the process.
for(mj_part_t i = 0; i < current_concurrent_num_parts; ++i){
mj_part_t num_parts_in_part = num_partitioning_in_current_dim[current_work_part + i];
mj_part_t num_cuts_in_part = num_parts_in_part - 1;
size_t num_total_part_in_part = num_parts_in_part + size_t (num_cuts_in_part) ;
for(size_t j = 0; j < num_total_part_in_part; ++j){
mj_part_t cut_ind = j / 2 + cut_shift;
//need to check j != num_total_part_in_part - 1
// which is same as j/2 != num_cuts_in_part.
//we cannot check it using cut_ind, because of the concurrent part concantanetion.
if(j != num_total_part_in_part - 1 && this->is_cut_line_determined[cut_ind]) continue;
double pwj = 0;
for (int k = 0; k < this->num_threads; ++k){
pwj += this->thread_part_weights[k][total_part_array_shift + j];
}
//size_t jshift = j % total_part_count + i * (total_part_count + 2 * noCuts);
this->total_part_weight_left_right_closests[tlr_array_shift + j] = pwj;
}
cut_shift += num_cuts_in_part;
tlr_array_shift += num_total_part_in_part + 2 * num_cuts_in_part;
total_part_array_shift += num_total_part_in_part;
}
}
//the other threads needs to wait here.
//but we don't need a pragma omp barrier.
//as omp single has already have implicit barrier.
}
/*! \brief
* Function that calculates the next pivot position,
* according to given coordinates of upper bound and lower bound, the weights at upper and lower bounds, and the expected weight.
* \param cut_upper_bound is the upper bound coordinate of the cut.
* \param cut_lower_bound is the lower bound coordinate of the cut.
* \param cut_upper_weight is the weights at the upper bound of the cut.
* \param cut_lower_weight is the weights at the lower bound of the cut.
* \param expected_weight is the expected weight that should be placed on the left of the cut line.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_calculate_new_cut_position (
mj_scalar_t cut_upper_bound,
mj_scalar_t cut_lower_bound,
mj_scalar_t cut_upper_weight,
mj_scalar_t cut_lower_weight,
mj_scalar_t expected_weight,
mj_scalar_t &new_cut_position){
if(ZOLTAN2_ABS(cut_upper_bound - cut_lower_bound) < this->sEpsilon){
new_cut_position = cut_upper_bound; //or lower bound does not matter.
}
if(ZOLTAN2_ABS(cut_upper_weight - cut_lower_weight) < this->sEpsilon){
new_cut_position = cut_lower_bound;
}
mj_scalar_t coordinate_range = (cut_upper_bound - cut_lower_bound);
mj_scalar_t weight_range = (cut_upper_weight - cut_lower_weight);
mj_scalar_t my_weight_diff = (expected_weight - cut_lower_weight);
mj_scalar_t required_shift = (my_weight_diff / weight_range);
int scale_constant = 20;
int shiftint= int (required_shift * scale_constant);
if (shiftint == 0) shiftint = 1;
required_shift = mj_scalar_t (shiftint) / scale_constant;
new_cut_position = coordinate_range * required_shift + cut_lower_bound;
}
/*! \brief Function that determines the permutation indices of the coordinates.
* \param num_parts is the number of parts.
* \param mj_current_dim_coords is 1 dimensional array holding the coordinate values.
* \param current_concurrent_cut_coordinate is 1 dimensional array holding the cut coordinates.
* \param coordinate_begin is the start index of the given partition on partitionedPointPermutations.
* \param coordinate_end is the end index of the given partition on partitionedPointPermutations.
* \param used_local_cut_line_weight_to_left holds how much weight of the coordinates on the cutline should be put on left side.
* \param used_thread_part_weight_work is the two dimensional array holding the weight of parts for each thread. Assumes there are 2*P - 1 parts (cut lines are seperate parts).
* \param out_part_xadj is the indices of coordinates calculated for the partition on next dimension.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_create_new_partitions(
mj_part_t num_parts,
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t *current_concurrent_cut_coordinate,
mj_lno_t coordinate_begin,
mj_lno_t coordinate_end,
mj_scalar_t *used_local_cut_line_weight_to_left,
double **used_thread_part_weight_work,
mj_lno_t *out_part_xadj){
mj_part_t num_cuts = num_parts - 1;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel
#endif
{
int me = 0;
#ifdef HAVE_ZOLTAN2_OMP
me = omp_get_thread_num();
#endif
mj_lno_t *thread_num_points_in_parts = this->thread_point_counts[me];
mj_scalar_t *my_local_thread_cut_weights_to_put_left = NULL;
//now if the rectilinear partitioning is allowed we decide how
//much weight each thread should put to left and right.
if (this->distribute_points_on_cut_lines){
my_local_thread_cut_weights_to_put_left = this->thread_cut_line_weight_to_put_left[me];
// this for assumes the static scheduling in mj_1D_part calculation.
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp for
#endif
for (mj_part_t i = 0; i < num_cuts; ++i){
//the left to be put on the left of the cut.
mj_scalar_t left_weight = used_local_cut_line_weight_to_left[i];
for(int ii = 0; ii < this->num_threads; ++ii){
if(left_weight > this->sEpsilon){
//the weight of thread ii on cut.
mj_scalar_t thread_ii_weight_on_cut = used_thread_part_weight_work[ii][i * 2 + 1] - used_thread_part_weight_work[ii][i * 2 ];
if(thread_ii_weight_on_cut < left_weight){
//if left weight is bigger than threads weight on cut.
this->thread_cut_line_weight_to_put_left[ii][i] = thread_ii_weight_on_cut;
}
else {
//if thread's weight is bigger than space, then put only a portion.
this->thread_cut_line_weight_to_put_left[ii][i] = left_weight ;
}
left_weight -= thread_ii_weight_on_cut;
}
else {
this->thread_cut_line_weight_to_put_left[ii][i] = 0;
}
}
}
if(num_cuts > 0){
//this is a special case. If cutlines share the same coordinate, their weights are equal.
//we need to adjust the ratio for that.
for (mj_part_t i = num_cuts - 1; i > 0 ; --i){
if(ZOLTAN2_ABS(current_concurrent_cut_coordinate[i] - current_concurrent_cut_coordinate[i -1]) < this->sEpsilon){
my_local_thread_cut_weights_to_put_left[i] -= my_local_thread_cut_weights_to_put_left[i - 1] ;
}
my_local_thread_cut_weights_to_put_left[i] = int ((my_local_thread_cut_weights_to_put_left[i] + LEAST_SIGNIFICANCE) * SIGNIFICANCE_MUL)
/ mj_scalar_t(SIGNIFICANCE_MUL);
}
}
}
for(mj_part_t ii = 0; ii < num_parts; ++ii){
thread_num_points_in_parts[ii] = 0;
}
#ifdef HAVE_ZOLTAN2_OMP
//dont change static scheduler. the static partitioner used later as well.
#pragma omp for
#endif
for (mj_lno_t ii = coordinate_begin; ii < coordinate_end; ++ii){
mj_lno_t coordinate_index = this->coordinate_permutations[ii];
mj_scalar_t coordinate_weight = this->mj_uniform_weights[0]? 1:this->mj_weights[0][coordinate_index];
mj_part_t coordinate_assigned_place = this->assigned_part_ids[coordinate_index];
mj_part_t coordinate_assigned_part = coordinate_assigned_place / 2;
if(coordinate_assigned_place % 2 == 1){
//if it is on the cut.
if(this->distribute_points_on_cut_lines
&& my_local_thread_cut_weights_to_put_left[coordinate_assigned_part] > this->sEpsilon){
//if the rectilinear partitioning is allowed,
//and the thread has still space to put on the left of the cut
//then thread puts the vertex to left.
my_local_thread_cut_weights_to_put_left[coordinate_assigned_part] -= coordinate_weight;
//if putting the vertex to left increased the weight more than expected.
//and if the next cut is on the same coordinate,
//then we need to adjust how much weight next cut puts to its left as well,
//in order to take care of the imbalance.
if(my_local_thread_cut_weights_to_put_left[coordinate_assigned_part] < 0
&& coordinate_assigned_part < num_cuts - 1
&& ZOLTAN2_ABS(current_concurrent_cut_coordinate[coordinate_assigned_part+1] -
current_concurrent_cut_coordinate[coordinate_assigned_part]) < this->sEpsilon){
my_local_thread_cut_weights_to_put_left[coordinate_assigned_part + 1] += my_local_thread_cut_weights_to_put_left[coordinate_assigned_part];
}
++thread_num_points_in_parts[coordinate_assigned_part];
this->assigned_part_ids[coordinate_index] = coordinate_assigned_part;
}
else{
//if there is no more space on the left, put the coordinate to the right of the cut.
++coordinate_assigned_part;
//this while loop is necessary when a line is partitioned into more than 2 parts.
while(this->distribute_points_on_cut_lines &&
coordinate_assigned_part < num_cuts){
//traverse all the cut lines having the same partitiong
if(ZOLTAN2_ABS(current_concurrent_cut_coordinate[coordinate_assigned_part] -
current_concurrent_cut_coordinate[coordinate_assigned_part - 1])
< this->sEpsilon){
//if line has enough space on left, put it there.
if(my_local_thread_cut_weights_to_put_left[coordinate_assigned_part] >
this->sEpsilon &&
my_local_thread_cut_weights_to_put_left[coordinate_assigned_part] >=
ZOLTAN2_ABS(my_local_thread_cut_weights_to_put_left[coordinate_assigned_part] - coordinate_weight)){
my_local_thread_cut_weights_to_put_left[coordinate_assigned_part] -= coordinate_weight;
//Again if it put too much on left of the cut,
//update how much the next cut sharing the same coordinate will put to its left.
if(my_local_thread_cut_weights_to_put_left[coordinate_assigned_part] < 0 &&
coordinate_assigned_part < num_cuts - 1 &&
ZOLTAN2_ABS(current_concurrent_cut_coordinate[coordinate_assigned_part+1] -
current_concurrent_cut_coordinate[coordinate_assigned_part]) < this->sEpsilon){
my_local_thread_cut_weights_to_put_left[coordinate_assigned_part + 1] += my_local_thread_cut_weights_to_put_left[coordinate_assigned_part];
}
break;
}
}
else {
break;
}
++coordinate_assigned_part;
}
++thread_num_points_in_parts[coordinate_assigned_part];
this->assigned_part_ids[coordinate_index] = coordinate_assigned_part;
}
}
else {
//if it is already assigned to a part, then just put it to the corresponding part.
++thread_num_points_in_parts[coordinate_assigned_part];
this->assigned_part_ids[coordinate_index] = coordinate_assigned_part;
}
}
//now we calculate where each thread will write in new_coordinate_permutations array.
//first we find the out_part_xadj, by marking the begin and end points of each part found.
//the below loop find the number of points in each part, and writes it to out_part_xadj
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp for
#endif
for(mj_part_t j = 0; j < num_parts; ++j){
mj_lno_t num_points_in_part_j_upto_thread_i = 0;
for (int i = 0; i < this->num_threads; ++i){
mj_lno_t thread_num_points_in_part_j = this->thread_point_counts[i][j];
//prefix sum to thread point counts, so that each will have private space to write.
this->thread_point_counts[i][j] = num_points_in_part_j_upto_thread_i;
num_points_in_part_j_upto_thread_i += thread_num_points_in_part_j;
}
out_part_xadj[j] = num_points_in_part_j_upto_thread_i;// + prev2; //+ coordinateBegin;
}
//now we need to do a prefix sum to out_part_xadj[j], to point begin and end of each part.
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp single
#endif
{
//perform prefix sum for num_points in parts.
for(mj_part_t j = 1; j < num_parts; ++j){
out_part_xadj[j] += out_part_xadj[j - 1];
}
}
//shift the num points in threads thread to obtain the
//beginning index of each thread's private space.
for(mj_part_t j = 1; j < num_parts; ++j){
thread_num_points_in_parts[j] += out_part_xadj[j - 1] ;
}
//now thread gets the coordinate and writes the index of coordinate to the permutation array
//using the part index we calculated.
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp for
#endif
for (mj_lno_t ii = coordinate_begin; ii < coordinate_end; ++ii){
mj_lno_t i = this->coordinate_permutations[ii];
mj_part_t p = this->assigned_part_ids[i];
this->new_coordinate_permutations[coordinate_begin +
thread_num_points_in_parts[p]++] = i;
}
}
}
/*! \brief Function that calculates the new coordinates for the cut lines. Function is called inside the parallel region.
*
* \param num_total_part is the sum of number of cutlines and number of parts. Simply it is 2*P - 1.
* \param num_cuts is the number of cut lines. P - 1.
* \param max_coordinate is the maximum coordinate in the current range of coordinates and in the current dimension.
* \param min_coordinate is the maximum coordinate in the current range of coordinates and in the current dimension.
* \param global_total_weight is the global total weight in the current range of coordinates.
* \param used_imbalance_tolerance is the maximum allowed imbalance ratio.
*
*
* \param current_global_part_weights is the array holding the weight of parts. Assumes there are 2*P - 1 parts (cut lines are seperate parts).
* \param current_local_part_weights is the local totalweight of the processor.
* \param current_part_target_weights are the desired cumulative part ratios, sized P.
* \param current_cut_line_determined is the boolean array to determine if the correct position for a cut line is found.
*
* \param current_cut_coordinates is the array holding the coordinates of each cut line. Sized P - 1.
* \param current_cut_upper_bounds is the array holding the upper bound coordinate for each cut line. Sized P - 1.
* \param current_cut_lower_bounds is the array holding the lower bound coordinate for each cut line. Sized P - 1.
* \param current_global_left_closest_points is the array holding the closest points to the cut lines from left.
* \param current_global_right_closest_points is the array holding the closest points to the cut lines from right.
* \param current_cut_lower_bound_weights is the array holding the weight of the parts at the left of lower bound coordinates.
* \param current_cut_upper_weights is the array holding the weight of the parts at the left of upper bound coordinates.
* \param new_current_cut_coordinates is the work array, sized P - 1.
*
* \param current_part_cut_line_weight_ratio holds how much weight of the coordinates on the cutline should be put on left side.
* \param rectilinear_cut_count is the count of cut lines whose balance can be achived via distributing the points in same coordinate to different parts.
* \param my_num_incomplete_cut is the number of cutlines whose position has not been determined yet. For K > 1 it is the count in a single part (whose cut lines are determined).
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_get_new_cut_coordinates(
const size_t &num_total_part,
const mj_part_t &num_cuts,
const mj_scalar_t &max_coordinate,
const mj_scalar_t &min_coordinate,
const mj_scalar_t &global_total_weight,
const mj_scalar_t &used_imbalance_tolerance,
mj_scalar_t * current_global_part_weights,
const mj_scalar_t * current_local_part_weights,
const mj_scalar_t *current_part_target_weights,
bool *current_cut_line_determined,
mj_scalar_t *current_cut_coordinates,
mj_scalar_t *current_cut_upper_bounds,
mj_scalar_t *current_cut_lower_bounds,
mj_scalar_t *current_global_left_closest_points,
mj_scalar_t *current_global_right_closest_points,
mj_scalar_t * current_cut_lower_bound_weights,
mj_scalar_t * current_cut_upper_weights,
mj_scalar_t *new_current_cut_coordinates,
mj_scalar_t *current_part_cut_line_weight_to_put_left,
mj_part_t *rectilinear_cut_count,
mj_part_t &my_num_incomplete_cut){
//seen weight in the part
mj_scalar_t seen_weight_in_part = 0;
//expected weight for part.
mj_scalar_t expected_weight_in_part = 0;
//imbalance for the left and right side of the cut.
mj_scalar_t imbalance_on_left = 0, imbalance_on_right = 0;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp for
#endif
for (mj_part_t i = 0; i < num_cuts; i++){
//if left and right closest points are not set yet,
//set it to the cut itself.
if(min_coordinate - current_global_left_closest_points[i] > this->sEpsilon)
current_global_left_closest_points[i] = current_cut_coordinates[i];
if(current_global_right_closest_points[i] - max_coordinate > this->sEpsilon)
current_global_right_closest_points[i] = current_cut_coordinates[i];
}
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp for
#endif
for (mj_part_t i = 0; i < num_cuts; i++){
if(this->distribute_points_on_cut_lines){
//init the weight on the cut.
this->global_rectilinear_cut_weight[i] = 0;
this->process_rectilinear_cut_weight[i] = 0;
}
//if already determined at previous iterations,
//then just write the coordinate to new array, and proceed.
if(current_cut_line_determined[i]) {
new_current_cut_coordinates[i] = current_cut_coordinates[i];
continue;
}
//current weight of the part at the left of the cut line.
seen_weight_in_part = current_global_part_weights[i * 2];
/*
cout << "seen_weight_in_part:" << i << " is "<< seen_weight_in_part << endl;
cout << "\tcut:" << current_cut_coordinates[i]
<< " current_cut_lower_bounds:" << current_cut_lower_bounds[i]
<< " current_cut_upper_bounds:" << current_cut_upper_bounds[i] << endl;
*/
//expected ratio
expected_weight_in_part = current_part_target_weights[i];
//leftImbalance = imbalanceOf(seenW, globalTotalWeight, expected);
imbalance_on_left = imbalanceOf2(seen_weight_in_part, expected_weight_in_part);
//rightImbalance = imbalanceOf(globalTotalWeight - seenW, globalTotalWeight, 1 - expected);
imbalance_on_right = imbalanceOf2(global_total_weight - seen_weight_in_part, global_total_weight - expected_weight_in_part);
bool is_left_imbalance_valid = ZOLTAN2_ABS(imbalance_on_left) - used_imbalance_tolerance < this->sEpsilon ;
bool is_right_imbalance_valid = ZOLTAN2_ABS(imbalance_on_right) - used_imbalance_tolerance < this->sEpsilon;
//if the cut line reaches to desired imbalance.
if(is_left_imbalance_valid && is_right_imbalance_valid){
current_cut_line_determined[i] = true;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp atomic
#endif
my_num_incomplete_cut -= 1;
new_current_cut_coordinates [i] = current_cut_coordinates[i];
continue;
}
else if(imbalance_on_left < 0){
//if left imbalance < 0 then we need to move the cut to right.
if(this->distribute_points_on_cut_lines){
//if it is okay to distribute the coordinate on
//the same coordinate to left and right.
//then check if we can reach to the target weight by including the
//coordinates in the part.
if (current_global_part_weights[i * 2 + 1] == expected_weight_in_part){
//if it is we are done.
current_cut_line_determined[i] = true;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp atomic
#endif
my_num_incomplete_cut -= 1;
//then assign everything on the cut to the left of the cut.
new_current_cut_coordinates [i] = current_cut_coordinates[i];
//for this cut all the weight on cut will be put to left.
current_part_cut_line_weight_to_put_left[i] = current_local_part_weights[i * 2 + 1] - current_local_part_weights[i * 2];
continue;
}
else if (current_global_part_weights[i * 2 + 1] > expected_weight_in_part){
//if the weight is larger than the expected weight,
//then we need to distribute some points to left, some to right.
current_cut_line_determined[i] = true;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp atomic
#endif
*rectilinear_cut_count += 1;
//increase the num cuts to be determined with rectilinear partitioning.
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp atomic
#endif
my_num_incomplete_cut -= 1;
new_current_cut_coordinates [i] = current_cut_coordinates[i];
this->process_rectilinear_cut_weight[i] = current_local_part_weights[i * 2 + 1] -
current_local_part_weights[i * 2];
continue;
}
}
//we need to move further right,so set lower bound to current line, and shift it to the closes point from right.
current_cut_lower_bounds[i] = current_global_right_closest_points[i];
//set the lower bound weight to the weight we have seen.
current_cut_lower_bound_weights[i] = seen_weight_in_part;
//compare the upper bound with what has been found in the last iteration.
//we try to make more strict bounds for the cut here.
for (mj_part_t ii = i + 1; ii < num_cuts ; ++ii){
mj_scalar_t p_weight = current_global_part_weights[ii * 2];
mj_scalar_t line_weight = current_global_part_weights[ii * 2 + 1];
if(p_weight >= expected_weight_in_part){
//if a cut on the right has the expected weight, then we found
//our cut position. Set up and low coordiantes to this new cut coordinate.
//but we need one more iteration to finalize the cut position,
//as wee need to update the part ids.
if(p_weight == expected_weight_in_part){
current_cut_upper_bounds[i] = current_cut_coordinates[ii];
current_cut_upper_weights[i] = p_weight;
current_cut_lower_bounds[i] = current_cut_coordinates[ii];
current_cut_lower_bound_weights[i] = p_weight;
} else if (p_weight < current_cut_upper_weights[i]){
//if a part weight is larger then my expected weight,
//but lower than my upper bound weight, update upper bound.
current_cut_upper_bounds[i] = current_global_left_closest_points[ii];
current_cut_upper_weights[i] = p_weight;
}
break;
}
//if comes here then pw < ew
//then compare the weight against line weight.
if(line_weight >= expected_weight_in_part){
//if the line is larger than the expected weight,
//then we need to reach to the balance by distributing coordinates on this line.
current_cut_upper_bounds[i] = current_cut_coordinates[ii];
current_cut_upper_weights[i] = line_weight;
current_cut_lower_bounds[i] = current_cut_coordinates[ii];
current_cut_lower_bound_weights[i] = p_weight;
break;
}
//if a stricter lower bound is found,
//update the lower bound.
if (p_weight <= expected_weight_in_part && p_weight >= current_cut_lower_bound_weights[i]){
current_cut_lower_bounds[i] = current_global_right_closest_points[ii] ;
current_cut_lower_bound_weights[i] = p_weight;
}
}
mj_scalar_t new_cut_position = 0;
this->mj_calculate_new_cut_position(
current_cut_upper_bounds[i],
current_cut_lower_bounds[i],
current_cut_upper_weights[i],
current_cut_lower_bound_weights[i],
expected_weight_in_part, new_cut_position);
//if cut line does not move significantly.
//then finalize the search.
if (ZOLTAN2_ABS(current_cut_coordinates[i] - new_cut_position) < this->sEpsilon
/*|| current_cut_lower_bounds[i] - current_cut_upper_bounds[i] > this->sEpsilon*/
){
current_cut_line_determined[i] = true;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp atomic
#endif
my_num_incomplete_cut -= 1;
//set the cut coordinate and proceed.
new_current_cut_coordinates [i] = current_cut_coordinates[i];
} else {
new_current_cut_coordinates [i] = new_cut_position;
}
} else {
//need to move the cut line to left.
//set upper bound to current line.
current_cut_upper_bounds[i] = current_global_left_closest_points[i];
current_cut_upper_weights[i] = seen_weight_in_part;
// compare the current cut line weights with previous upper and lower bounds.
for (int ii = i - 1; ii >= 0; --ii){
mj_scalar_t p_weight = current_global_part_weights[ii * 2];
mj_scalar_t line_weight = current_global_part_weights[ii * 2 + 1];
if(p_weight <= expected_weight_in_part){
if(p_weight == expected_weight_in_part){
//if the weight of the part is my expected weight
//then we find the solution.
current_cut_upper_bounds[i] = current_cut_coordinates[ii];
current_cut_upper_weights[i] = p_weight;
current_cut_lower_bounds[i] = current_cut_coordinates[ii];
current_cut_lower_bound_weights[i] = p_weight;
}
else if (p_weight > current_cut_lower_bound_weights[i]){
//if found weight is bigger than the lower bound
//then update the lower bound.
current_cut_lower_bounds[i] = current_global_right_closest_points[ii];
current_cut_lower_bound_weights[i] = p_weight;
//at the same time, if weight of line is bigger than the
//expected weight, then update the upper bound as well.
//in this case the balance will be obtained by distributing weightss
//on this cut position.
if(line_weight > expected_weight_in_part){
current_cut_upper_bounds[i] = current_global_right_closest_points[ii];
current_cut_upper_weights[i] = line_weight;
}
}
break;
}
//if the weight of the cut on the left is still bigger than my weight,
//and also if the weight is smaller than the current upper weight,
//or if the weight is equal to current upper weight, but on the left of
// the upper weight, then update upper bound.
if (p_weight >= expected_weight_in_part &&
(p_weight < current_cut_upper_weights[i] ||
(p_weight == current_cut_upper_weights[i] &&
current_cut_upper_bounds[i] > current_global_left_closest_points[ii]
)
)
){
current_cut_upper_bounds[i] = current_global_left_closest_points[ii] ;
current_cut_upper_weights[i] = p_weight;
}
}
mj_scalar_t new_cut_position = 0;
this->mj_calculate_new_cut_position(
current_cut_upper_bounds[i],
current_cut_lower_bounds[i],
current_cut_upper_weights[i],
current_cut_lower_bound_weights[i],
expected_weight_in_part,
new_cut_position);
//if cut line does not move significantly.
if (ZOLTAN2_ABS(current_cut_coordinates[i] - new_cut_position) < this->sEpsilon
/*|| current_cut_lower_bounds[i] - current_cut_upper_bounds[i] > this->sEpsilon*/ ){
current_cut_line_determined[i] = true;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp atomic
#endif
my_num_incomplete_cut -= 1;
//set the cut coordinate and proceed.
new_current_cut_coordinates [ i] = current_cut_coordinates[i];
} else {
new_current_cut_coordinates [ i] = new_cut_position;
}
}
}
{ // This unnecessary bracket works around a compiler bug in NVCC when enabling OpenMP as well
//communication to determine the ratios of processors for the distribution
//of coordinates on the cut lines.
#ifdef HAVE_ZOLTAN2_OMP
//no need barrier here as it is implicit.
#pragma omp single
#endif
{
if(*rectilinear_cut_count > 0){
try{
Teuchos::scan<int,mj_scalar_t>(
*comm, Teuchos::REDUCE_SUM,
num_cuts,
this->process_rectilinear_cut_weight,
this->global_rectilinear_cut_weight
);
}
Z2_THROW_OUTSIDE_ERROR(*(this->mj_env))
for (mj_part_t i = 0; i < num_cuts; ++i){
//if cut line weight to be distributed.
if(this->global_rectilinear_cut_weight[i] > 0) {
//expected weight to go to left of the cut.
mj_scalar_t expected_part_weight = current_part_target_weights[i];
//the weight that should be put to left of the cut.
mj_scalar_t necessary_weight_on_line_for_left = expected_part_weight - current_global_part_weights[i * 2];
//the weight of the cut in the process
mj_scalar_t my_weight_on_line = this->process_rectilinear_cut_weight[i];
//the sum of the cut weights upto this process, including the weight of this process.
mj_scalar_t weight_on_line_upto_process_inclusive = this->global_rectilinear_cut_weight[i];
//the space on the left side of the cut after all processes before this process (including this process)
//puts their weights on cut to left.
mj_scalar_t space_to_put_left = necessary_weight_on_line_for_left - weight_on_line_upto_process_inclusive;
//add my weight to this space to find out how much space is left to me.
mj_scalar_t space_left_to_me = space_to_put_left + my_weight_on_line;
/*
cout << "expected_part_weight:" << expected_part_weight
<< " necessary_weight_on_line_for_left:" << necessary_weight_on_line_for_left
<< " my_weight_on_line" << my_weight_on_line
<< " weight_on_line_upto_process_inclusive:" << weight_on_line_upto_process_inclusive
<< " space_to_put_left:" << space_to_put_left
<< " space_left_to_me" << space_left_to_me << endl;
*/
if(space_left_to_me < 0){
//space_left_to_me is negative and i dont need to put anything to left.
current_part_cut_line_weight_to_put_left[i] = 0;
}
else if(space_left_to_me >= my_weight_on_line){
//space left to me is bigger than the weight of the processor on cut.
//so put everything to left.
current_part_cut_line_weight_to_put_left[i] = my_weight_on_line;
//cout << "setting current_part_cut_line_weight_to_put_left to my_weight_on_line:" << my_weight_on_line << endl;
}
else {
//put only the weight as much as the space.
current_part_cut_line_weight_to_put_left[i] = space_left_to_me ;
//cout << "setting current_part_cut_line_weight_to_put_left to space_left_to_me:" << space_left_to_me << endl;
}
}
}
*rectilinear_cut_count = 0;
}
}
}
}
/*! \brief Function fills up the num_points_in_all_processor_parts, so that
* it has the number of coordinates in each processor of each part.
* to access how many points processor i has on part j, num_points_in_all_processor_parts[i * num_parts + j].
*
* \param num_procs is the number of processor attending to migration operation.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_points_in_all_processor_parts is the output array that holds
* the number of coordinates in each part in each processor.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::get_processor_num_points_in_parts(
mj_part_t num_procs,
mj_part_t num_parts,
mj_gno_t *&num_points_in_all_processor_parts){
//initially allocation_size is num_parts
size_t allocation_size = num_parts * (num_procs + 1);
//this will be output
//holds how many each processor has in each part.
//last portion is the sum of all processor points in each part.
//allocate memory for the local num coordinates in each part.
mj_gno_t *num_local_points_in_each_part_to_reduce_sum = allocMemory<mj_gno_t>(allocation_size);
//this is the portion of the memory which will be used
//at the summation to obtain total number of processors' points in each part.
mj_gno_t *my_local_points_to_reduce_sum = num_local_points_in_each_part_to_reduce_sum + num_procs * num_parts;
//this is the portion of the memory where each stores its local number.
//this information is needed by other processors.
mj_gno_t *my_local_point_counts_in_each_art = num_local_points_in_each_part_to_reduce_sum + this->myRank * num_parts;
//initialize the array with 0's.
memset(num_local_points_in_each_part_to_reduce_sum, 0, sizeof(mj_gno_t)*allocation_size);
//write the number of coordinates in each part.
for (mj_part_t i = 0; i < num_parts; ++i){
mj_lno_t part_begin_index = 0;
if (i > 0){
part_begin_index = this->new_part_xadj[i - 1];
}
mj_lno_t part_end_index = this->new_part_xadj[i];
my_local_points_to_reduce_sum[i] = part_end_index - part_begin_index;
}
//copy the local num parts to the last portion of array,
//so that this portion will represent the global num points in each part after the reduction.
memcpy (my_local_point_counts_in_each_art,
my_local_points_to_reduce_sum,
sizeof(mj_gno_t) * (num_parts) );
//reduceAll operation.
//the portion that belongs to a processor with index p
//will start from myRank * num_parts.
//the global number of points will be held at the index
try{
reduceAll<int, mj_gno_t>(
*(this->comm),
Teuchos::REDUCE_SUM,
allocation_size,
num_local_points_in_each_part_to_reduce_sum,
num_points_in_all_processor_parts);
}
Z2_THROW_OUTSIDE_ERROR(*(this->mj_env))
freeArray<mj_gno_t>(num_local_points_in_each_part_to_reduce_sum);
}
/*! \brief Function checks if should do migration or not.
* It returns true to point that migration should be done when
* -migration_reduce_all_population are higher than a predetermined value
* -num_coords_for_last_dim_part that left for the last dimension partitioning is less than a predetermined value
* -the imbalance of the processors on the parts are higher than given threshold.
* \param migration_reduce_all_population is the multiplication of the number of reduceall operations estimated and the number of processors.
* \param num_coords_for_last_dim_part is the estimated number of coordinates in a part per processor in the last dimension partitioning.
* \param num_procs is the number of processor attending to migration operation.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_points_in_all_processor_parts is the input array that holds
* the number of coordinates in each part in each processor.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
bool AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_check_to_migrate(
size_t migration_reduce_all_population,
mj_lno_t num_coords_for_last_dim_part,
mj_part_t num_procs,
mj_part_t num_parts,
mj_gno_t *num_points_in_all_processor_parts){
//if reduce all count and population in the last dim is too high
if (migration_reduce_all_population > FUTURE_REDUCEALL_CUTOFF) return true;
//if the work in a part per processor in the last dim is too low.
if (num_coords_for_last_dim_part < MIN_WORK_LAST_DIM) return true;
//if migration is to be checked and the imbalance is too high
if (this->check_migrate_avoid_migration_option == 0){
double global_imbalance = 0;
//global shift to reach the sum of coordiante count in each part.
size_t global_shift = num_procs * num_parts;
for (mj_part_t ii = 0; ii < num_procs; ++ii){
for (mj_part_t i = 0; i < num_parts; ++i){
double ideal_num = num_points_in_all_processor_parts[global_shift + i]
/ double(num_procs);
global_imbalance += ZOLTAN2_ABS(ideal_num -
num_points_in_all_processor_parts[ii * num_parts + i]) / (ideal_num);
}
}
global_imbalance /= num_parts;
global_imbalance /= num_procs;
/*
if (this->myRank == 0) {
cout << "imbalance for next iteration:" << global_imbalance << endl;
}
*/
if(global_imbalance <= this->minimum_migration_imbalance){
return false;
}
else {
return true;
}
}
else {
//if migration is forced
return true;
}
}
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent.
*
* \param num_parts is the number of parts that exist in the current partitioning.
* \param part_assignment_proc_begin_indices ([i]) points to the first processor index that part i will be sent to.
* \param processor_chains_in_parts the array that holds the linked list structure, started from part_assignment_proc_begin_indices ([i]).
* \param send_count_to_each_proc array array storing the number of points to be sent to each part.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::assign_send_destinations(
mj_part_t num_parts,
mj_part_t *part_assignment_proc_begin_indices,
mj_part_t *processor_chains_in_parts,
mj_lno_t *send_count_to_each_proc,
int *coordinate_destinations){
for (mj_part_t p = 0; p < num_parts; ++p){
mj_lno_t part_begin = 0;
if (p > 0) part_begin = this->new_part_xadj[p - 1];
mj_lno_t part_end = this->new_part_xadj[p];
//get the first part that current processor will send its part-p.
mj_part_t proc_to_sent = part_assignment_proc_begin_indices[p];
//initialize how many point I sent to this processor.
mj_lno_t num_total_send = 0;
for (mj_lno_t j=part_begin; j < part_end; j++){
mj_lno_t local_ind = this->new_coordinate_permutations[j];
while (num_total_send >= send_count_to_each_proc[proc_to_sent]){
//then get the next processor to send the points in part p.
num_total_send = 0;
//assign new processor to part_assign_begin[p]
part_assignment_proc_begin_indices[p] = processor_chains_in_parts[proc_to_sent];
//remove the previous processor
processor_chains_in_parts[proc_to_sent] = -1;
//choose the next processor as the next one to send.
proc_to_sent = part_assignment_proc_begin_indices[p];
}
//write the gno index to corresponding position in sendBuf.
coordinate_destinations[local_ind] = proc_to_sent;
++num_total_send;
}
}
}
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent.
*
* \param num_points_in_all_processor_parts is the array holding the num points in each part in each proc.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_procs is the number of processor attending to migration operation.
* \param send_count_to_each_proc array array storing the number of points to be sent to each part.
* \param processor_ranks_for_subcomm is the ranks of the processors that will be in the subcommunicator with me.
* \param next_future_num_parts_in_parts is the vector, how many more parts each part will be divided into in the future.
* \param out_part_index is the index of the part to which the processor is assigned.
* \param output_part_numbering_begin_index is how much the numbers should be shifted when numbering the result parts.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_assign_proc_to_parts(
mj_gno_t * num_points_in_all_processor_parts,
mj_part_t num_parts,
mj_part_t num_procs,
mj_lno_t *send_count_to_each_proc,
std::vector<mj_part_t> &processor_ranks_for_subcomm,
std::vector<mj_part_t> *next_future_num_parts_in_parts,
mj_part_t &out_part_index,
mj_part_t &output_part_numbering_begin_index,
int *coordinate_destinations){
mj_gno_t *global_num_points_in_parts = num_points_in_all_processor_parts + num_procs * num_parts;
mj_part_t *num_procs_assigned_to_each_part = allocMemory<mj_part_t>(num_parts);
//boolean variable if the process finds its part to be assigned.
bool did_i_find_my_group = false;
mj_part_t num_free_procs = num_procs;
mj_part_t minimum_num_procs_required_for_rest_of_parts = num_parts - 1;
double max_imbalance_difference = 0;
mj_part_t max_differing_part = 0;
//find how many processor each part requires.
for (mj_part_t i=0; i < num_parts; i++){
//scalar portion of the required processors
double scalar_required_proc = num_procs *
(double (global_num_points_in_parts[i]) / double (this->num_global_coords));
//round it to closest integer.
mj_part_t required_proc = static_cast<mj_part_t> (0.5 + scalar_required_proc);
//if assigning the required num procs, creates problems for the rest of the parts.
//then only assign {num_free_procs - (minimum_num_procs_required_for_rest_of_parts)} procs to this part.
if (num_free_procs - required_proc < minimum_num_procs_required_for_rest_of_parts){
required_proc = num_free_procs - (minimum_num_procs_required_for_rest_of_parts);
}
//reduce the free processor count
num_free_procs -= required_proc;
//reduce the free minimum processor count required for the rest of the part by 1.
--minimum_num_procs_required_for_rest_of_parts;
//part (i) is assigned to (required_proc) processors.
num_procs_assigned_to_each_part[i] = required_proc;
//because of the roundings some processors might be left as unassigned.
//we want to assign those processors to the part with most imbalance.
//find the part with the maximum imbalance here.
double imbalance_wrt_ideal = (scalar_required_proc - required_proc) / required_proc;
if (imbalance_wrt_ideal > max_imbalance_difference){
max_imbalance_difference = imbalance_wrt_ideal;
max_differing_part = i;
}
}
//assign extra processors to the part with maximum imbalance than the ideal.
if (num_free_procs > 0){
num_procs_assigned_to_each_part[max_differing_part] += num_free_procs;
}
//now find what are the best processors with least migration for each part.
//part_assignment_proc_begin_indices ([i]) is the array that holds the beginning
//index of a processor that processor sends its data for part - i
mj_part_t *part_assignment_proc_begin_indices = allocMemory<mj_part_t>(num_parts);
//the next processor send is found in processor_chains_in_parts, in linked list manner.
mj_part_t *processor_chains_in_parts = allocMemory<mj_part_t>(num_procs);
mj_part_t *processor_part_assignments = allocMemory<mj_part_t>(num_procs);
//initialize the assignment of each processor.
//this has a linked list implementation.
//the beginning of processors assigned
//to each part is hold at part_assignment_proc_begin_indices[part].
//then the next processor assigned to that part is located at
//proc_part_assignments[part_assign_begins[part]], this is a chain
//until the value of -1 is reached.
for (int i = 0; i < num_procs; ++i ){
processor_part_assignments[i] = -1;
processor_chains_in_parts[i] = -1;
}
for (int i = 0; i < num_parts; ++i ){
part_assignment_proc_begin_indices[i] = -1;
}
//Allocate memory for sorting data structure.
uSignedSortItem<mj_part_t, mj_gno_t, char> * sort_item_num_part_points_in_procs = allocMemory <uSignedSortItem<mj_part_t, mj_gno_t, char> > (num_procs);
for(mj_part_t i = 0; i < num_parts; ++i){
//the algorithm tries to minimize the cost of migration,
//by assigning the processors with highest number of coordinates on that part.
//here we might want to implement a maximum weighted bipartite matching algorithm.
for(mj_part_t ii = 0; ii < num_procs; ++ii){
sort_item_num_part_points_in_procs[ii].id = ii;
//if processor is not assigned yet.
//add its num points to the sort data structure.
if (processor_part_assignments[ii] == -1){
sort_item_num_part_points_in_procs[ii].val = num_points_in_all_processor_parts[ii * num_parts + i];
sort_item_num_part_points_in_procs[ii].signbit = 1; //indicate that the processor has positive weight.
}
else {
//if processor is already assigned, insert -nLocal - 1 so that it won't be selected again.
//would be same if we simply set it to -1,
//but more information with no extra cost (which is used later) is provided.
//sort_item_num_part_points_in_procs[ii].val = -num_points_in_all_processor_parts[ii * num_parts + i] - 1;
//UPDATE: Since above gets warning when unsigned is used to represent, we added extra bit to as sign bit to the sort item.
//It is 1 for positives, 0 for negatives.
sort_item_num_part_points_in_procs[ii].val = num_points_in_all_processor_parts[ii * num_parts + i];
sort_item_num_part_points_in_procs[ii].signbit = 0;
}
}
//sort the processors in the part.
uqSignsort<mj_part_t, mj_gno_t,char>(num_procs, sort_item_num_part_points_in_procs);
/*
for(mj_part_t ii = 0; ii < num_procs; ++ii){
std::cout << "ii:" << ii << " " << sort_item_num_part_points_in_procs[ii].id <<
" " << sort_item_num_part_points_in_procs[ii].val <<
" " << int(sort_item_num_part_points_in_procs[ii].signbit) << std::endl;
}
*/
mj_part_t required_proc_count = num_procs_assigned_to_each_part[i];
mj_gno_t total_num_points_in_part = global_num_points_in_parts[i];
mj_gno_t ideal_num_points_in_a_proc =
Teuchos::as<mj_gno_t>(ceil (total_num_points_in_part / double (required_proc_count)));
//starts sending to least heaviest part.
mj_part_t next_proc_to_send_index = num_procs - required_proc_count;
mj_part_t next_proc_to_send_id = sort_item_num_part_points_in_procs[next_proc_to_send_index].id;
mj_lno_t space_left_in_sent_proc = ideal_num_points_in_a_proc - sort_item_num_part_points_in_procs[next_proc_to_send_index].val;
//find the processors that will be assigned to this part, which are the heaviest
//non assigned processors.
for(mj_part_t ii = num_procs - 1; ii >= num_procs - required_proc_count; --ii){
mj_part_t proc_id = sort_item_num_part_points_in_procs[ii].id;
//assign processor to part - i.
processor_part_assignments[proc_id] = i;
}
bool did_change_sign = false;
//if processor has a minus count, reverse it.
for(mj_part_t ii = 0; ii < num_procs; ++ii){
// TODO: THE LINE BELOW PRODUCES A WARNING IF gno_t IS UNSIGNED
// TODO: SEE BUG 6194
if (sort_item_num_part_points_in_procs[ii].signbit == 0){
did_change_sign = true;
sort_item_num_part_points_in_procs[ii].signbit = 1;
}
else {
break;
}
}
if(did_change_sign){
//resort the processors in the part for the rest of the processors that is not assigned.
uqSignsort<mj_part_t, mj_gno_t>(num_procs - required_proc_count, sort_item_num_part_points_in_procs);
}
/*
for(mj_part_t ii = 0; ii < num_procs; ++ii){
std::cout << "after resort ii:" << ii << " " << sort_item_num_part_points_in_procs[ii].id <<
" " << sort_item_num_part_points_in_procs[ii].val <<
" " << int(sort_item_num_part_points_in_procs[ii].signbit ) << std::endl;
}
*/
//check if this processors is one of the procs assigned to this part.
//if it is, then get the group.
if (!did_i_find_my_group){
for(mj_part_t ii = num_procs - 1; ii >= num_procs - required_proc_count; --ii){
mj_part_t proc_id_to_assign = sort_item_num_part_points_in_procs[ii].id;
//add the proc to the group.
processor_ranks_for_subcomm.push_back(proc_id_to_assign);
if(proc_id_to_assign == this->myRank){
//if the assigned process is me, then I find my group.
did_i_find_my_group = true;
//set the beginning of part i to my rank.
part_assignment_proc_begin_indices[i] = this->myRank;
processor_chains_in_parts[this->myRank] = -1;
//set send count to myself to the number of points that I have in part i.
send_count_to_each_proc[this->myRank] = sort_item_num_part_points_in_procs[ii].val;
//calculate the shift required for the output_part_numbering_begin_index
for (mj_part_t in = 0; in < i; ++in){
output_part_numbering_begin_index += (*next_future_num_parts_in_parts)[in];
}
out_part_index = i;
}
}
//if these was not my group,
//clear the subcomminicator processor array.
if (!did_i_find_my_group){
processor_ranks_for_subcomm.clear();
}
}
//send points of the nonassigned coordinates to the assigned coordinates.
//starts from the heaviest nonassigned processor.
//TODO we might want to play with this part, that allows more computational imbalance
//but having better communication balance.
for(mj_part_t ii = num_procs - required_proc_count - 1; ii >= 0; --ii){
mj_part_t nonassigned_proc_id = sort_item_num_part_points_in_procs[ii].id;
mj_lno_t num_points_to_sent = sort_item_num_part_points_in_procs[ii].val;
//we set number of points to -to_sent - 1 for the assigned processors.
//we reverse it here. This should not happen, as we have already reversed them above.
#ifdef MJ_DEBUG
if (num_points_to_sent < 0) {
cout << "Migration - processor assignments - for part:" << i << "from proc:" << nonassigned_proc_id << " num_points_to_sent:" << num_points_to_sent << std::endl;
exit(1);
}
#endif
//now sends the points to the assigned processors.
while (num_points_to_sent > 0){
//if the processor has enough space.
if (num_points_to_sent <= space_left_in_sent_proc){
//reduce the space left in the processor.
space_left_in_sent_proc -= num_points_to_sent;
//if my rank is the one that is sending the coordinates.
if (this->myRank == nonassigned_proc_id){
//set my sent count to the sent processor.
send_count_to_each_proc[next_proc_to_send_id] = num_points_to_sent;
//save the processor in the list (processor_chains_in_parts and part_assignment_proc_begin_indices)
//that the processor will send its point in part-i.
mj_part_t prev_begin = part_assignment_proc_begin_indices[i];
part_assignment_proc_begin_indices[i] = next_proc_to_send_id;
processor_chains_in_parts[next_proc_to_send_id] = prev_begin;
}
num_points_to_sent = 0;
}
else {
//there might be no space left in the processor.
if(space_left_in_sent_proc > 0){
num_points_to_sent -= space_left_in_sent_proc;
//send as the space left in the processor.
if (this->myRank == nonassigned_proc_id){
//send as much as the space in this case.
send_count_to_each_proc[next_proc_to_send_id] = space_left_in_sent_proc;
mj_part_t prev_begin = part_assignment_proc_begin_indices[i];
part_assignment_proc_begin_indices[i] = next_proc_to_send_id;
processor_chains_in_parts[next_proc_to_send_id] = prev_begin;
}
}
//change the sent part
++next_proc_to_send_index;
#ifdef MJ_DEBUG
if(next_part_to_send_index < nprocs - required_proc_count ){
cout << "Migration - processor assignments - for part:"
<< i
<< " next_part_to_send :" << next_part_to_send_index
<< " nprocs:" << nprocs
<< " required_proc_count:" << required_proc_count
<< " Error: next_part_to_send_index < nprocs - required_proc_count" << std::endl;
exit(1)l
}
#endif
//send the new id.
next_proc_to_send_id = sort_item_num_part_points_in_procs[next_proc_to_send_index].id;
//set the new space in the processor.
space_left_in_sent_proc = ideal_num_points_in_a_proc - sort_item_num_part_points_in_procs[next_proc_to_send_index].val;
}
}
}
}
this->assign_send_destinations(
num_parts,
part_assignment_proc_begin_indices,
processor_chains_in_parts,
send_count_to_each_proc,
coordinate_destinations);
freeArray<mj_part_t>(part_assignment_proc_begin_indices);
freeArray<mj_part_t>(processor_chains_in_parts);
freeArray<mj_part_t>(processor_part_assignments);
freeArray<uSignedSortItem<mj_part_t, mj_gno_t, char> > (sort_item_num_part_points_in_procs);
freeArray<mj_part_t > (num_procs_assigned_to_each_part);
}
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent. In addition it calculates
* the shift amount (output_part_numbering_begin_index) to be done when
* final numberings of the parts are performed.
*
* \param num_parts is the number of parts that exist in the current partitioning.
* \param sort_item_part_to_proc_assignment is the sorted parts with respect to the assigned processors.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
* \param output_part_numbering_begin_index is how much the numbers should be shifted when numbering the result parts.
* \param next_future_num_parts_in_parts is the vector, how many more parts each part will be divided into in the future.
*
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::assign_send_destinations2(
mj_part_t num_parts,
uSortItem<mj_part_t, mj_part_t> * sort_item_part_to_proc_assignment, //input sorted wrt processors
int *coordinate_destinations,
mj_part_t &output_part_numbering_begin_index,
std::vector<mj_part_t> *next_future_num_parts_in_parts){
mj_part_t part_shift_amount = output_part_numbering_begin_index;
mj_part_t previous_processor = -1;
for(mj_part_t i = 0; i < num_parts; ++i){
mj_part_t p = sort_item_part_to_proc_assignment[i].id;
//assigned processors are sorted.
mj_lno_t part_begin_index = 0;
if (p > 0) part_begin_index = this->new_part_xadj[p - 1];
mj_lno_t part_end_index = this->new_part_xadj[p];
mj_part_t assigned_proc = sort_item_part_to_proc_assignment[i].val;
if (this->myRank == assigned_proc && previous_processor != assigned_proc){
output_part_numbering_begin_index = part_shift_amount;
}
previous_processor = assigned_proc;
part_shift_amount += (*next_future_num_parts_in_parts)[p];
for (mj_lno_t j=part_begin_index; j < part_end_index; j++){
mj_lno_t localInd = this->new_coordinate_permutations[j];
coordinate_destinations[localInd] = assigned_proc;
}
}
}
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent. In addition it calculates
* the shift amount (output_part_numbering_begin_index) to be done when
* final numberings of the parts are performed.
*
* \param num_points_in_all_processor_parts is the array holding the num points in each part in each proc.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_procs is the number of processor attending to migration operation.
* \param send_count_to_each_proc array array storing the number of points to be sent to each part.
* \param next_future_num_parts_in_parts is the vector, how many more parts each part will be divided into in the future.
* \param out_num_part is the number of parts assigned to the process.
* \param out_part_indices is the indices of the part to which the processor is assigned.
* \param output_part_numbering_begin_index is how much the numbers should be shifted when numbering the result parts.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_assign_parts_to_procs(
mj_gno_t * num_points_in_all_processor_parts,
mj_part_t num_parts,
mj_part_t num_procs,
mj_lno_t *send_count_to_each_proc, //output: sized nprocs, show the number of send point counts to each proc.
std::vector<mj_part_t> *next_future_num_parts_in_parts,//input how many more partitions the part will be partitioned into.
mj_part_t &out_num_part, //output, how many parts the processor will have. this is always 1 for this function.
std::vector<mj_part_t> &out_part_indices, //output: the part indices which the processor is assigned to.
mj_part_t &output_part_numbering_begin_index, //output: how much the part number should be shifted when setting the solution
int *coordinate_destinations){
out_num_part = 0;
mj_gno_t *global_num_points_in_parts = num_points_in_all_processor_parts + num_procs * num_parts;
out_part_indices.clear();
//to sort the parts that is assigned to the processors.
//id is the part number, sort value is the assigned processor id.
uSortItem<mj_part_t, mj_part_t> * sort_item_part_to_proc_assignment = allocMemory <uSortItem<mj_part_t, mj_part_t> >(num_parts);
uSortItem<mj_part_t, mj_gno_t> * sort_item_num_points_of_proc_in_part_i = allocMemory <uSortItem<mj_part_t, mj_gno_t> >(num_procs);
//calculate the optimal number of coordinates that should be assigned to each processor.
mj_lno_t work_each = mj_lno_t (this->num_global_coords / (double (num_procs)) + 0.5f);
//to hold the left space as the number of coordinates to the optimal number in each proc.
mj_lno_t *space_in_each_processor = allocMemory <mj_lno_t>(num_procs);
//initialize left space in each.
for (mj_part_t i = 0; i < num_procs; ++i){
space_in_each_processor[i] = work_each;
}
//we keep track of how many parts each processor is assigned to.
//because in some weird inputs, it might be possible that some
//processors is not assigned to any part. Using these variables,
//we force each processor to have at least one part.
mj_part_t *num_parts_proc_assigned = allocMemory <mj_part_t>(num_procs);
memset(num_parts_proc_assigned, 0, sizeof(mj_part_t) * num_procs);
int empty_proc_count = num_procs;
//to sort the parts with decreasing order of their coordiantes.
//id are the part numbers, sort value is the number of points in each.
uSortItem<mj_part_t, mj_gno_t> * sort_item_point_counts_in_parts = allocMemory <uSortItem<mj_part_t, mj_gno_t> >(num_parts);
//initially we will sort the parts according to the number of coordinates they have.
//so that we will start assigning with the part that has the most number of coordinates.
for (mj_part_t i = 0; i < num_parts; ++i){
sort_item_point_counts_in_parts[i].id = i;
sort_item_point_counts_in_parts[i].val = global_num_points_in_parts[i];
}
//sort parts with increasing order of loads.
uqsort<mj_part_t, mj_gno_t>(num_parts, sort_item_point_counts_in_parts);
//assigning parts to the processors
//traverse the part win decreasing order of load.
//first assign the heaviest part.
for (mj_part_t j = 0; j < num_parts; ++j){
//sorted with increasing order, traverse inverse.
mj_part_t i = sort_item_point_counts_in_parts[num_parts - 1 - j].id;
//load of the part
mj_gno_t load = global_num_points_in_parts[i];
//assigned processors
mj_part_t assigned_proc = -1;
//if not fit best processor.
mj_part_t best_proc_to_assign = 0;
//sort processors with increasing number of points in this part.
for (mj_part_t ii = 0; ii < num_procs; ++ii){
sort_item_num_points_of_proc_in_part_i[ii].id = ii;
//if there are still enough parts to fill empty processors, than proceed normally.
//but if empty processor count is equal to the number of part, then
//we force to part assignments only to empty processors.
if (empty_proc_count < num_parts - j || num_parts_proc_assigned[ii] == 0){
//how many points processor ii has in part i?
sort_item_num_points_of_proc_in_part_i[ii].val = num_points_in_all_processor_parts[ii * num_parts + i];
}
else {
sort_item_num_points_of_proc_in_part_i[ii].val = -1;
}
}
uqsort<mj_part_t, mj_gno_t>(num_procs, sort_item_num_points_of_proc_in_part_i);
//traverse all processors with decreasing load.
for (mj_part_t iii = num_procs - 1; iii >= 0; --iii){
mj_part_t ii = sort_item_num_points_of_proc_in_part_i[iii].id;
mj_lno_t left_space = space_in_each_processor[ii] - load;
//if enought space, assign to this part.
if(left_space >= 0 ){
assigned_proc = ii;
break;
}
//if space is not enough, store the best candidate part.
if (space_in_each_processor[best_proc_to_assign] < space_in_each_processor[ii]){
best_proc_to_assign = ii;
}
}
//if none had enough space, then assign it to best part.
if (assigned_proc == -1){
assigned_proc = best_proc_to_assign;
}
if (num_parts_proc_assigned[assigned_proc]++ == 0){
--empty_proc_count;
}
space_in_each_processor[assigned_proc] -= load;
//to sort later, part-i is assigned to the proccessor - assignment.
sort_item_part_to_proc_assignment[j].id = i; //part i
sort_item_part_to_proc_assignment[j].val = assigned_proc; //assigned to processor - assignment.
//if assigned processor is me, increase the number.
if (assigned_proc == this->myRank){
out_num_part++;//assigned_part_count;
out_part_indices.push_back(i);
}
//increase the send to that processor by the number of points in that part.
//as everyone send their coordiantes in this part to the processor assigned to this part.
send_count_to_each_proc[assigned_proc] += num_points_in_all_processor_parts[this->myRank * num_parts + i];
}
freeArray<mj_part_t>(num_parts_proc_assigned);
freeArray< uSortItem<mj_part_t, mj_gno_t> > (sort_item_num_points_of_proc_in_part_i);
freeArray<uSortItem<mj_part_t, mj_gno_t> >(sort_item_point_counts_in_parts);
freeArray<mj_lno_t >(space_in_each_processor);
//sort assignments with respect to the assigned processors.
uqsort<mj_part_t, mj_part_t>(num_parts, sort_item_part_to_proc_assignment);
//fill sendBuf.
this->assign_send_destinations2(
num_parts,
sort_item_part_to_proc_assignment,
coordinate_destinations,
output_part_numbering_begin_index,
next_future_num_parts_in_parts);
freeArray<uSortItem<mj_part_t, mj_part_t> >(sort_item_part_to_proc_assignment);
}
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent. In addition it calculates
* the shift amount (output_part_numbering_begin_index) to be done when
* final numberings of the parts are performed.
*
* \param num_points_in_all_processor_parts is the array holding the num points in each part in each proc.
* \param num_parts is the number of parts that exist in the current partitioning.
* \param num_procs is the number of processor attending to migration operation.
* \param send_count_to_each_proc array array storing the number of points to be sent to each part.
* \param processor_ranks_for_subcomm is the ranks of the processors that will be in the subcommunicator with me.
* \param next_future_num_parts_in_parts is the vector, how many more parts each part will be divided into in the future.
* \param out_num_part is the number of parts assigned to the process.
* \param out_part_indices is the indices of the part to which the processor is assigned.
* \param output_part_numbering_begin_index is how much the numbers should be shifted when numbering the result parts.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_migration_part_proc_assignment(
mj_gno_t * num_points_in_all_processor_parts,
mj_part_t num_parts,
mj_part_t num_procs,
mj_lno_t *send_count_to_each_proc,
std::vector<mj_part_t> &processor_ranks_for_subcomm,
std::vector<mj_part_t> *next_future_num_parts_in_parts,
mj_part_t &out_num_part,
std::vector<mj_part_t> &out_part_indices,
mj_part_t &output_part_numbering_begin_index,
int *coordinate_destinations){
processor_ranks_for_subcomm.clear();
// if (this->num_local_coords > 0)
if (num_procs > num_parts){
//if there are more processors than the number of current part
//then processors share the existing parts.
//at the end each processor will have a single part,
//but a part will be shared by a group of processors.
mj_part_t out_part_index = 0;
this->mj_assign_proc_to_parts(
num_points_in_all_processor_parts,
num_parts,
num_procs,
send_count_to_each_proc,
processor_ranks_for_subcomm,
next_future_num_parts_in_parts,
out_part_index,
output_part_numbering_begin_index,
coordinate_destinations
);
out_num_part = 1;
out_part_indices.clear();
out_part_indices.push_back(out_part_index);
}
else {
//there are more parts than the processors.
//therefore a processor will be assigned multiple parts,
//the subcommunicators will only have a single processor.
processor_ranks_for_subcomm.push_back(this->myRank);
//since there are more parts then procs,
//assign multiple parts to processors.
this->mj_assign_parts_to_procs(
num_points_in_all_processor_parts,
num_parts,
num_procs,
send_count_to_each_proc,
next_future_num_parts_in_parts,
out_num_part,
out_part_indices,
output_part_numbering_begin_index,
coordinate_destinations);
}
}
/*! \brief Function fills up coordinate_destinations is the output array
* that holds which part each coordinate should be sent. In addition it calculates
* the shift amount (output_part_numbering_begin_index) to be done when
* final numberings of the parts are performed.
*
*
* \param num_procs is the number of processor attending to migration operation.
* \param num_new_local_points is the output to represent the new number of local points.
* \param iteration is the string for the current iteration.
* \param coordinate_destinations is the output array that holds which part each coordinate should be sent.
* \param num_parts is the number of parts that exist in the current partitioning.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_migrate_coords(
mj_part_t num_procs,
mj_lno_t &num_new_local_points,
std::string iteration,
int *coordinate_destinations,
mj_part_t num_parts)
{
#ifdef ENABLE_ZOLTAN_MIGRATION
if (sizeof(mj_lno_t) <= sizeof(int)) {
// Cannot use Zoltan_Comm with local ordinals larger than ints.
// In Zoltan_Comm_Create, the cast int(this->num_local_coords)
// may overflow.
ZOLTAN_COMM_OBJ *plan = NULL;
MPI_Comm mpi_comm = Teuchos::getRawMpiComm(*(this->comm));
int num_incoming_gnos = 0;
int message_tag = 7859;
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Migration Z1PlanCreating-" + iteration);
int ierr = Zoltan_Comm_Create(
&plan,
int(this->num_local_coords),
coordinate_destinations,
mpi_comm,
message_tag,
&num_incoming_gnos);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Migration Z1PlanCreating-" + iteration);
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Migration Z1Migration-" + iteration);
mj_gno_t *incoming_gnos = allocMemory< mj_gno_t>(num_incoming_gnos);
//migrate gnos.
message_tag++;
ierr = Zoltan_Comm_Do(
plan,
message_tag,
(char *) this->current_mj_gnos,
sizeof(mj_gno_t),
(char *) incoming_gnos);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
freeArray<mj_gno_t>(this->current_mj_gnos);
this->current_mj_gnos = incoming_gnos;
//migrate coordinates
for (int i = 0; i < this->coord_dim; ++i){
message_tag++;
mj_scalar_t *coord = this->mj_coordinates[i];
this->mj_coordinates[i] = allocMemory<mj_scalar_t>(num_incoming_gnos);
ierr = Zoltan_Comm_Do(
plan,
message_tag,
(char *) coord,
sizeof(mj_scalar_t),
(char *) this->mj_coordinates[i]);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
freeArray<mj_scalar_t>(coord);
}
//migrate weights.
for (int i = 0; i < this->num_weights_per_coord; ++i){
message_tag++;
mj_scalar_t *weight = this->mj_weights[i];
this->mj_weights[i] = allocMemory<mj_scalar_t>(num_incoming_gnos);
ierr = Zoltan_Comm_Do(
plan,
message_tag,
(char *) weight,
sizeof(mj_scalar_t),
(char *) this->mj_weights[i]);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
freeArray<mj_scalar_t>(weight);
}
//migrate owners.
int *coord_own = allocMemory<int>(num_incoming_gnos);
message_tag++;
ierr = Zoltan_Comm_Do(
plan,
message_tag,
(char *) this->owner_of_coordinate,
sizeof(int), (char *) coord_own);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
freeArray<int>(this->owner_of_coordinate);
this->owner_of_coordinate = coord_own;
//if num procs is less than num parts,
//we need the part assigment arrays as well, since
//there will be multiple parts in processor.
mj_part_t *new_parts = allocMemory<mj_part_t>(num_incoming_gnos);
if(num_procs < num_parts){
message_tag++;
ierr = Zoltan_Comm_Do(
plan,
message_tag,
(char *) this->assigned_part_ids,
sizeof(mj_part_t),
(char *) new_parts);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
}
freeArray<mj_part_t>(this->assigned_part_ids);
this->assigned_part_ids = new_parts;
ierr = Zoltan_Comm_Destroy(&plan);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
num_new_local_points = num_incoming_gnos;
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Migration Z1Migration-" + iteration);
}
else
#endif // ENABLE_ZOLTAN_MIGRATION
{
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Migration DistributorPlanCreating-" + iteration);
Tpetra::Distributor distributor(this->comm);
ArrayView<const mj_part_t> destinations( coordinate_destinations, this->num_local_coords);
mj_lno_t num_incoming_gnos = distributor.createFromSends(destinations);
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Migration DistributorPlanCreating-" + iteration);
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Migration DistributorMigration-" + iteration);
{
//migrate gnos.
ArrayRCP<mj_gno_t> received_gnos(num_incoming_gnos);
ArrayView<mj_gno_t> sent_gnos(this->current_mj_gnos, this->num_local_coords);
distributor.doPostsAndWaits<mj_gno_t>(sent_gnos, 1, received_gnos());
freeArray<mj_gno_t>(this->current_mj_gnos);
this->current_mj_gnos = allocMemory<mj_gno_t>(num_incoming_gnos);
memcpy(
this->current_mj_gnos,
received_gnos.getRawPtr(),
num_incoming_gnos * sizeof(mj_gno_t));
}
//migrate coordinates
for (int i = 0; i < this->coord_dim; ++i){
ArrayView<mj_scalar_t> sent_coord(this->mj_coordinates[i], this->num_local_coords);
ArrayRCP<mj_scalar_t> received_coord(num_incoming_gnos);
distributor.doPostsAndWaits<mj_scalar_t>(sent_coord, 1, received_coord());
freeArray<mj_scalar_t>(this->mj_coordinates[i]);
this->mj_coordinates[i] = allocMemory<mj_scalar_t>(num_incoming_gnos);
memcpy(
this->mj_coordinates[i],
received_coord.getRawPtr(),
num_incoming_gnos * sizeof(mj_scalar_t));
}
//migrate weights.
for (int i = 0; i < this->num_weights_per_coord; ++i){
ArrayView<mj_scalar_t> sent_weight(this->mj_weights[i], this->num_local_coords);
ArrayRCP<mj_scalar_t> received_weight(num_incoming_gnos);
distributor.doPostsAndWaits<mj_scalar_t>(sent_weight, 1, received_weight());
freeArray<mj_scalar_t>(this->mj_weights[i]);
this->mj_weights[i] = allocMemory<mj_scalar_t>(num_incoming_gnos);
memcpy(
this->mj_weights[i],
received_weight.getRawPtr(),
num_incoming_gnos * sizeof(mj_scalar_t));
}
{
//migrate the owners of the coordinates
ArrayView<int> sent_owners(this->owner_of_coordinate, this->num_local_coords);
ArrayRCP<int> received_owners(num_incoming_gnos);
distributor.doPostsAndWaits<int>(sent_owners, 1, received_owners());
freeArray<int>(this->owner_of_coordinate);
this->owner_of_coordinate = allocMemory<int>(num_incoming_gnos);
memcpy(
this->owner_of_coordinate,
received_owners.getRawPtr(),
num_incoming_gnos * sizeof(int));
}
//if num procs is less than num parts,
//we need the part assigment arrays as well, since
//there will be multiple parts in processor.
if(num_procs < num_parts){
ArrayView<mj_part_t> sent_partids(this->assigned_part_ids, this->num_local_coords);
ArrayRCP<mj_part_t> received_partids(num_incoming_gnos);
distributor.doPostsAndWaits<mj_part_t>(sent_partids, 1, received_partids());
freeArray<mj_part_t>(this->assigned_part_ids);
this->assigned_part_ids = allocMemory<mj_part_t>(num_incoming_gnos);
memcpy(
this->assigned_part_ids,
received_partids.getRawPtr(),
num_incoming_gnos * sizeof(mj_part_t));
}
else {
mj_part_t *new_parts = allocMemory<int>(num_incoming_gnos);
freeArray<mj_part_t>(this->assigned_part_ids);
this->assigned_part_ids = new_parts;
}
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Migration DistributorMigration-" + iteration);
num_new_local_points = num_incoming_gnos;
}
}
/*! \brief Function creates the new subcomminicator for the processors
* given in processor_ranks_for_subcomm.
*
* \param processor_ranks_for_subcomm is the vector that has the ranks of
* the processors that will be in the same group.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::create_sub_communicator(std::vector<mj_part_t> &processor_ranks_for_subcomm){
mj_part_t group_size = processor_ranks_for_subcomm.size();
mj_part_t *ids = allocMemory<mj_part_t>(group_size);
for(mj_part_t i = 0; i < group_size; ++i) {
ids[i] = processor_ranks_for_subcomm[i];
}
ArrayView<const mj_part_t> idView(ids, group_size);
this->comm = this->comm->createSubcommunicator(idView);
freeArray<mj_part_t>(ids);
}
/*! \brief Function writes the new permutation arrays after the migration.
*
* \param output_num_parts is the number of parts that is assigned to the processor.
* \param num_parts is the number of parts right before migration.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::fill_permutation_array(
mj_part_t output_num_parts,
mj_part_t num_parts){
//if there is single output part, then simply fill the permutation array.
if (output_num_parts == 1){
for(mj_lno_t i = 0; i < this->num_local_coords; ++i){
this->new_coordinate_permutations[i] = i;
}
this->new_part_xadj[0] = this->num_local_coords;
}
else {
//otherwise we need to count how many points are there in each part.
//we allocate here as num_parts, because the sent partids are up to num_parts,
//although there are outout_num_parts different part.
mj_lno_t *num_points_in_parts = allocMemory<mj_lno_t>(num_parts);
//part shift holds the which part number an old part number corresponds to.
mj_part_t *part_shifts = allocMemory<mj_part_t>(num_parts);
memset(num_points_in_parts, 0, sizeof(mj_lno_t) * num_parts);
for(mj_lno_t i = 0; i < this->num_local_coords; ++i){
mj_part_t ii = this->assigned_part_ids[i];
++num_points_in_parts[ii];
}
//write the end points of the parts.
mj_part_t p = 0;
mj_lno_t prev_index = 0;
for(mj_part_t i = 0; i < num_parts; ++i){
if(num_points_in_parts[i] > 0) {
this->new_part_xadj[p] = prev_index + num_points_in_parts[i];
prev_index += num_points_in_parts[i];
part_shifts[i] = p++;
}
}
//for the rest of the parts write the end index as end point.
mj_part_t assigned_num_parts = p - 1;
for (;p < num_parts; ++p){
this->new_part_xadj[p] = this->new_part_xadj[assigned_num_parts];
}
for(mj_part_t i = 0; i < output_num_parts; ++i){
num_points_in_parts[i] = this->new_part_xadj[i];
}
//write the permutation array here.
//get the part of the coordinate i, shift it to obtain the new part number.
//assign it to the end of the new part numbers pointer.
for(mj_lno_t i = this->num_local_coords - 1; i >= 0; --i){
mj_part_t part = part_shifts[mj_part_t(this->assigned_part_ids[i])];
this->new_coordinate_permutations[--num_points_in_parts[part]] = i;
}
freeArray<mj_lno_t>(num_points_in_parts);
freeArray<mj_part_t>(part_shifts);
}
}
/*! \brief Function checks if should do migration or not.
* It returns true to point that migration should be done when
* -migration_reduce_all_population are higher than a predetermined value
* -num_coords_for_last_dim_part that left for the last dimension partitioning is less than a predetermined value
* -the imbalance of the processors on the parts are higher than given threshold.
* \param input_num_parts is the number of parts when migration is called.
* \param output_num_parts is the output number of parts after migration.
* \param next_future_num_parts_in_parts is the number of total future parts each
* part is partitioned into. This will be updated when migration is performed.
* \param output_part_begin_index is the number that will be used as beginning part number
* when final solution part numbers are assigned.
* \param migration_reduce_all_population is the estimated total number of reduceall operations
* multiplied with number of processors to be used for determining migration.
*
* \param num_coords_for_last_dim_part is the estimated number of points in each part,
* when last dimension partitioning is performed.
* \param iteration is the string that gives information about the dimension for printing purposes.
* \param input_part_boxes is the array that holds the part boxes after the migration. (swapped)
* \param output_part_boxes is the array that holds the part boxes before the migration. (swapped)
*
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
bool AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::mj_perform_migration(
mj_part_t input_num_parts, //current umb parts
mj_part_t &output_num_parts, //output umb parts.
std::vector<mj_part_t> *next_future_num_parts_in_parts,
mj_part_t &output_part_begin_index,
size_t migration_reduce_all_population,
mj_lno_t num_coords_for_last_dim_part,
std::string iteration,
RCP<mj_partBoxVector_t> &input_part_boxes,
RCP<mj_partBoxVector_t> &output_part_boxes
)
{
mj_part_t num_procs = this->comm->getSize();
this->myRank = this->comm->getRank();
//this array holds how many points each processor has in each part.
//to access how many points processor i has on part j,
//num_points_in_all_processor_parts[i * num_parts + j]
mj_gno_t *num_points_in_all_processor_parts = allocMemory<mj_gno_t>(input_num_parts * (num_procs + 1));
//get the number of coordinates in each part in each processor.
this->get_processor_num_points_in_parts(
num_procs,
input_num_parts,
num_points_in_all_processor_parts);
//check if migration will be performed or not.
if (!this->mj_check_to_migrate(
migration_reduce_all_population,
num_coords_for_last_dim_part,
num_procs,
input_num_parts,
num_points_in_all_processor_parts)){
freeArray<mj_gno_t>(num_points_in_all_processor_parts);
return false;
}
mj_lno_t *send_count_to_each_proc = NULL;
int *coordinate_destinations = allocMemory<int>(this->num_local_coords);
send_count_to_each_proc = allocMemory<mj_lno_t>(num_procs);
for (int i = 0; i < num_procs; ++i) send_count_to_each_proc[i] = 0;
std::vector<mj_part_t> processor_ranks_for_subcomm;
std::vector<mj_part_t> out_part_indices;
//determine which processors are assigned to which parts
this->mj_migration_part_proc_assignment(
num_points_in_all_processor_parts,
input_num_parts,
num_procs,
send_count_to_each_proc,
processor_ranks_for_subcomm,
next_future_num_parts_in_parts,
output_num_parts,
out_part_indices,
output_part_begin_index,
coordinate_destinations);
freeArray<mj_lno_t>(send_count_to_each_proc);
std::vector <mj_part_t> tmpv;
std::sort (out_part_indices.begin(), out_part_indices.end());
mj_part_t outP = out_part_indices.size();
mj_gno_t new_global_num_points = 0;
mj_gno_t *global_num_points_in_parts = num_points_in_all_processor_parts + num_procs * input_num_parts;
if (this->mj_keep_part_boxes){
input_part_boxes->clear();
}
//now we calculate the new values for next_future_num_parts_in_parts.
//same for the part boxes.
for (mj_part_t i = 0; i < outP; ++i){
mj_part_t ind = out_part_indices[i];
new_global_num_points += global_num_points_in_parts[ind];
tmpv.push_back((*next_future_num_parts_in_parts)[ind]);
if (this->mj_keep_part_boxes){
input_part_boxes->push_back((*output_part_boxes)[ind]);
}
}
//swap the input and output part boxes.
if (this->mj_keep_part_boxes){
RCP<mj_partBoxVector_t> tmpPartBoxes = input_part_boxes;
input_part_boxes = output_part_boxes;
output_part_boxes = tmpPartBoxes;
}
next_future_num_parts_in_parts->clear();
for (mj_part_t i = 0; i < outP; ++i){
mj_part_t p = tmpv[i];
next_future_num_parts_in_parts->push_back(p);
}
freeArray<mj_gno_t>(num_points_in_all_processor_parts);
mj_lno_t num_new_local_points = 0;
//perform the actual migration operation here.
this->mj_migrate_coords(
num_procs,
num_new_local_points,
iteration,
coordinate_destinations,
input_num_parts);
freeArray<int>(coordinate_destinations);
if(this->num_local_coords != num_new_local_points){
freeArray<mj_lno_t>(this->new_coordinate_permutations);
freeArray<mj_lno_t>(this->coordinate_permutations);
this->new_coordinate_permutations = allocMemory<mj_lno_t>(num_new_local_points);
this->coordinate_permutations = allocMemory<mj_lno_t>(num_new_local_points);
}
this->num_local_coords = num_new_local_points;
this->num_global_coords = new_global_num_points;
//create subcommunicator.
this->create_sub_communicator(processor_ranks_for_subcomm);
processor_ranks_for_subcomm.clear();
//fill the new permutation arrays.
this->fill_permutation_array(
output_num_parts,
input_num_parts);
return true;
}
/*! \brief Function creates consistent chunks for task partitioning. Used only in the case of
* sequential task partitioning, where consistent handle of the points on the cuts are required.
*
* \param num_parts is the number of parts.
* \param mj_current_dim_coords is 1 dimensional array holding the coordinate values.
* \param current_concurrent_cut_coordinate is 1 dimensional array holding the cut coordinates.
* \param coordinate_begin is the start index of the given partition on partitionedPointPermutations.
* \param coordinate_end is the end index of the given partition on partitionedPointPermutations.
* \param used_local_cut_line_weight_to_left holds how much weight of the coordinates on the cutline should be put on left side.
*
* \param out_part_xadj is the indices of begginning and end of the parts in the output partition.
* \param coordInd is the index according to which the partitioning is done.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::create_consistent_chunks(
mj_part_t num_parts,
mj_scalar_t *mj_current_dim_coords,
mj_scalar_t *current_concurrent_cut_coordinate,
mj_lno_t coordinate_begin,
mj_lno_t coordinate_end,
mj_scalar_t *used_local_cut_line_weight_to_left,
mj_lno_t *out_part_xadj,
int coordInd){
//mj_lno_t numCoordsInPart = coordinateEnd - coordinateBegin;
mj_part_t no_cuts = num_parts - 1;
int me = 0;
mj_lno_t *thread_num_points_in_parts = this->thread_point_counts[me];
mj_scalar_t *my_local_thread_cut_weights_to_put_left = NULL;
//now if the rectilinear partitioning is allowed we decide how
//much weight each thread should put to left and right.
if (this->distribute_points_on_cut_lines){
my_local_thread_cut_weights_to_put_left = this->thread_cut_line_weight_to_put_left[me];
for (mj_part_t i = 0; i < no_cuts; ++i){
//the left to be put on the left of the cut.
mj_scalar_t left_weight = used_local_cut_line_weight_to_left[i];
//cout << "i:" << i << " left_weight:" << left_weight << endl;
for(int ii = 0; ii < this->num_threads; ++ii){
if(left_weight > this->sEpsilon){
//the weight of thread ii on cut.
mj_scalar_t thread_ii_weight_on_cut = this->thread_part_weight_work[ii][i * 2 + 1] - this->thread_part_weight_work[ii][i * 2 ];
if(thread_ii_weight_on_cut < left_weight){
this->thread_cut_line_weight_to_put_left[ii][i] = thread_ii_weight_on_cut;
}
else {
this->thread_cut_line_weight_to_put_left[ii][i] = left_weight ;
}
left_weight -= thread_ii_weight_on_cut;
}
else {
this->thread_cut_line_weight_to_put_left[ii][i] = 0;
}
}
}
if(no_cuts > 0){
//this is a special case. If cutlines share the same coordinate, their weights are equal.
//we need to adjust the ratio for that.
for (mj_part_t i = no_cuts - 1; i > 0 ; --i){
if(ZOLTAN2_ABS(current_concurrent_cut_coordinate[i] - current_concurrent_cut_coordinate[i -1]) < this->sEpsilon){
my_local_thread_cut_weights_to_put_left[i] -= my_local_thread_cut_weights_to_put_left[i - 1] ;
}
my_local_thread_cut_weights_to_put_left[i] = int ((my_local_thread_cut_weights_to_put_left[i] + LEAST_SIGNIFICANCE) * SIGNIFICANCE_MUL)
/ mj_scalar_t(SIGNIFICANCE_MUL);
}
}
}
for(mj_part_t ii = 0; ii < num_parts; ++ii){
thread_num_points_in_parts[ii] = 0;
}
//for this specific case we dont want to distribute the points along the cut position
//randomly, as we need a specific ordering of them. Instead,
//we put the coordinates into a sort item, where we sort those
//using the coordinates of points on other dimensions and the index.
//some of the cuts might share the same position.
//in this case, if cut i and cut j share the same position
//cut_map[i] = cut_map[j] = sort item index.
mj_part_t *cut_map = allocMemory<mj_part_t> (no_cuts);
typedef uMultiSortItem<mj_lno_t, int, mj_scalar_t> multiSItem;
typedef std::vector< multiSItem > multiSVector;
typedef std::vector<multiSVector> multiS2Vector;
//to keep track of the memory allocated.
std::vector<mj_scalar_t *>allocated_memory;
//vector for which the coordinates will be sorted.
multiS2Vector sort_vector_points_on_cut;
//the number of cuts that have different coordinates.
mj_part_t different_cut_count = 1;
cut_map[0] = 0;
//now we insert 1 sort vector for all cuts on the different
//positins.if multiple cuts are on the same position, they share sort vectors.
multiSVector tmpMultiSVector;
sort_vector_points_on_cut.push_back(tmpMultiSVector);
for (mj_part_t i = 1; i < no_cuts ; ++i){
//if cuts share the same cut coordinates
//set the cutmap accordingly.
if(ZOLTAN2_ABS(current_concurrent_cut_coordinate[i] - current_concurrent_cut_coordinate[i -1]) < this->sEpsilon){
cut_map[i] = cut_map[i-1];
}
else {
cut_map[i] = different_cut_count++;
multiSVector tmp2MultiSVector;
sort_vector_points_on_cut.push_back(tmp2MultiSVector);
}
}
//now the actual part assigment.
for (mj_lno_t ii = coordinate_begin; ii < coordinate_end; ++ii){
mj_lno_t i = this->coordinate_permutations[ii];
mj_part_t pp = this->assigned_part_ids[i];
mj_part_t p = pp / 2;
//if the coordinate is on a cut.
if(pp % 2 == 1 ){
mj_scalar_t *vals = allocMemory<mj_scalar_t>(this->coord_dim -1);
allocated_memory.push_back(vals);
//we insert the coordinates to the sort item here.
int val_ind = 0;
for(int dim = coordInd + 1; dim < this->coord_dim; ++dim){
vals[val_ind++] = this->mj_coordinates[dim][i];
}
for(int dim = 0; dim < coordInd; ++dim){
vals[val_ind++] = this->mj_coordinates[dim][i];
}
multiSItem tempSortItem(i, this->coord_dim -1, vals);
//inser the point to the sort vector pointed by the cut_map[p].
mj_part_t cmap = cut_map[p];
sort_vector_points_on_cut[cmap].push_back(tempSortItem);
}
else {
//if it is not on the cut, simple sorting.
++thread_num_points_in_parts[p];
this->assigned_part_ids[i] = p;
}
}
//sort all the sort vectors.
for (mj_part_t i = 0; i < different_cut_count; ++i){
std::sort (sort_vector_points_on_cut[i].begin(), sort_vector_points_on_cut[i].end());
}
//we do the part assignment for the points on cuts here.
mj_part_t previous_cut_map = cut_map[0];
//this is how much previous part owns the weight of the current part.
//when target part weight is 1.6, and the part on the left is given 2,
//the left has an extra 0.4, while the right has missing 0.4 from the previous cut.
//this parameter is used to balance this issues.
//in the above example weight_stolen_from_previous_part will be 0.4.
//if the left part target is 2.2 but it is given 2,
//then weight_stolen_from_previous_part will be -0.2.
mj_scalar_t weight_stolen_from_previous_part = 0;
for (mj_part_t p = 0; p < no_cuts; ++p){
mj_part_t mapped_cut = cut_map[p];
//if previous cut map is done, and it does not have the same index,
//then assign all points left on that cut to its right.
if (previous_cut_map != mapped_cut){
mj_lno_t sort_vector_end = (mj_lno_t)sort_vector_points_on_cut[previous_cut_map].size() - 1;
for (; sort_vector_end >= 0; --sort_vector_end){
multiSItem t = sort_vector_points_on_cut[previous_cut_map][sort_vector_end];
mj_lno_t i = t.index;
++thread_num_points_in_parts[p];
this->assigned_part_ids[i] = p;
}
sort_vector_points_on_cut[previous_cut_map].clear();
}
mj_lno_t sort_vector_end = (mj_lno_t)sort_vector_points_on_cut[mapped_cut].size() - 1;
for (; sort_vector_end >= 0; --sort_vector_end){
multiSItem t = sort_vector_points_on_cut[mapped_cut][sort_vector_end];
mj_lno_t i = t.index;
mj_scalar_t w = this->mj_uniform_weights[0]? 1:this->mj_weights[0][i];
//part p has enough space for point i, then put it to point i.
if( my_local_thread_cut_weights_to_put_left[p] + weight_stolen_from_previous_part> this->sEpsilon &&
my_local_thread_cut_weights_to_put_left[p] + weight_stolen_from_previous_part - ZOLTAN2_ABS(my_local_thread_cut_weights_to_put_left[p] + weight_stolen_from_previous_part - w)
> this->sEpsilon){
my_local_thread_cut_weights_to_put_left[p] -= w;
sort_vector_points_on_cut[mapped_cut].pop_back();
++thread_num_points_in_parts[p];
this->assigned_part_ids[i] = p;
//if putting this weight to left overweights the left cut, then
//increase the space for the next cut using weight_stolen_from_previous_part.
if(p < no_cuts - 1 && my_local_thread_cut_weights_to_put_left[p] < this->sEpsilon){
if(mapped_cut == cut_map[p + 1] ){
//if the cut before the cut indexed at p was also at the same position
//special case, as we handle the weight differently here.
if (previous_cut_map != mapped_cut){
weight_stolen_from_previous_part = my_local_thread_cut_weights_to_put_left[p];
}
else {
//if the cut before the cut indexed at p was also at the same position
//we assign extra weights cumulatively in this case.
weight_stolen_from_previous_part += my_local_thread_cut_weights_to_put_left[p];
}
}
else{
weight_stolen_from_previous_part = -my_local_thread_cut_weights_to_put_left[p];
}
//end assignment for part p
break;
}
} else {
//if part p does not have enough space for this point
//and if there is another cut sharing the same positon,
//again increase the space for the next
if(p < no_cuts - 1 && mapped_cut == cut_map[p + 1]){
if (previous_cut_map != mapped_cut){
weight_stolen_from_previous_part = my_local_thread_cut_weights_to_put_left[p];
}
else {
weight_stolen_from_previous_part += my_local_thread_cut_weights_to_put_left[p];
}
}
else{
weight_stolen_from_previous_part = -my_local_thread_cut_weights_to_put_left[p];
}
//end assignment for part p
break;
}
}
previous_cut_map = mapped_cut;
}
//put everything left on the last cut to the last part.
mj_lno_t sort_vector_end = (mj_lno_t)sort_vector_points_on_cut[previous_cut_map].size() - 1;
for (; sort_vector_end >= 0; --sort_vector_end){
multiSItem t = sort_vector_points_on_cut[previous_cut_map][sort_vector_end];
mj_lno_t i = t.index;
++thread_num_points_in_parts[no_cuts];
this->assigned_part_ids[i] = no_cuts;
}
sort_vector_points_on_cut[previous_cut_map].clear();
freeArray<mj_part_t> (cut_map);
//free the memory allocated for vertex sort items .
mj_lno_t vSize = (mj_lno_t) allocated_memory.size();
for(mj_lno_t i = 0; i < vSize; ++i){
freeArray<mj_scalar_t> (allocated_memory[i]);
}
//creation of part_xadj as in usual case.
for(mj_part_t j = 0; j < num_parts; ++j){
mj_lno_t num_points_in_part_j_upto_thread_i = 0;
for (int i = 0; i < this->num_threads; ++i){
mj_lno_t thread_num_points_in_part_j = this->thread_point_counts[i][j];
this->thread_point_counts[i][j] = num_points_in_part_j_upto_thread_i;
num_points_in_part_j_upto_thread_i += thread_num_points_in_part_j;
}
out_part_xadj[j] = num_points_in_part_j_upto_thread_i;// + prev2; //+ coordinateBegin;
}
//perform prefix sum for num_points in parts.
for(mj_part_t j = 1; j < num_parts; ++j){
out_part_xadj[j] += out_part_xadj[j - 1];
}
//shift the num points in threads thread to obtain the
//beginning index of each thread's private space.
for(mj_part_t j = 1; j < num_parts; ++j){
thread_num_points_in_parts[j] += out_part_xadj[j - 1] ;
}
//now thread gets the coordinate and writes the index of coordinate to the permutation array
//using the part index we calculated.
for (mj_lno_t ii = coordinate_begin; ii < coordinate_end; ++ii){
mj_lno_t i = this->coordinate_permutations[ii];
mj_part_t p = this->assigned_part_ids[i];
this->new_coordinate_permutations[coordinate_begin +
thread_num_points_in_parts[p]++] = i;
}
}
/*! \brief Function sends the found partids to the owner of the coordinates,
* if the data is ever migrated. otherwise, it seets the part numbers and returns.
* \param current_num_parts is the number of parts in the process.
* \param output_part_begin_index is the number that will be used as beginning part number
* \param output_part_boxes is the array that holds the part boxes
* \param is_data_ever_migrated is the boolean value which is true
* if the data is ever migrated during the partitioning.
*
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::set_final_parts(
mj_part_t current_num_parts,
mj_part_t output_part_begin_index,
RCP<mj_partBoxVector_t> &output_part_boxes,
bool is_data_ever_migrated)
{
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Part_Assignment");
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel for
#endif
for(mj_part_t i = 0; i < current_num_parts;++i){
mj_lno_t begin = 0;
mj_lno_t end = this->part_xadj[i];
if(i > 0) begin = this->part_xadj[i -1];
mj_part_t part_to_set_index = i + output_part_begin_index;
if (this->mj_keep_part_boxes){
(*output_part_boxes)[i].setpId(part_to_set_index);
}
for (mj_lno_t ii = begin; ii < end; ++ii){
mj_lno_t k = this->coordinate_permutations[ii];
this->assigned_part_ids[k] = part_to_set_index;
}
}
//ArrayRCP<const mj_gno_t> gnoList;
if(!is_data_ever_migrated){
//freeArray<mj_gno_t>(this->current_mj_gnos);
//if(this->num_local_coords > 0){
// gnoList = arcpFromArrayView(this->mj_gnos);
//}
}
else {
#ifdef ENABLE_ZOLTAN_MIGRATION
if (sizeof(mj_lno_t) <= sizeof(int)) {
// Cannot use Zoltan_Comm with local ordinals larger than ints.
// In Zoltan_Comm_Create, the cast int(this->num_local_coords)
// may overflow.
//if data is migrated, then send part numbers to the original owners.
ZOLTAN_COMM_OBJ *plan = NULL;
MPI_Comm mpi_comm = Teuchos::getRawMpiComm(*(this->mj_problemComm));
int incoming = 0;
int message_tag = 7856;
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Final Z1PlanCreating");
int ierr = Zoltan_Comm_Create( &plan, int(this->num_local_coords),
this->owner_of_coordinate, mpi_comm, message_tag,
&incoming);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Final Z1PlanCreating" );
mj_gno_t *incoming_gnos = allocMemory< mj_gno_t>(incoming);
message_tag++;
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Final Z1PlanComm");
ierr = Zoltan_Comm_Do( plan, message_tag, (char *) this->current_mj_gnos,
sizeof(mj_gno_t), (char *) incoming_gnos);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
freeArray<mj_gno_t>(this->current_mj_gnos);
this->current_mj_gnos = incoming_gnos;
mj_part_t *incoming_partIds = allocMemory< mj_part_t>(incoming);
message_tag++;
ierr = Zoltan_Comm_Do( plan, message_tag, (char *) this->assigned_part_ids,
sizeof(mj_part_t), (char *) incoming_partIds);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
freeArray<mj_part_t>(this->assigned_part_ids);
this->assigned_part_ids = incoming_partIds;
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Final Z1PlanComm");
ierr = Zoltan_Comm_Destroy(&plan);
Z2_ASSERT_VALUE(ierr, ZOLTAN_OK);
this->num_local_coords = incoming;
//gnoList = arcp(this->current_mj_gnos, 0, this->num_local_coords, true);
}
else
#endif // !ENABLE_ZOLTAN_MIGRATION
{
//if data is migrated, then send part numbers to the original owners.
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Final DistributorPlanCreating");
Tpetra::Distributor distributor(this->mj_problemComm);
ArrayView<const mj_part_t> owners_of_coords(this->owner_of_coordinate, this->num_local_coords);
mj_lno_t incoming = distributor.createFromSends(owners_of_coords);
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Final DistributorPlanCreating" );
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Final DistributorPlanComm");
//migrate gnos to actual owners.
ArrayRCP<mj_gno_t> received_gnos(incoming);
ArrayView<mj_gno_t> sent_gnos(this->current_mj_gnos, this->num_local_coords);
distributor.doPostsAndWaits<mj_gno_t>(sent_gnos, 1, received_gnos());
freeArray<mj_gno_t>(this->current_mj_gnos);
this->current_mj_gnos = allocMemory<mj_gno_t>(incoming);
memcpy( this->current_mj_gnos,
received_gnos.getRawPtr(),
incoming * sizeof(mj_gno_t));
//migrate part ids to actual owners.
ArrayView<mj_part_t> sent_partids(this->assigned_part_ids, this->num_local_coords);
ArrayRCP<mj_part_t> received_partids(incoming);
distributor.doPostsAndWaits<mj_part_t>(sent_partids, 1, received_partids());
freeArray<mj_part_t>(this->assigned_part_ids);
this->assigned_part_ids = allocMemory<mj_part_t>(incoming);
memcpy( this->assigned_part_ids,
received_partids.getRawPtr(),
incoming * sizeof(mj_part_t));
this->num_local_coords = incoming;
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Final DistributorPlanComm");
}
}
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Part_Assignment");
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Solution_Part_Assignment");
//ArrayRCP<mj_part_t> partId;
//partId = arcp(this->assigned_part_ids, 0, this->num_local_coords, true);
if (this->mj_keep_part_boxes){
this->kept_boxes = compute_global_box_boundaries(output_part_boxes);
}
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Solution_Part_Assignment");
}
/*! \brief Function frees all allocated work memory.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::free_work_memory(){
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Problem_Free");
for (int i=0; i < this->coord_dim; i++){
freeArray<mj_scalar_t>(this->mj_coordinates[i]);
}
freeArray<mj_scalar_t *>(this->mj_coordinates);
for (int i=0; i < this->num_weights_per_coord; i++){
freeArray<mj_scalar_t>(this->mj_weights[i]);
}
freeArray<mj_scalar_t *>(this->mj_weights);
freeArray<int>(this->owner_of_coordinate);
for(int i = 0; i < this->num_threads; ++i){
freeArray<mj_lno_t>(this->thread_point_counts[i]);
}
freeArray<mj_lno_t *>(this->thread_point_counts);
freeArray<double *> (this->thread_part_weight_work);
if(this->distribute_points_on_cut_lines){
freeArray<mj_scalar_t>(this->process_cut_line_weight_to_put_left);
for(int i = 0; i < this->num_threads; ++i){
freeArray<mj_scalar_t>(this->thread_cut_line_weight_to_put_left[i]);
}
freeArray<mj_scalar_t *>(this->thread_cut_line_weight_to_put_left);
freeArray<mj_scalar_t>(this->process_rectilinear_cut_weight);
freeArray<mj_scalar_t>(this->global_rectilinear_cut_weight);
}
freeArray<mj_part_t>(this->my_incomplete_cut_count);
freeArray<mj_scalar_t>(this->max_min_coords);
freeArray<mj_lno_t>(this->part_xadj);
freeArray<mj_lno_t>(this->coordinate_permutations);
freeArray<mj_lno_t>(this->new_coordinate_permutations);
freeArray<mj_scalar_t>(this->all_cut_coordinates);
freeArray<mj_scalar_t> (this->process_local_min_max_coord_total_weight);
freeArray<mj_scalar_t> (this->global_min_max_coord_total_weight);
freeArray<mj_scalar_t>(this->cut_coordinates_work_array);
freeArray<mj_scalar_t>(this->target_part_weights);
freeArray<mj_scalar_t>(this->cut_upper_bound_coordinates);
freeArray<mj_scalar_t>(this->cut_lower_bound_coordinates);
freeArray<mj_scalar_t>(this->cut_lower_bound_weights);
freeArray<mj_scalar_t>(this->cut_upper_bound_weights);
freeArray<bool>(this->is_cut_line_determined);
freeArray<mj_scalar_t>(this->total_part_weight_left_right_closests);
freeArray<mj_scalar_t>(this->global_total_part_weight_left_right_closests);
for(int i = 0; i < this->num_threads; ++i){
freeArray<double>(this->thread_part_weights[i]);
freeArray<mj_scalar_t>(this->thread_cut_right_closest_point[i]);
freeArray<mj_scalar_t>(this->thread_cut_left_closest_point[i]);
}
freeArray<double *>(this->thread_part_weights);
freeArray<mj_scalar_t *>(this->thread_cut_left_closest_point);
freeArray<mj_scalar_t *>(this->thread_cut_right_closest_point);
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Problem_Free");
}
/*! \brief Multi Jagged coordinate partitioning algorithm.
*
* \param distribute_points_on_cut_lines_ : if partitioning can distribute points on same coordinate to different parts.
* \param max_concurrent_part_calculation_ : how many parts we can calculate concurrently.
* \param check_migrate_avoid_migration_option_ : whether to migrate=1, avoid migrate=2, or leave decision to MJ=0
* \param minimum_migration_imbalance_ : when MJ decides whether to migrate, the minimum imbalance for migration.
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::set_partitioning_parameters(
bool distribute_points_on_cut_lines_,
int max_concurrent_part_calculation_,
int check_migrate_avoid_migration_option_,
mj_scalar_t minimum_migration_imbalance_){
this->distribute_points_on_cut_lines = distribute_points_on_cut_lines_;
this->max_concurrent_part_calculation = max_concurrent_part_calculation_;
this->check_migrate_avoid_migration_option = check_migrate_avoid_migration_option_;
this->minimum_migration_imbalance = minimum_migration_imbalance_;
}
/*! \brief Multi Jagged coordinate partitioning algorithm.
*
* \param env library configuration and problem parameters
* \param problemComm the communicator for the problem
* \param imbalance_tolerance : the input provided imbalance tolerance.
* \param num_global_parts: number of target global parts.
* \param part_no_array: part no array, if provided this will be used for partitioning.
* \param recursion_depth: if part no array is provided, it is the length of part no array,
* if part no is not provided than it is the number of steps that algorithm will divide into num_global_parts parts.
*
* \param coord_dim: coordinate dimension
* \param num_local_coords: number of local coordinates
* \param num_global_coords: number of global coordinates
* \param initial_mj_gnos: the list of initial global id's
* \param mj_coordinates: the two dimensional coordinate array.
*
* \param num_weights_per_coord: number of weights per coordinate
* \param mj_uniform_weights: if weight index [i] has uniform weight or not.
* \param mj_weights: the two dimensional array for weights
* \param mj_uniform_parts: if the target partitioning aims uniform parts
* \param mj_part_sizes: if the target partitioning does not aim uniform parts, then weight of each part.
*
* \param result_assigned_part_ids: Output - 1D pointer, should be provided as null. Memory is given in the function.
* the result partids corresponding to the coordinates given in result_mj_gnos.
* \param result_mj_gnos: Output - 1D pointer, should be provided as null. Memory is given in the function.
* the result coordinate global id's corresponding to the part_ids array.
*
*/
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
void AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t>::multi_jagged_part(
const RCP<const Environment> &env,
RCP<const Comm<int> > &problemComm,
double imbalance_tolerance_,
size_t num_global_parts_,
mj_part_t *part_no_array_,
int recursion_depth_,
int coord_dim_,
mj_lno_t num_local_coords_,
mj_gno_t num_global_coords_,
const mj_gno_t *initial_mj_gnos_,
mj_scalar_t **mj_coordinates_,
int num_weights_per_coord_,
bool *mj_uniform_weights_,
mj_scalar_t **mj_weights_,
bool *mj_uniform_parts_,
mj_scalar_t **mj_part_sizes_,
mj_part_t *&result_assigned_part_ids_,
mj_gno_t *&result_mj_gnos_
)
{
#ifdef print_debug
if(comm->getRank() == 0){
std::cout << "size of gno:" << sizeof(mj_gno_t) << std::endl;
std::cout << "size of lno:" << sizeof(mj_lno_t) << std::endl;
std::cout << "size of mj_scalar_t:" << sizeof(mj_scalar_t) << std::endl;
}
#endif
this->mj_env = env;
this->mj_problemComm = problemComm;
this->myActualRank = this->myRank = this->mj_problemComm->getRank();
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Total");
this->mj_env->debug(3, "In MultiJagged Jagged");
{
this->imbalance_tolerance = imbalance_tolerance_;
this->num_global_parts = num_global_parts_;
this->part_no_array = part_no_array_;
this->recursion_depth = recursion_depth_;
this->coord_dim = coord_dim_;
this->num_local_coords = num_local_coords_;
this->num_global_coords = num_global_coords_;
this->mj_coordinates = mj_coordinates_; //will copy the memory to this->mj_coordinates.
this->initial_mj_gnos = (mj_gno_t *) initial_mj_gnos_; //will copy the memory to this->current_mj_gnos[j].
this->num_weights_per_coord = num_weights_per_coord_;
this->mj_uniform_weights = mj_uniform_weights_;
this->mj_weights = mj_weights_; //will copy the memory to this->mj_weights
this->mj_uniform_parts = mj_uniform_parts_;
this->mj_part_sizes = mj_part_sizes_;
this->num_threads = 1;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel
{
this->num_threads = omp_get_num_threads();
}
#endif
}
//this->set_input_data();
this->set_part_specifications();
this->allocate_set_work_memory();
//We duplicate the comm as we create subcommunicators during migration.
//We keep the problemComm as it is, while comm changes after each migration.
this->comm = this->mj_problemComm->duplicate();
//initially there is a single partition
mj_part_t current_num_parts = 1;
mj_scalar_t *current_cut_coordinates = this->all_cut_coordinates;
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Problem_Partitioning");
mj_part_t output_part_begin_index = 0;
mj_part_t future_num_parts = this->total_num_part;
bool is_data_ever_migrated = false;
std::vector<mj_part_t> *future_num_part_in_parts = new std::vector<mj_part_t> ();
std::vector<mj_part_t> *next_future_num_parts_in_parts = new std::vector<mj_part_t> ();
next_future_num_parts_in_parts->push_back(this->num_global_parts);
RCP<mj_partBoxVector_t> input_part_boxes(new mj_partBoxVector_t(), true) ;
RCP<mj_partBoxVector_t> output_part_boxes(new mj_partBoxVector_t(), true);
compute_global_box();
if(this->mj_keep_part_boxes){
this->init_part_boxes(output_part_boxes);
}
for (int i = 0; i < this->recursion_depth; ++i){
//partitioning array. size will be as the number of current partitions and this
//holds how many parts that each part will be in the current dimension partitioning.
std::vector <mj_part_t> num_partitioning_in_current_dim;
//number of parts that will be obtained at the end of this partitioning.
//future_num_part_in_parts is as the size of current number of parts.
//holds how many more parts each should be divided in the further
//iterations. this will be used to calculate num_partitioning_in_current_dim,
//as the number of parts that the part will be partitioned
//in the current dimension partitioning.
//next_future_num_parts_in_parts will be as the size of outnumParts,
//and this will hold how many more parts that each output part
//should be divided. this array will also be used to determine the weight ratios
//of the parts.
//swap the arrays to use iteratively..
std::vector<mj_part_t> *tmpPartVect= future_num_part_in_parts;
future_num_part_in_parts = next_future_num_parts_in_parts;
next_future_num_parts_in_parts = tmpPartVect;
//clear next_future_num_parts_in_parts array as
//getPartitionArrays expects it to be empty.
//it also expects num_partitioning_in_current_dim to be empty as well.
next_future_num_parts_in_parts->clear();
if(this->mj_keep_part_boxes){
RCP<mj_partBoxVector_t> tmpPartBoxes = input_part_boxes;
input_part_boxes = output_part_boxes;
output_part_boxes = tmpPartBoxes;
output_part_boxes->clear();
}
//returns the total no. of output parts for this dimension partitioning.
mj_part_t output_part_count_in_dimension =
this->update_part_num_arrays(
num_partitioning_in_current_dim,
future_num_part_in_parts,
next_future_num_parts_in_parts,
future_num_parts,
current_num_parts,
i,
input_part_boxes,
output_part_boxes);
//if the number of obtained parts equal to current number of parts,
//skip this dimension. For example, this happens when 1 is given in the input
//part array is given. P=4,5,1,2
if(output_part_count_in_dimension == current_num_parts) {
//still need to swap the input output arrays.
tmpPartVect= future_num_part_in_parts;
future_num_part_in_parts = next_future_num_parts_in_parts;
next_future_num_parts_in_parts = tmpPartVect;
if(this->mj_keep_part_boxes){
RCP<mj_partBoxVector_t> tmpPartBoxes = input_part_boxes;
input_part_boxes = output_part_boxes;
output_part_boxes = tmpPartBoxes;
}
continue;
}
//get the coordinate axis along which the partitioning will be done.
int coordInd = i % this->coord_dim;
mj_scalar_t * mj_current_dim_coords = this->mj_coordinates[coordInd];
//convert i to string to be used for debugging purposes.
std::string istring = Teuchos::toString<int>(i);
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Problem_Partitioning_" + istring);
//alloc Memory to point the indices
//of the parts in the permutation array.
this->new_part_xadj = allocMemory<mj_lno_t>(output_part_count_in_dimension);
//the index where in the new_part_xadj will be written.
mj_part_t output_part_index = 0;
//whatever is written to output_part_index will be added with putput_coordinate_end_index
//so that the points will be shifted.
mj_part_t output_coordinate_end_index = 0;
mj_part_t current_work_part = 0;
mj_part_t current_concurrent_num_parts =
std::min(current_num_parts - current_work_part, this->max_concurrent_part_calculation);
mj_part_t obtained_part_index = 0;
//run for all available parts.
for (; current_work_part < current_num_parts;
current_work_part += current_concurrent_num_parts){
current_concurrent_num_parts = std::min(current_num_parts - current_work_part,
this->max_concurrent_part_calculation);
mj_part_t actual_work_part_count = 0;
//initialization for 1D partitioning.
//get the min and max coordinates of each part
//together with the part weights of each part.
for(int kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_part_t current_work_part_in_concurrent_parts = current_work_part + kk;
//if this part wont be partitioned any further
//dont do any work for this part.
if (num_partitioning_in_current_dim[current_work_part_in_concurrent_parts] == 1){
continue;
}
++actual_work_part_count;
mj_lno_t coordinate_end_index= this->part_xadj[current_work_part_in_concurrent_parts];
mj_lno_t coordinate_begin_index = current_work_part_in_concurrent_parts==0 ? 0: this->part_xadj[current_work_part_in_concurrent_parts -1];
/*
cout << "i:" << i << " j:" << current_work_part + kk
<< " coordinate_begin_index:" << coordinate_begin_index
<< " coordinate_end_index:" << coordinate_end_index
<< " total:" << coordinate_end_index - coordinate_begin_index<< endl;
*/
this->mj_get_local_min_max_coord_totW(
coordinate_begin_index,
coordinate_end_index,
this->coordinate_permutations,
mj_current_dim_coords,
this->process_local_min_max_coord_total_weight[kk], //min_coordinate
this->process_local_min_max_coord_total_weight[kk + current_concurrent_num_parts], //max_coordinate
this->process_local_min_max_coord_total_weight[kk + 2*current_concurrent_num_parts]); //total_weight
}
//1D partitioning
if (actual_work_part_count > 0){
//obtain global Min max of the part.
this->mj_get_global_min_max_coord_totW(
current_concurrent_num_parts,
this->process_local_min_max_coord_total_weight,
this->global_min_max_coord_total_weight);
//represents the total number of cutlines
//whose coordinate should be determined.
mj_part_t total_incomplete_cut_count = 0;
//Compute weight ratios for parts & cuts:
//e.g., 0.25 0.25 0.5 0.5 0.75 0.75 1
//part0 cut0 part1 cut1 part2 cut2 part3
mj_part_t concurrent_part_cut_shift = 0;
mj_part_t concurrent_part_part_shift = 0;
for(int kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_scalar_t min_coordinate = this->global_min_max_coord_total_weight[kk];
mj_scalar_t max_coordinate = this->global_min_max_coord_total_weight[kk +
current_concurrent_num_parts];
mj_scalar_t global_total_weight = this->global_min_max_coord_total_weight[kk +
2 * current_concurrent_num_parts];
mj_part_t concurrent_current_part_index = current_work_part + kk;
mj_part_t partition_count = num_partitioning_in_current_dim[concurrent_current_part_index];
mj_scalar_t *usedCutCoordinate = current_cut_coordinates + concurrent_part_cut_shift;
mj_scalar_t *current_target_part_weights = this->target_part_weights +
concurrent_part_part_shift;
//shift the usedCutCoordinate array as noCuts.
concurrent_part_cut_shift += partition_count - 1;
//shift the partRatio array as noParts.
concurrent_part_part_shift += partition_count;
//calculate only if part is not empty,
//and part will be further partitioned.
if(partition_count > 1 && min_coordinate <= max_coordinate){
//increase num_cuts_do_be_determined by the number of cuts of the current
//part's cut line number.
total_incomplete_cut_count += partition_count - 1;
//set the number of cut lines that should be determined
//for this part.
this->my_incomplete_cut_count[kk] = partition_count - 1;
//get the target weights of the parts.
this->mj_get_initial_cut_coords_target_weights(
min_coordinate,
max_coordinate,
partition_count - 1,
global_total_weight,
usedCutCoordinate,
current_target_part_weights,
future_num_part_in_parts,
next_future_num_parts_in_parts,
concurrent_current_part_index,
obtained_part_index);
mj_lno_t coordinate_end_index= this->part_xadj[concurrent_current_part_index];
mj_lno_t coordinate_begin_index = concurrent_current_part_index==0 ? 0: this->part_xadj[concurrent_current_part_index -1];
//get the initial estimated part assignments of the
//coordinates.
this->set_initial_coordinate_parts(
max_coordinate,
min_coordinate,
concurrent_current_part_index,
coordinate_begin_index, coordinate_end_index,
this->coordinate_permutations,
mj_current_dim_coords,
this->assigned_part_ids,
partition_count);
}
else {
// e.g., if have fewer coordinates than parts, don't need to do next dim.
this->my_incomplete_cut_count[kk] = 0;
}
obtained_part_index += partition_count;
}
//used imbalance, it is always 0, as it is difficult to
//estimate a range.
mj_scalar_t used_imbalance = 0;
// Determine cut lines for all concurrent parts parts here.
this->mj_1D_part(
mj_current_dim_coords,
used_imbalance,
current_work_part,
current_concurrent_num_parts,
current_cut_coordinates,
total_incomplete_cut_count,
num_partitioning_in_current_dim);
}
//create new part chunks
{
mj_part_t output_array_shift = 0;
mj_part_t cut_shift = 0;
size_t tlr_shift = 0;
size_t partweight_array_shift = 0;
for(int kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_part_t current_concurrent_work_part = current_work_part + kk;
mj_part_t num_parts = num_partitioning_in_current_dim[current_concurrent_work_part];
//if the part is empty, skip the part.
if((num_parts != 1 )
&&
this->global_min_max_coord_total_weight[kk] >
this->global_min_max_coord_total_weight[kk + current_concurrent_num_parts]) {
//we still need to write the begin and end point of the
//empty part. simply set it zero, the array indices will be shifted later.
for(mj_part_t jj = 0; jj < num_parts; ++jj){
this->new_part_xadj[output_part_index + output_array_shift + jj] = 0;
}
cut_shift += num_parts - 1;
tlr_shift += (4 *(num_parts - 1) + 1);
output_array_shift += num_parts;
partweight_array_shift += (2 * (num_parts - 1) + 1);
continue;
}
mj_lno_t coordinate_end= this->part_xadj[current_concurrent_work_part];
mj_lno_t coordinate_begin = current_concurrent_work_part==0 ? 0: this->part_xadj[
current_concurrent_work_part -1];
mj_scalar_t *current_concurrent_cut_coordinate = current_cut_coordinates + cut_shift;
mj_scalar_t *used_local_cut_line_weight_to_left = this->process_cut_line_weight_to_put_left +
cut_shift;
//mj_scalar_t *used_tlr_array = this->total_part_weight_left_right_closests + tlr_shift;
for(int ii = 0; ii < this->num_threads; ++ii){
this->thread_part_weight_work[ii] = this->thread_part_weights[ii] + partweight_array_shift;
}
if(num_parts > 1){
if(this->mj_keep_part_boxes){
//if part boxes are to be stored update the boundaries.
for (mj_part_t j = 0; j < num_parts - 1; ++j){
(*output_part_boxes)[output_array_shift + output_part_index +
j].updateMinMax(current_concurrent_cut_coordinate[j], 1
/*update max*/, coordInd);
(*output_part_boxes)[output_array_shift + output_part_index + j +
1].updateMinMax(current_concurrent_cut_coordinate[j], 0
/*update min*/, coordInd);
}
}
// Rewrite the indices based on the computed cuts.
this->mj_create_new_partitions(
num_parts,
mj_current_dim_coords,
current_concurrent_cut_coordinate,
coordinate_begin,
coordinate_end,
used_local_cut_line_weight_to_left,
this->thread_part_weight_work,
this->new_part_xadj + output_part_index + output_array_shift
);
}
else {
//if this part is partitioned into 1 then just copy
//the old values.
mj_lno_t part_size = coordinate_end - coordinate_begin;
*(this->new_part_xadj + output_part_index + output_array_shift) = part_size;
memcpy(
this->new_coordinate_permutations + coordinate_begin,
this->coordinate_permutations + coordinate_begin,
part_size * sizeof(mj_lno_t));
}
cut_shift += num_parts - 1;
tlr_shift += (4 *(num_parts - 1) + 1);
output_array_shift += num_parts;
partweight_array_shift += (2 * (num_parts - 1) + 1);
}
//shift cut coordinates so that all cut coordinates are stored.
//no shift now because we dont keep the cuts.
//current_cut_coordinates += cut_shift;
//mj_create_new_partitions from coordinates partitioned the parts and
//write the indices as if there were a single part.
//now we need to shift the beginning indices.
for(mj_part_t kk = 0; kk < current_concurrent_num_parts; ++kk){
mj_part_t num_parts = num_partitioning_in_current_dim[ current_work_part + kk];
for (mj_part_t ii = 0;ii < num_parts ; ++ii){
//shift it by previousCount
this->new_part_xadj[output_part_index+ii] += output_coordinate_end_index;
}
//increase the previous count by current end.
output_coordinate_end_index = this->new_part_xadj[output_part_index + num_parts - 1];
//increase the current out.
output_part_index += num_parts ;
}
}
}
// end of this partitioning dimension
int current_world_size = this->comm->getSize();
long migration_reduce_all_population = this->total_dim_num_reduce_all * current_world_size;
bool is_migrated_in_current_dimension = false;
//we migrate if there are more partitionings to be done after this step
//and if the migration is not forced to be avoided.
//and the operation is not sequential.
if (future_num_parts > 1 &&
this->check_migrate_avoid_migration_option >= 0 &&
current_world_size > 1){
this->mj_env->timerStart(MACRO_TIMERS, "MultiJagged - Problem_Migration-" + istring);
mj_part_t num_parts = output_part_count_in_dimension;
if ( this->mj_perform_migration(
num_parts,
current_num_parts, //output
next_future_num_parts_in_parts, //output
output_part_begin_index,
migration_reduce_all_population,
this->num_local_coords / (future_num_parts * current_num_parts),
istring,
input_part_boxes, output_part_boxes) ) {
is_migrated_in_current_dimension = true;
is_data_ever_migrated = true;
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Problem_Migration-" +
istring);
//since data is migrated, we reduce the number of reduceAll operations for the last part.
this->total_dim_num_reduce_all /= num_parts;
}
else {
is_migrated_in_current_dimension = false;
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Problem_Migration-" + istring);
}
}
//swap the coordinate permutations for the next dimension.
mj_lno_t * tmp = this->coordinate_permutations;
this->coordinate_permutations = this->new_coordinate_permutations;
this->new_coordinate_permutations = tmp;
if(!is_migrated_in_current_dimension){
this->total_dim_num_reduce_all -= current_num_parts;
current_num_parts = output_part_count_in_dimension;
}
freeArray<mj_lno_t>(this->part_xadj);
this->part_xadj = this->new_part_xadj;
this->new_part_xadj = NULL;
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Problem_Partitioning_" + istring);
}
// Partitioning is done
delete future_num_part_in_parts;
delete next_future_num_parts_in_parts;
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Problem_Partitioning");
/////////////////////////////End of the partitioning////////////////////////
//get the final parts of each initial coordinate
//the results will be written to
//this->assigned_part_ids for gnos given in this->current_mj_gnos
this->set_final_parts(
current_num_parts,
output_part_begin_index,
output_part_boxes,
is_data_ever_migrated);
result_assigned_part_ids_ = this->assigned_part_ids;
result_mj_gnos_ = this->current_mj_gnos;
this->free_work_memory();
this->mj_env->timerStop(MACRO_TIMERS, "MultiJagged - Total");
this->mj_env->debug(3, "Out of MultiJagged");
}
/*! \brief Multi Jagged coordinate partitioning algorithm.
*
*/
template <typename Adapter>
class Zoltan2_AlgMJ : public Algorithm<Adapter>
{
private:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef CoordinateModel<typename Adapter::base_adapter_t> coordinateModel_t;
typedef typename Adapter::scalar_t mj_scalar_t;
typedef typename Adapter::gno_t mj_gno_t;
typedef typename Adapter::lno_t mj_lno_t;
typedef typename Adapter::node_t mj_node_t;
typedef typename Adapter::part_t mj_part_t;
typedef coordinateModelPartBox<mj_scalar_t, mj_part_t> mj_partBox_t;
typedef std::vector<mj_partBox_t> mj_partBoxVector_t;
#endif
AlgMJ<mj_scalar_t, mj_lno_t, mj_gno_t, mj_part_t> mj_partitioner;
RCP<const Environment> mj_env; //the environment object
RCP<const Comm<int> > mj_problemComm; //initial comm object
RCP<const coordinateModel_t> mj_coords; //coordinate adapter
//PARAMETERS
double imbalance_tolerance; //input imbalance tolerance.
size_t num_global_parts; //the targeted number of parts
mj_part_t *part_no_array; //input part array specifying num part to divide along each dim.
int recursion_depth; //the number of steps that partitioning will be solved in.
int coord_dim; // coordinate dimension.
mj_lno_t num_local_coords; //number of local coords.
mj_gno_t num_global_coords; //number of global coords.
const mj_gno_t *initial_mj_gnos; //initial global ids of the coordinates.
mj_scalar_t **mj_coordinates; //two dimension coordinate array
int num_weights_per_coord; // number of weights per coordinate
bool *mj_uniform_weights; //if the coordinates have uniform weights.
mj_scalar_t **mj_weights; //two dimensional weight array
bool *mj_uniform_parts; //if the target parts are uniform
mj_scalar_t **mj_part_sizes; //target part weight sizes.
bool distribute_points_on_cut_lines; //if partitioning can distribute points on same coordiante to different parts.
mj_part_t max_concurrent_part_calculation; // how many parts we can calculate concurrently.
int check_migrate_avoid_migration_option; //whether to migrate=1, avoid migrate=2, or leave decision to MJ=0
mj_scalar_t minimum_migration_imbalance; //when MJ decides whether to migrate, the minimum imbalance for migration.
bool mj_keep_part_boxes; //if the boxes need to be kept.
int num_threads;
bool mj_run_as_rcb; //if this is set, then recursion depth is adjusted to its maximum value.
ArrayRCP<mj_part_t> comXAdj_; //communication graph xadj
ArrayRCP<mj_part_t> comAdj_; //communication graph adj.
//when we have strided data, it returns a unstrided data in RCP form.
//we need to hold on to that data, during the execution of mj, so that the data is not released.
//coordinate_rcp_holder will hold that data, and release it when MJ is deleted.
ArrayRCP<const mj_scalar_t> * coordinate_ArrayRCP_holder;
void set_up_partitioning_data(
const RCP<PartitioningSolution<Adapter> >&solution);
void set_input_parameters(const Teuchos::ParameterList &p);
void free_work_memory();
RCP<mj_partBoxVector_t> getGlobalBoxBoundaries() const;
public:
Zoltan2_AlgMJ(const RCP<const Environment> &env,
RCP<const Comm<int> > &problemComm,
const RCP<const coordinateModel_t> &coords) :
mj_partitioner(), mj_env(env),
mj_problemComm(problemComm),
mj_coords(coords),
imbalance_tolerance(0),
num_global_parts(1), part_no_array(NULL),
recursion_depth(0),
coord_dim(0),num_local_coords(0), num_global_coords(0),
initial_mj_gnos(NULL), mj_coordinates(NULL),
num_weights_per_coord(0),
mj_uniform_weights(NULL), mj_weights(NULL),
mj_uniform_parts(NULL),
mj_part_sizes(NULL),
distribute_points_on_cut_lines(true),
max_concurrent_part_calculation(1),
check_migrate_avoid_migration_option(0),
minimum_migration_imbalance(0.30),
mj_keep_part_boxes(false), num_threads(1), mj_run_as_rcb(false),
comXAdj_(), comAdj_(), coordinate_ArrayRCP_holder (NULL)
{}
~Zoltan2_AlgMJ(){
if (coordinate_ArrayRCP_holder != NULL){
delete [] this->coordinate_ArrayRCP_holder;
this->coordinate_ArrayRCP_holder = NULL;
}
}
/*! \brief Set up validators specific to this algorithm
*/
static void getValidParameters(ParameterList & pl)
{
const bool bUnsorted = true; // this clarifies the flag is for unsrorted
RCP<Zoltan2::IntegerRangeListValidator<int>> mj_parts_Validator =
Teuchos::rcp( new Zoltan2::IntegerRangeListValidator<int>(bUnsorted) );
pl.set("mj_parts", "0", "list of parts for multiJagged partitioning "
"algorithm. As many as the dimension count.", mj_parts_Validator);
pl.set("mj_concurrent_part_count", 1, "The number of parts whose cut "
"coordinates will be calculated concurently.", Environment::getAnyIntValidator());
pl.set("mj_minimum_migration_imbalance", 1.1,
"mj_minimum_migration_imbalance, the minimum imbalance of the "
"processors to avoid migration",
Environment::getAnyDoubleValidator());
RCP<Teuchos::EnhancedNumberValidator<int>> mj_migration_option_validator =
Teuchos::rcp( new Teuchos::EnhancedNumberValidator<int>(0, 2) );
pl.set("mj_migration_option", 1, "Migration option, 0 for decision "
"depending on the imbalance, 1 for forcing migration, 2 for "
"avoiding migration", mj_migration_option_validator);
// bool parameter
pl.set("mj_keep_part_boxes", false, "Keep the part boundaries of the "
"geometric partitioning.", Environment::getBoolValidator());
// bool parameter
pl.set("mj_enable_rcb", false, "Use MJ as RCB.",
Environment::getBoolValidator());
pl.set("mj_recursion_depth", -1, "Recursion depth for MJ: Must be "
"greater than 0.", Environment::getAnyIntValidator());
}
/*! \brief Multi Jagged coordinate partitioning algorithm.
*
* \param solution a PartitioningSolution, on input it
* contains part information, on return it also contains
* the solution and quality metrics.
*/
void partition(const RCP<PartitioningSolution<Adapter> > &solution);
mj_partBoxVector_t &getPartBoxesView() const
{
RCP<mj_partBoxVector_t> pBoxes = this->getGlobalBoxBoundaries();
return *pBoxes;
}
mj_part_t pointAssign(int dim, mj_scalar_t *point) const;
void boxAssign(int dim, mj_scalar_t *lower, mj_scalar_t *upper,
size_t &nPartsFound, mj_part_t **partsFound) const;
/*! \brief returns communication graph resulting from MJ partitioning.
*/
void getCommunicationGraph(
const PartitioningSolution<Adapter> *solution,
ArrayRCP<mj_part_t> &comXAdj,
ArrayRCP<mj_part_t> &comAdj);
};
/*! \brief Multi Jagged coordinate partitioning algorithm.
*
* \param env library configuration and problem parameters
* \param problemComm the communicator for the problem
* \param coords a CoordinateModel with user data
* \param solution a PartitioningSolution, on input it
* contains part information, on return it also contains
* the solution and quality metrics.
*/
template <typename Adapter>
void Zoltan2_AlgMJ<Adapter>::partition(
const RCP<PartitioningSolution<Adapter> > &solution
)
{
this->set_up_partitioning_data(solution);
this->set_input_parameters(this->mj_env->getParameters());
if (this->mj_keep_part_boxes){
this->mj_partitioner.set_to_keep_part_boxes();
}
this->mj_partitioner.set_partitioning_parameters(
this->distribute_points_on_cut_lines,
this->max_concurrent_part_calculation,
this->check_migrate_avoid_migration_option,
this->minimum_migration_imbalance);
mj_part_t *result_assigned_part_ids = NULL;
mj_gno_t *result_mj_gnos = NULL;
this->mj_partitioner.multi_jagged_part(
this->mj_env,
this->mj_problemComm,
this->imbalance_tolerance,
this->num_global_parts,
this->part_no_array,
this->recursion_depth,
this->coord_dim,
this->num_local_coords,
this->num_global_coords,
this->initial_mj_gnos,
this->mj_coordinates,
this->num_weights_per_coord,
this->mj_uniform_weights,
this->mj_weights,
this->mj_uniform_parts,
this->mj_part_sizes,
result_assigned_part_ids,
result_mj_gnos
);
// Reorder results so that they match the order of the input
#if defined(__cplusplus) && __cplusplus >= 201103L
std::unordered_map<mj_gno_t, mj_lno_t> localGidToLid;
localGidToLid.reserve(this->num_local_coords);
for (mj_lno_t i = 0; i < this->num_local_coords; i++)
localGidToLid[this->initial_mj_gnos[i]] = i;
ArrayRCP<mj_part_t> partId = arcp(new mj_part_t[this->num_local_coords],
0, this->num_local_coords, true);
for (mj_lno_t i = 0; i < this->num_local_coords; i++) {
mj_lno_t origLID = localGidToLid[result_mj_gnos[i]];
partId[origLID] = result_assigned_part_ids[i];
}
#else
Teuchos::Hashtable<mj_gno_t, mj_lno_t>
localGidToLid(this->num_local_coords);
for (mj_lno_t i = 0; i < this->num_local_coords; i++)
localGidToLid.put(this->initial_mj_gnos[i], i);
ArrayRCP<mj_part_t> partId = arcp(new mj_part_t[this->num_local_coords],
0, this->num_local_coords, true);
for (mj_lno_t i = 0; i < this->num_local_coords; i++) {
mj_lno_t origLID = localGidToLid.get(result_mj_gnos[i]);
partId[origLID] = result_assigned_part_ids[i];
}
#endif // C++11 is enabled
delete [] result_mj_gnos;
delete [] result_assigned_part_ids;
solution->setParts(partId);
this->free_work_memory();
}
/* \brief Freeing the memory allocated.
* */
template <typename Adapter>
void Zoltan2_AlgMJ<Adapter>::free_work_memory(){
freeArray<mj_scalar_t *>(this->mj_coordinates);
freeArray<mj_scalar_t *>(this->mj_weights);
freeArray<bool>(this->mj_uniform_parts);
freeArray<mj_scalar_t *>(this->mj_part_sizes);
freeArray<bool>(this->mj_uniform_weights);
}
/* \brief Sets the partitioning data for multijagged algorithm.
* */
template <typename Adapter>
void Zoltan2_AlgMJ<Adapter>::set_up_partitioning_data(
const RCP<PartitioningSolution<Adapter> > &solution
)
{
this->coord_dim = this->mj_coords->getCoordinateDim();
this->num_weights_per_coord = this->mj_coords->getNumWeightsPerCoordinate();
this->num_local_coords = this->mj_coords->getLocalNumCoordinates();
this->num_global_coords = this->mj_coords->getGlobalNumCoordinates();
int criteria_dim = (this->num_weights_per_coord ? this->num_weights_per_coord : 1);
// From the Solution we get part information.
// If the part sizes for a given criteria are not uniform,
// then they are values that sum to 1.0.
this->num_global_parts = solution->getTargetGlobalNumberOfParts();
//allocate only two dimensional pointer.
//raw pointer addresess will be obtained from multivector.
this->mj_coordinates = allocMemory<mj_scalar_t *>(this->coord_dim);
this->mj_weights = allocMemory<mj_scalar_t *>(criteria_dim);
//if the partitioning results are to be uniform.
this->mj_uniform_parts = allocMemory< bool >(criteria_dim);
//if in a criteria dimension, uniform part is false this shows ratios of
//the target part weights.
this->mj_part_sizes = allocMemory<mj_scalar_t *>(criteria_dim);
//if the weights of coordinates are uniform in a criteria dimension.
this->mj_uniform_weights = allocMemory< bool >(criteria_dim);
typedef StridedData<mj_lno_t, mj_scalar_t> input_t;
ArrayView<const mj_gno_t> gnos;
ArrayView<input_t> xyz;
ArrayView<input_t> wgts;
this->coordinate_ArrayRCP_holder = new ArrayRCP<const mj_scalar_t> [this->coord_dim + this->num_weights_per_coord];
this->mj_coords->getCoordinates(gnos, xyz, wgts);
//obtain global ids.
ArrayView<const mj_gno_t> mj_gnos = gnos;
this->initial_mj_gnos = mj_gnos.getRawPtr();
//extract coordinates from multivector.
for (int dim=0; dim < this->coord_dim; dim++){
ArrayRCP<const mj_scalar_t> ar;
xyz[dim].getInputArray(ar);
this->coordinate_ArrayRCP_holder[dim] = ar;
//multiJagged coordinate values assignment
this->mj_coordinates[dim] = (mj_scalar_t *)ar.getRawPtr();
}
//if no weights are provided set uniform weight.
if (this->num_weights_per_coord == 0){
this->mj_uniform_weights[0] = true;
this->mj_weights[0] = NULL;
}
else{
//if weights are provided get weights for all weight indices
for (int wdim = 0; wdim < this->num_weights_per_coord; wdim++){
ArrayRCP<const mj_scalar_t> ar;
wgts[wdim].getInputArray(ar);
this->coordinate_ArrayRCP_holder[this->coord_dim + wdim] = ar;
this->mj_uniform_weights[wdim] = false;
this->mj_weights[wdim] = (mj_scalar_t *) ar.getRawPtr();
}
}
for (int wdim = 0; wdim < criteria_dim; wdim++){
if (solution->criteriaHasUniformPartSizes(wdim)){
this->mj_uniform_parts[wdim] = true;
this->mj_part_sizes[wdim] = NULL;
}
else{
std::cerr << "MJ does not support non uniform target part weights" << std::endl;
exit(1);
}
}
}
/* \brief Sets the partitioning parameters for multijagged algorithm.
* \param pl: is the parameter list provided to zoltan2 call
* */
template <typename Adapter>
void Zoltan2_AlgMJ<Adapter>::set_input_parameters(const Teuchos::ParameterList &pl){
const Teuchos::ParameterEntry *pe = pl.getEntryPtr("imbalance_tolerance");
if (pe){
double tol;
tol = pe->getValue(&tol);
this->imbalance_tolerance = tol - 1.0;
}
// TODO: May be a more relaxed tolerance is needed. RCB uses 10%
if (this->imbalance_tolerance <= 0)
this->imbalance_tolerance= 10e-4;
//if an input partitioning array is provided.
this->part_no_array = NULL;
//the length of the input partitioning array.
this->recursion_depth = 0;
if (pl.getPtr<Array <mj_part_t> >("mj_parts")){
this->part_no_array = (mj_part_t *) pl.getPtr<Array <mj_part_t> >("mj_parts")->getRawPtr();
this->recursion_depth = pl.getPtr<Array <mj_part_t> >("mj_parts")->size() - 1;
this->mj_env->debug(2, "mj_parts provided by user");
}
//get mj specific parameters.
this->distribute_points_on_cut_lines = true;
this->max_concurrent_part_calculation = 1;
this->mj_run_as_rcb = false;
int mj_user_recursion_depth = -1;
this->mj_keep_part_boxes = false;
this->check_migrate_avoid_migration_option = 0;
this->minimum_migration_imbalance = 0.35;
pe = pl.getEntryPtr("mj_minimum_migration_imbalance");
if (pe){
double imb;
imb = pe->getValue(&imb);
this->minimum_migration_imbalance = imb - 1.0;
}
pe = pl.getEntryPtr("mj_migration_option");
if (pe){
this->check_migrate_avoid_migration_option = pe->getValue(&this->check_migrate_avoid_migration_option);
}else {
this->check_migrate_avoid_migration_option = 0;
}
if (this->check_migrate_avoid_migration_option > 1) this->check_migrate_avoid_migration_option = -1;
pe = pl.getEntryPtr("mj_concurrent_part_count");
if (pe){
this->max_concurrent_part_calculation = pe->getValue(&this->max_concurrent_part_calculation);
}else {
this->max_concurrent_part_calculation = 1; // Set to 1 if not provided.
}
pe = pl.getEntryPtr("mj_keep_part_boxes");
if (pe){
this->mj_keep_part_boxes = pe->getValue(&this->mj_keep_part_boxes);
}else {
this->mj_keep_part_boxes = false; // Set to invalid value
}
// For now, need keep_part_boxes to do pointAssign and boxAssign.
// pe = pl.getEntryPtr("keep_cuts");
// if (pe){
// int tmp = pe->getValue(&tmp);
// if (tmp) this->mj_keep_part_boxes = true;
// }
//need to keep part boxes if mapping type is geometric.
if (this->mj_keep_part_boxes == false){
pe = pl.getEntryPtr("mapping_type");
if (pe){
int mapping_type = -1;
mapping_type = pe->getValue(&mapping_type);
if (mapping_type == 0){
mj_keep_part_boxes = true;
}
}
}
//need to keep part boxes if mapping type is geometric.
pe = pl.getEntryPtr("mj_enable_rcb");
if (pe){
this->mj_run_as_rcb = pe->getValue(&this->mj_run_as_rcb);
}else {
this->mj_run_as_rcb = false; // Set to invalid value
}
pe = pl.getEntryPtr("mj_recursion_depth");
if (pe){
mj_user_recursion_depth = pe->getValue(&mj_user_recursion_depth);
}else {
mj_user_recursion_depth = -1; // Set to invalid value
}
bool val = false;
pe = pl.getEntryPtr("rectilinear");
if (pe) val = pe->getValue(&val);
if (val){
this->distribute_points_on_cut_lines = false;
} else {
this->distribute_points_on_cut_lines = true;
}
if (this->mj_run_as_rcb){
mj_user_recursion_depth = (int)(ceil(log ((this->num_global_parts)) / log (2.0)));
}
if (this->recursion_depth < 1){
if (mj_user_recursion_depth > 0){
this->recursion_depth = mj_user_recursion_depth;
}
else {
this->recursion_depth = this->coord_dim;
}
}
this->num_threads = 1;
#ifdef HAVE_ZOLTAN2_OMP
#pragma omp parallel
{
this->num_threads = omp_get_num_threads();
}
#endif
}
/////////////////////////////////////////////////////////////////////////////
template <typename Adapter>
void Zoltan2_AlgMJ<Adapter>::boxAssign(
int dim,
typename Adapter::scalar_t *lower,
typename Adapter::scalar_t *upper,
size_t &nPartsFound,
typename Adapter::part_t **partsFound) const
{
// TODO: Implement with cuts rather than boxes to reduce algorithmic
// TODO: complexity. Or at least do a search through the boxes, using
// TODO: p x q x r x ... if possible.
nPartsFound = 0;
*partsFound = NULL;
if (this->mj_keep_part_boxes) {
// Get vector of part boxes
RCP<mj_partBoxVector_t> partBoxes = this->getGlobalBoxBoundaries();
size_t nBoxes = (*partBoxes).size();
if (nBoxes == 0) {
throw std::logic_error("no part boxes exist");
}
// Determine whether the box overlaps the globalBox at all
RCP<mj_partBox_t> globalBox = this->mj_partitioner.get_global_box();
if (globalBox->boxesOverlap(dim, lower, upper)) {
std::vector<typename Adapter::part_t> partlist;
// box overlaps the global box; find specific overlapping boxes
for (size_t i = 0; i < nBoxes; i++) {
try {
if ((*partBoxes)[i].boxesOverlap(dim, lower, upper)) {
nPartsFound++;
partlist.push_back((*partBoxes)[i].getpId());
// std::cout << "Given box (";
// for (int j = 0; j < dim; j++)
// std::cout << lower[j] << " ";
// std::cout << ") x (";
// for (int j = 0; j < dim; j++)
// std::cout << upper[j] << " ";
// std::cout << ") overlaps PartBox "
// << (*partBoxes)[i].getpId() << " (";
// for (int j = 0; j < dim; j++)
// std::cout << (*partBoxes)[i].getlmins()[j] << " ";
// std::cout << ") x (";
// for (int j = 0; j < dim; j++)
// std::cout << (*partBoxes)[i].getlmaxs()[j] << " ";
// std::cout << ")" << std::endl;
}
}
Z2_FORWARD_EXCEPTIONS;
}
if (nPartsFound) {
*partsFound = new mj_part_t[nPartsFound];
for (size_t i = 0; i < nPartsFound; i++)
(*partsFound)[i] = partlist[i];
}
}
else {
// Box does not overlap the domain at all. Find the closest part
// Not sure how to perform this operation for MJ without having the
// cuts. With the RCB cuts, the concept of a part extending to
// infinity was natural. With the boxes, it is much more difficult.
// TODO: For now, return information indicating NO OVERLAP.
}
}
else {
throw std::logic_error("need to use keep_cuts parameter for boxAssign");
}
}
/////////////////////////////////////////////////////////////////////////////
template <typename Adapter>
typename Adapter::part_t Zoltan2_AlgMJ<Adapter>::pointAssign(
int dim,
typename Adapter::scalar_t *point) const
{
// TODO: Implement with cuts rather than boxes to reduce algorithmic
// TODO: complexity. Or at least do a search through the boxes, using
// TODO: p x q x r x ... if possible.
if (this->mj_keep_part_boxes) {
typename Adapter::part_t foundPart = -1;
// Get vector of part boxes
RCP<mj_partBoxVector_t> partBoxes = this->getGlobalBoxBoundaries();
size_t nBoxes = (*partBoxes).size();
if (nBoxes == 0) {
throw std::logic_error("no part boxes exist");
}
// Determine whether the point is within the global domain
RCP<mj_partBox_t> globalBox = this->mj_partitioner.get_global_box();
if (globalBox->pointInBox(dim, point)) {
// point is in the global domain; determine in which part it is.
size_t i;
for (i = 0; i < nBoxes; i++) {
try {
if ((*partBoxes)[i].pointInBox(dim, point)) {
foundPart = (*partBoxes)[i].getpId();
// std::cout << "Point (";
// for (int j = 0; j < dim; j++) std::cout << point[j] << " ";
// std::cout << ") found in box " << i << " part " << foundPart
// << std::endl;
// (*partBoxes)[i].print();
break;
}
}
Z2_FORWARD_EXCEPTIONS;
}
if (i == nBoxes) {
// This error should never occur
std::ostringstream oss;
oss << "Point (";
for (int j = 0; j < dim; j++) oss << point[j] << " ";
oss << ") not found in domain";
throw std::logic_error(oss.str());
}
}
else {
// Point is outside the global domain.
// Determine to which part it is closest.
// TODO: with cuts, would not need this special case
size_t closestBox = 0;
mj_scalar_t minDistance = std::numeric_limits<mj_scalar_t>::max();
mj_scalar_t *centroid = new mj_scalar_t[dim];
for (size_t i = 0; i < nBoxes; i++) {
(*partBoxes)[i].computeCentroid(centroid);
mj_scalar_t sum = 0.;
mj_scalar_t diff;
for (int j = 0; j < dim; j++) {
diff = centroid[j] - point[j];
sum += diff * diff;
}
if (sum < minDistance) {
minDistance = sum;
closestBox = i;
}
}
foundPart = (*partBoxes)[closestBox].getpId();
delete [] centroid;
}
return foundPart;
}
else {
throw std::logic_error("need to use keep_cuts parameter for pointAssign");
}
}
template <typename Adapter>
void Zoltan2_AlgMJ<Adapter>::getCommunicationGraph(
const PartitioningSolution<Adapter> *solution,
ArrayRCP<typename Zoltan2_AlgMJ<Adapter>::mj_part_t> &comXAdj,
ArrayRCP<typename Zoltan2_AlgMJ<Adapter>::mj_part_t> &comAdj)
{
if(comXAdj_.getRawPtr() == NULL && comAdj_.getRawPtr() == NULL){
RCP<mj_partBoxVector_t> pBoxes = this->getGlobalBoxBoundaries();
mj_part_t ntasks = (*pBoxes).size();
int dim = (*pBoxes)[0].getDim();
GridHash<mj_scalar_t, mj_part_t> grid(pBoxes, ntasks, dim);
grid.getAdjArrays(comXAdj_, comAdj_);
}
comAdj = comAdj_;
comXAdj = comXAdj_;
}
template <typename Adapter>
RCP<typename Zoltan2_AlgMJ<Adapter>::mj_partBoxVector_t>
Zoltan2_AlgMJ<Adapter>::getGlobalBoxBoundaries() const
{
return this->mj_partitioner.get_kept_boxes();
}
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
RCP<typename AlgMJ<mj_scalar_t,mj_lno_t,mj_gno_t,mj_part_t>::mj_partBoxVector_t>
AlgMJ<mj_scalar_t,mj_lno_t,mj_gno_t,mj_part_t>::get_kept_boxes() const
{
if (this->mj_keep_part_boxes)
return this->kept_boxes;
else
throw std::logic_error("Error: part boxes are not stored.");
}
template <typename mj_scalar_t, typename mj_lno_t, typename mj_gno_t,
typename mj_part_t>
RCP<typename AlgMJ<mj_scalar_t,mj_lno_t,mj_gno_t,mj_part_t>::mj_partBoxVector_t>
AlgMJ<mj_scalar_t,mj_lno_t,mj_gno_t,mj_part_t>::compute_global_box_boundaries(
RCP<mj_partBoxVector_t> &localPartBoxes
) const
{
mj_part_t ntasks = this->num_global_parts;
int dim = (*localPartBoxes)[0].getDim();
mj_scalar_t *localPartBoundaries = new mj_scalar_t[ntasks * 2 *dim];
memset(localPartBoundaries, 0, sizeof(mj_scalar_t) * ntasks * 2 *dim);
mj_scalar_t *globalPartBoundaries = new mj_scalar_t[ntasks * 2 *dim];
memset(globalPartBoundaries, 0, sizeof(mj_scalar_t) * ntasks * 2 *dim);
mj_scalar_t *localPartMins = localPartBoundaries;
mj_scalar_t *localPartMaxs = localPartBoundaries + ntasks * dim;
mj_scalar_t *globalPartMins = globalPartBoundaries;
mj_scalar_t *globalPartMaxs = globalPartBoundaries + ntasks * dim;
mj_part_t boxCount = localPartBoxes->size();
for (mj_part_t i = 0; i < boxCount; ++i){
mj_part_t pId = (*localPartBoxes)[i].getpId();
//cout << "me:" << comm->getRank() << " has:" << pId << endl;
mj_scalar_t *lmins = (*localPartBoxes)[i].getlmins();
mj_scalar_t *lmaxs = (*localPartBoxes)[i].getlmaxs();
for (int j = 0; j < dim; ++j){
localPartMins[dim * pId + j] = lmins[j];
localPartMaxs[dim * pId + j] = lmaxs[j];
/*
cout << "me:" << comm->getRank() <<
" dim * pId + j:"<< dim * pId + j <<
" localMin:" << localPartMins[dim * pId + j] <<
" localMax:" << localPartMaxs[dim * pId + j] << endl;
*/
}
}
Teuchos::Zoltan2_BoxBoundaries<int, mj_scalar_t> reductionOp(ntasks * 2 *dim);
reduceAll<int, mj_scalar_t>(*mj_problemComm, reductionOp,
ntasks * 2 *dim, localPartBoundaries, globalPartBoundaries);
RCP<mj_partBoxVector_t> pB(new mj_partBoxVector_t(),true);
for (mj_part_t i = 0; i < ntasks; ++i){
Zoltan2::coordinateModelPartBox <mj_scalar_t, mj_part_t> tpb(i, dim,
globalPartMins + dim * i,
globalPartMaxs + dim * i);
/*
for (int j = 0; j < dim; ++j){
cout << "me:" << comm->getRank() <<
" dim * pId + j:"<< dim * i + j <<
" globalMin:" << globalPartMins[dim * i + j] <<
" globalMax:" << globalPartMaxs[dim * i + j] << endl;
}
*/
pB->push_back(tpb);
}
delete []localPartBoundaries;
delete []globalPartBoundaries;
//RCP <mj_partBoxVector_t> tmpRCPBox(pB, true);
return pB;
}
} // namespace Zoltan2
#endif
|