This file is indexed.

/usr/include/trilinos/Thyra_VectorStdOps_decl.hpp is in libtrilinos-thyra-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
// @HEADER
// ***********************************************************************
// 
//    Thyra: Interfaces and Support for Abstract Numerical Algorithms
//                 Copyright (2004) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roscoe A. Bartlett (bartlettra@ornl.gov) 
// 
// ***********************************************************************
// @HEADER


#ifndef THYRA_VECTOR_STD_OPS_DECL_HPP
#define THYRA_VECTOR_STD_OPS_DECL_HPP


#include "Thyra_OperatorVectorTypes.hpp"


namespace Thyra {


/** \brief Sum of vector elements:
 * <tt>result = sum( v(i), i = 0...v.space()->dim()-1 )</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
Scalar sum( const VectorBase<Scalar>& v );


/** \brief Scalar product <tt>result = <x,y></tt>.
 *
 * Returns <tt>x.space()->scalarProd(x,y)</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
Scalar scalarProd( const VectorBase<Scalar>& x, const VectorBase<Scalar>& y );


/** \brief Inner/Scalar product <tt>result = <x,y></tt>.
 *
 * Returns <tt>x.space()->scalarProd(x,y)</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
Scalar inner( const VectorBase<Scalar>& x, const VectorBase<Scalar>& y );


/** \brief Natural norm: <tt>result = sqrt(<v,v>)</tt>.
 *
 * Returns
 * <tt>Teuchos::ScalarTraits<Scalar>::squareroot(v.space()->scalarProd(v,v))</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
typename Teuchos::ScalarTraits<Scalar>::magnitudeType
norm( const VectorBase<Scalar>& v );


/** \brief One (1) norm: <tt>result = ||v||1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
typename Teuchos::ScalarTraits<Scalar>::magnitudeType
norm_1( const VectorBase<Scalar>& v );


/** \brief Euclidean (2) norm: <tt>result = ||v||2</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
typename Teuchos::ScalarTraits<Scalar>::magnitudeType
norm_2( const VectorBase<Scalar>& v );


/** \brief Weighted Euclidean (2) norm:
 * <tt>result = sqrt( sum( w(i)*conj(v(i))*v(i)) )</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
typename Teuchos::ScalarTraits<Scalar>::magnitudeType
norm_2( const VectorBase<Scalar> &w, const VectorBase<Scalar>& v );


/** \brief Infinity norm: <tt>result = ||v||inf</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
typename Teuchos::ScalarTraits<Scalar>::magnitudeType
norm_inf( const VectorBase<Scalar>& v_rhs );


/** \brief Dot product: <tt>result = conj(x)'*y</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
Scalar dot( const VectorBase<Scalar>& x, const VectorBase<Scalar>& y );


/** \brief Get single element: <tt>result = v(i)</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
Scalar get_ele( const VectorBase<Scalar>& v, Ordinal i );


/** \brief Set single element: <tt>v(i) = alpha</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void set_ele( Ordinal i, Scalar alpha, const Ptr<VectorBase<Scalar> > &v );


/** \brief Assign all elements to a scalar:
 * <tt>y(i) = alpha, i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void put_scalar( const Scalar& alpha, const Ptr<VectorBase<Scalar> > &y );


/** \brief Vector assignment:
 * <tt>y(i) = x(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void copy( const VectorBase<Scalar>& x, const Ptr<VectorBase<Scalar> > &y );


/** \brief Add a scalar to all elements:
 * <tt>y(i) += alpha, i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void add_scalar( const Scalar& alpha, const Ptr<VectorBase<Scalar> > &y );


/** \brief Scale all elements by a scalar:
 * <tt>y(i) *= alpha, i = 0...y->space()->dim()-1</tt>.
 *
 * This takes care of the special cases of <tt>alpha == 0.0</tt>
 * (set <tt>y = 0.0</tt>) and <tt>alpha == 1.0</tt> (don't
 * do anything).
 *
 * \relates VectorBase
 */
template<class Scalar>
void scale( const Scalar& alpha, const Ptr<VectorBase<Scalar> > &y );


/** \brief Element-wise absolute value:
 * <tt>y(i) = abs(x(i)), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void abs( const VectorBase<Scalar> &x, const Ptr<VectorBase<Scalar> > &y );


/** \brief Element-wise reciprocal:
 * <tt>y(i) = 1/x(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void reciprocal( const VectorBase<Scalar> &x, const Ptr<VectorBase<Scalar> > &y );


/** \brief Element-wise product update:
 * <tt>y(i) += alpha * x(i) * v(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void ele_wise_prod( const Scalar& alpha, const VectorBase<Scalar>& x,
  const VectorBase<Scalar>& v, const Ptr<VectorBase<Scalar> > &y );


/** \brief Element-wise conjugate product update:
 * <tt>y(i) += alpha * conj(x(i)) * v(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void ele_wise_conj_prod( const Scalar& alpha, const VectorBase<Scalar>& x,
  const VectorBase<Scalar>& v, const Ptr<VectorBase<Scalar> > &y );


/** \brief Element-wise scaling:
 * <tt>y(i) *= x(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void ele_wise_scale( const VectorBase<Scalar>& x, const Ptr<VectorBase<Scalar> > &y );


/** \brief Element-wise product update:
 * <tt>y(i) += alpha * x(i) * v(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void Vp_StVtV( const Ptr<VectorBase<Scalar> > &y, const Scalar& alpha,
  const VectorBase<Scalar>& x, const VectorBase<Scalar>& v);


/** \brief Element-wise product update:
 * <tt>y(i) *= alpha * x(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void ele_wise_prod_update( const Scalar& alpha, const VectorBase<Scalar>& x,
  const Ptr<VectorBase<Scalar> > &y );


/** \brief Element-wise product update:
 * <tt>y(i) *= alpha * x(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void Vt_StV( const Ptr<VectorBase<Scalar> > &y, const Scalar& alpha,
  const VectorBase<Scalar> &x );


/** \brief Element-wise division update:
 * <tt>y(i) += alpha * x(i) / v(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void ele_wise_divide( const Scalar& alpha, const VectorBase<Scalar>& x,
  const VectorBase<Scalar>& v, const Ptr<VectorBase<Scalar> > &y );


/** \brief Linear combination:
 * <tt>y(i) = beta*y(i) + sum( alpha[k]*x[k](i), k=0...m-1 ), i = 0...y->space()->dim()-1</tt>.
 *
 * \param m [in] Number of vectors x[]
 *
 * \param alpha [in] Array (length <tt>m</tt>) of input scalars.
 *
 * \param x [in] Array (length <tt>m</tt>) of input vectors.
 *
 * \param beta [in] Scalar multiplier for y
 *
 * \param y [in/out] Target vector that is the result of the linear
 * combination.
 *
 * This function implements a general linear combination:
 \verbatim
   y(i) = beta*y(i) + alpha[0]*x[0](i) + alpha[1]*x[1](i)
          + ... + alpha[m-1]*x[m-1](i), i = 0...y->space()->dim()-1
 \endverbatim
 *
 * \relates VectorBase
 */
template<class Scalar>
void linear_combination(
  const ArrayView<const Scalar> &alpha,
  const ArrayView<const Ptr<const VectorBase<Scalar> > > &x,
  const Scalar &beta,
  const Ptr<VectorBase<Scalar> > &y
  );


/** \brief Seed the random number generator used in <tt>randomize()</tt>.
 *
 * \param s [in] The seed for the random number generator.
 *
 * Note, this just calls
 * <tt>Teuchos::TOpRandomize<Scalar>::set_static_seed(s)</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void seed_randomize( unsigned int s );


/** \brief Random vector generation:
 * <tt>v(i) = rand(l,u), , i = 1...v->space()->dim()</tt>.
 * 
 * The elements <tt>v->getEle(i)</tt> are randomly generated between
 * <tt>[l,u]</tt>.
 *
 * The seed is set using the above <tt>seed_randomize()</tt> function.
 *
 * \relates VectorBase
 */
template<class Scalar>
void randomize( Scalar l, Scalar u, const Ptr<VectorBase<Scalar> > &v );


/** \brief Assign all elements to a scalar:
 * <tt>y(i) = alpha, i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void assign( const Ptr<VectorBase<Scalar> > &y, const Scalar& alpha );


/** \brief Vector assignment:
 * <tt>y(i) = x(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void assign( const Ptr<VectorBase<Scalar> > &y, const VectorBase<Scalar>& x );


/** \brief Add a scalar to all elements:
 * <tt>y(i) += alpha, i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void Vp_S( const Ptr<VectorBase<Scalar> > &y, const Scalar& alpha );


/** \brief Scale all elements by a scalar:
 * <tt>y(i) *= alpha, i = 0...y->space()->dim()-1</tt>.
 *
 * This takes care of the special cases of <tt>alpha == 0.0</tt>
 * (set <tt>y = 0.0</tt>) and <tt>alpha == 1.0</tt> (don't
 * do anything).
 *
 * \relates VectorBase
 */
template<class Scalar>
void Vt_S( const Ptr<VectorBase<Scalar> > &y, const Scalar& alpha );


/** \brief Assign scaled vector:
 * <tt>y(i) = alpha * x(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void V_StV( const Ptr<VectorBase<Scalar> > &y, const Scalar& alpha,
  const VectorBase<Scalar> &x );


/** \brief AXPY:
 * <tt>y(i) = alpha * x(i) + y(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void Vp_StV( const Ptr<VectorBase<Scalar> > &y, const Scalar& alpha,
  const VectorBase<Scalar>& x );


/** \brief <tt>y(i) = x(i) + beta*y(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void Vp_V(
  const Ptr<VectorBase<Scalar> > &y, const VectorBase<Scalar>& x,
  const Scalar& beta = static_cast<Scalar>(1.0)
  );


/** \brief <tt>y(i) = x(i), i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void V_V( const Ptr<VectorBase<Scalar> > &y, const VectorBase<Scalar>& x );


/** \brief <tt>y(i) = alpha, i = 0...y->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void V_S( const Ptr<VectorBase<Scalar> > &y, const Scalar& alpha );


/** \brief <tt>z(i) = x(i) + y(i), i = 0...z->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void V_VpV( const Ptr<VectorBase<Scalar> > &z, const VectorBase<Scalar>& x,
  const VectorBase<Scalar>& y );


/** \brief <tt>z(i) = x(i) - y(i), i = 0...z->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void V_VmV( const Ptr<VectorBase<Scalar> > &z, const VectorBase<Scalar>& x,
  const VectorBase<Scalar>& y );


/** \brief <tt>z(i) = alpha*x(i) + y(i), i = 0...z->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void V_StVpV( const Ptr<VectorBase<Scalar> > &z, const Scalar &alpha,
  const VectorBase<Scalar>& x, const VectorBase<Scalar>& y );


/** \brief <tt>z(i) = x(i) + alpha*y(i), i = 0...z->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void V_VpStV( const Ptr<VectorBase<Scalar> > &z,
  const VectorBase<Scalar>& x,
  const Scalar &alpha, const VectorBase<Scalar>& y );


/** \brief <tt>z(i) = alpha*x(i) + beta*y(i), i = 0...z->space()->dim()-1</tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
void V_StVpStV( const Ptr<VectorBase<Scalar> > &z, const Scalar &alpha,
  const VectorBase<Scalar>& x, const Scalar &beta, const VectorBase<Scalar>& y );


/** \brief Min element: <tt>result = min{ x(i), i = 0...x.space()->dim()-1 } </tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
Scalar min( const VectorBase<Scalar>& x );


/** \brief Min element and its index: Returns <tt>maxEle = x(k)</tt>
 * and <tt>maxIndex = k</tt> such that <tt>x(k) <= x(i)</tt> for all
 * <tt>i = 0...x.space()->dim()-1</tt>.
 *
 * \param x [in] Input vector.
 *
 * \param minEle [out] The minimum element value.
 *
 * \param maxindex [out] The global index of the minimum element.  If there is
 * more than one element with the maximum entry then this returns the lowest
 * index in order to make the output independent of the order of operations.
 *
 * Preconditions:<ul>
 * <li><tt>minEle!=NULL</tt>
 * <li><tt>minIndex!=NULL</tt>
 * </ul>
 *
 * \relates VectorBase
 */
template<class Scalar>
void min( const VectorBase<Scalar>& x,
  const Ptr<Scalar> &maxEle, const Ptr<Ordinal> &maxIndex );


/** \brief Minimum element greater than some bound and its index:
 * Returns <tt>minEle = x(k)</tt> and <tt>minIndex = k</tt> such that
 * <tt>x(k) <= x(i)</tt> for all <tt>i</tt> where <tt>x(i) >
 * bound</tt>.
 *
 * \param x [in] Input vector.
 *
 * \param bound [in] The upper bound
 *
 * \param minEle [out] The minimum element value as defined above.
 *
 * \param minIndex [out] The global index of the maximum element.  If there is
 * more than one element with the minimum value then this returns the lowest
 * index in order to make the output independent of the order of operations.
 * If no entries are less than <tt>bound</tt> then <tt>minIndex < 0</tt> on
 * return.
 *
 * Preconditions:<ul>
 * <li><tt>minEle!=NULL</tt>
 * <li><tt>minIndex!=NULL</tt>
 * </ul>
 *
 * Postconditions:<ul>
 * <li>If <tt>*minIndex > 0</tt> then such an element was found.
 * <li>If <tt>*minIndex < 0</tt> then no such element was found.
 * </ul>
 *
 * \relates VectorBase
 */
template<class Scalar>
void minGreaterThanBound( const VectorBase<Scalar>& x, const Scalar &bound,
  const Ptr<Scalar> &minEle, const Ptr<Ordinal> &minIndex );


/** \brief Max element: <tt>result = max{ x(i), i = 1...n } </tt>.
 *
 * \relates VectorBase
 */
template<class Scalar>
Scalar max( const VectorBase<Scalar>& x );


/** \brief Max element and its index: Returns <tt>maxEle = x(k)</tt>
 * and <tt>maxIndex = k</tt> such that <tt>x(k) >= x(i)</tt> for
 * <tt>i = 0...x.space()->dim()-1</tt>.
 *
 * \param x [in] Input vector.
 *
 * \param maxEle [out] The maximum element value.
 *
 * \param maxindex [out] The global index of the maximum element.  If there is
 * more than one element with the maximum value then this returns the lowest
 * index in order to make the output independent of the order of operations.
 *
 * Preconditions:<ul>
 * <li><tt>maxEle!=NULL</tt>
 * <li><tt>maxIndex!=NULL</tt>
 * </ul>
 *
 * \relates VectorBase
 */
template<class Scalar>
void max( const VectorBase<Scalar>& x,
  const Ptr<Scalar> &maxEle, const Ptr<Ordinal> &maxIndex );


/** \brief Max element less than bound and its index: Returns <tt>maxEle =
 * x(k)</tt> and <tt>maxIndex = k</tt> such that <tt>x(k) >= x(i)</tt> for all
 * <tt>i</tt> where <tt>x(i) < bound</tt>.
 *
 * \param x [in] Input vector.
 *
 * \param bound [in] The upper bound
 *
 * \param maxEle [out] The maximum element value as defined above.
 *
 * \param maxindex [out] The global index of the maximum element.  If there is
 * more than one element with the maximum index then this returns the lowest
 * index in order to make the output independent of the order of operations.
 * If no entries are less than <tt>bound</tt> then <tt>minIndex < 0</tt> on
 * return.
 *
 * Preconditions:<ul>
 * <li><tt>maxEle!=NULL</tt>
 * <li><tt>maxIndex!=NULL</tt>
 * </ul>
 *
 * Postconditions:<ul>
 * <li>If <tt>*maxIndex > 0</tt> then such an element was found.
 * <li>If <tt>*maxIndex < 0</tt> then no such element was found.
 * </ul>
 *
 * \relates VectorBase
 */
template<class Scalar>
void maxLessThanBound( const VectorBase<Scalar>& x, const Scalar &bound,
  const Ptr<Scalar> &maxEle, const Ptr<Ordinal> &maxIndex );




} // end namespace Thyra


// /////////////////////////
// Inline functions


template<class Scalar>
inline
Scalar Thyra::scalarProd( const VectorBase<Scalar>& x, const VectorBase<Scalar>& y )
{
  return x.space()->scalarProd(x, y);
}


template<class Scalar>
inline
Scalar Thyra::inner( const VectorBase<Scalar>& x, const VectorBase<Scalar>& y )
{
  return x.space()->scalarProd(x, y);
}


template<class Scalar>
inline
typename Teuchos::ScalarTraits<Scalar>::magnitudeType
Thyra::norm( const VectorBase<Scalar>& v )
{
  typedef Teuchos::ScalarTraits<Scalar> ST;
  return ST::magnitude(ST::squareroot(v.space()->scalarProd(v, v)));
}


#endif // THYRA_VECTOR_STD_OPS_DECL_HPP