This file is indexed.

/usr/include/trilinos/Teuchos_MatrixMarket_Raw_Adder.hpp is in libtrilinos-teuchos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
// @HEADER
// ***********************************************************************
//
//          Tpetra: Templated Linear Algebra Services Package
//                 Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef __Teuchos_MatrixMarket_Raw_Adder_hpp
#define __Teuchos_MatrixMarket_Raw_Adder_hpp

#include "Teuchos_ConfigDefs.hpp"
#include "Teuchos_ArrayRCP.hpp"
#include "Teuchos_CommHelpers.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_MatrixMarket_Banner.hpp"
#include "Teuchos_MatrixMarket_CoordDataReader.hpp"

#include <algorithm>
#include <fstream>
#include <iostream>
#include <iterator>
#include <vector>
#include <stdexcept>


namespace Teuchos {
  namespace MatrixMarket {
    namespace Raw {
      /// \class Element
      /// \author Mark Hoemmen
      /// \brief Stores one entry of a sparse matrix.
      ///
      /// \tparam Scalar The type of entries of the sparse matrix.
      /// \tparam Ordinal The type of indices of the sparse matrix.
      ///
      /// This class is mainly useful as an implementation detail of
      /// Adder.  We expose it to users only if they wish to convert
      /// the sparse matrix read in by Adder into a storage format
      /// other than CSR (compressed sparse row).
      ///
      /// An array of Elements implements the so-called "array of
      /// structs" representation of a coordinate format sparse
      /// matrix.  An Element has a row and column index (each of type
      /// Ordinal) and a value (of type Scalar).  Elements also have
      /// equality and ordering comparisons.  The equality comparison
      /// only tests the row and column index, and is intended to
      /// simplify merging matrix entries with the same row and column
      /// indices.  The ordering comparison means that std::sort of a
      /// sequence of Elements will put them in an order suitable for
      /// extracting the CSR (compressed sparse row) representation of
      /// the sparse matrix.
      template<class Scalar, class Ordinal>
      class Element {
      public:
        //! Default constructor: an invalid entry of the matrix.
        Element () :
          rowIndex_ (Teuchos::OrdinalTraits<Ordinal>::invalid ()),
          colIndex_ (Teuchos::OrdinalTraits<Ordinal>::invalid ()),
          value_ (Teuchos::ScalarTraits<Scalar>::zero ())
        {}

        //! Create a sparse matrix entry at (i,j) with value Aij.
        Element (const Ordinal i, const Ordinal j, const Scalar& Aij) :
          rowIndex_ (i), colIndex_ (j), value_ (Aij) {}

        //! Ignore the matrix value for comparisons.
        bool operator== (const Element& rhs) {
          return rowIndex_ == rhs.rowIndex_ && colIndex_ == rhs.colIndex_;
        }

        //! Ignore the matrix value for comparisons.
        bool operator!= (const Element& rhs) {
          return ! (*this == rhs);
        }

        //! Lexicographic order first by row index, then by column index.
        bool operator< (const Element& rhs) const {
          if (rowIndex_ < rhs.rowIndex_)
            return true;
          else if (rowIndex_ > rhs.rowIndex_)
            return false;
          else { // equal
            return colIndex_ < rhs.colIndex_;
          }
        }

        /// \brief Merge rhs into this Element, using custom binary function.
        ///
        /// This replaces the current value Aij with f(rhs.value_,
        /// Aij).  The object f must be a binary function that takes
        /// two Scalar arguments and returns a Scalar.
        template<class BinaryFunction>
        void merge (const Element& rhs, const BinaryFunction& f) {
          TEUCHOS_TEST_FOR_EXCEPTION(
            rowIndex() != rhs.rowIndex() || colIndex() != rhs.colIndex(),
            std::invalid_argument,
            "Attempt to merge elements at different locations in the sparse "
            "matrix.  The current element is at (" << rowIndex() << ", "
            << colIndex() << ") and the element you asked me to merge with it "
            "is at (" << rhs.rowIndex() << ", " << rhs.colIndex() << ").  This "
            "probably indicates a bug in the sparse matrix reader.");

          value_ = f (rhs.value_, value_);
        }

        /// \brief Merge rhs into this Element, either by addition or replacement.
        ///
        /// \param rhs [in] Element to merge in.
        /// \param replace [in] If true, replace this Element's value
        ///   with that of rhs.  If false, add rhs to this Element's
        ///   value.
        void merge (const Element& rhs, const bool replace=false) {
          TEUCHOS_TEST_FOR_EXCEPTION(
            rowIndex() != rhs.rowIndex() || colIndex() != rhs.colIndex(),
            std::invalid_argument,
            "Attempt to merge elements at different locations in the sparse "
            "matrix.  The current element is at (" << rowIndex() << ", "
            << colIndex() << ") and the element you asked me to merge with it "
            "is at (" << rhs.rowIndex() << ", " << rhs.colIndex() << ").  This "
            "probably indicates a bug in the sparse matrix reader.");

          if (replace) {
            value_ = rhs.value_;
          }
          else {
            value_ += rhs.value_;
          }
        }

        //! Row index (zero-based) of this Element.
        Ordinal rowIndex() const { return rowIndex_; }

        //! Column index (zero-based) of this Element.
        Ordinal colIndex() const { return colIndex_; }

        //! Value (A(rowIndex(), colIndex()) of this Element.
        Scalar value() const { return value_; }

      private:
        Ordinal rowIndex_, colIndex_;
        Scalar value_;
      };

      /// \brief Print out an Element to the given output stream.
      ///
      /// This method is suitable for printing a sparse matrix to a
      /// Matrix Market file.  We try to print out floating-point
      /// values with enough digits to reproduce the results, but in
      /// general this routine does not promise that the matrix entry
      /// later read in from this printing will be bitwise identical
      /// to the matrix entry supplied as input.  There _are_ printing
      /// algorithms that make this guarantee; we just haven't
      /// implemented them yet here.
      template<class Scalar, class Ordinal>
      std::ostream&
      operator<< (std::ostream& out, const Element<Scalar, Ordinal>& elt)
      {
        typedef ScalarTraits<Scalar> STS;
        std::ios::fmtflags f( out.flags() );
        // Non-Ordinal types are floating-point types.  In order not to
        // lose information when we print a floating-point type, we have
        // to set the number of digits to print.  C++ standard behavior
        // in the default locale seems to be to print only five decimal
        // digits after the decimal point; this does not suffice for
        // double precision.  We solve the problem of how many digits to
        // print more generally below.  It's a rough solution so please
        // feel free to audit and revise it.
        //
        // FIXME (mfh 01 Feb 2011)
        // This really calls for the following approach:
        //
        // Guy L. Steele and Jon L. White, "How to print floating-point
        // numbers accurately", 20 Years of the ACM/SIGPLAN Conference
        // on Programming Language Design and Implementation
        // (1979-1999): A Selection, 2003.
        if (! STS::isOrdinal) {
          // std::scientific, std::fixed, and default are the three
          // output states for floating-point numbers.  A reasonable
          // user-defined floating-point type should respect these
          // flags; hopefully it does.
          out << std::scientific;

          // Decimal output is standard for Matrix Market format.
          out << std::setbase (10);

          // Compute the number of decimal digits required for expressing
          // a Scalar, by comparing with IEEE 754 double precision (16
          // decimal digits, 53 binary digits).  This would be easier if
          // Teuchos exposed std::numeric_limits<T>::digits10, alas.
          const double numDigitsAsDouble =
            16 * ((double) STS::t() / (double) ScalarTraits<double>::t());
          // Adding 0.5 and truncating is a portable "floor".
          const int numDigits = static_cast<int> (numDigitsAsDouble + 0.5);

          // Precision to which a Scalar should be written.  Add one
          // for good measure, since 17 is necessary for IEEE 754
          // doubles.
          out << std::setprecision (numDigits + 1);
        }
        out << elt.rowIndex () << " " << elt.colIndex () << " ";
        if (STS::isComplex) {
          out << STS::real (elt.value ()) << " " << STS::imag (elt.value ());
        }
        else {
          out << elt.value ();
        }
        // Restore flags
        out.flags( f );
        return out;
      }

      /// \class Adder
      /// \brief To be used with Checker for "raw" sparse matrix input.
      ///
      /// \tparam Scalar The type of entries in the sparse matrix.
      /// \tparam Ordinal The type of indices in the sparse matrix.
      ///
      /// This class implements the following interface, which is
      /// required by the Callback template parameter of
      /// Teuchos::MatrixMarket::CoordDataReader:
      /// \code
      /// class AdderType {
      /// public:
      ///   typedef ... index_type; // Ellipsis represents the actual type
      ///   typedef ... value_type; // Ellipsis represents the actual type
      ///   void operator() (const index_type, const index_type, const value_type&);
      /// };
      /// \endcode
      /// For Adder, the Scalar template parameter is value_type, and
      /// the Ordinal template parameter is index_type.  Adder
      /// provides a simple implementation of the above interface
      /// which is useful for things like printing out a sparse
      /// matrix's entries, or converting between storage formats.
      ///
      /// It is possible to nest classes that implement the above
      /// interface, in order to modify the definition of inserting
      /// values into a sparse matrix.  (If you are familiar with
      /// Emacs Lisp, this is called "advising" (the insertion
      /// function, in this case).  See the
      /// <a href="http://www.gnu.org/software/emacs/manual/html_node/elisp/Advising-Functions.html">Emacs Lisp Manual</a>
      /// for details.)  If you are building a chain of classes, each
      /// of which implements the above interface by calling the next
      /// lower class' operator() beneath it, this class is a good
      /// start, since it implements insertion of values directly.
      /// SymmetrizingAdder is an example; it "advises" Adder by
      /// inserting an entry at (j,i) whenever Adder inserts an entry
      /// at (i,j) with i != j.
      template<class Scalar, class Ordinal>
      class Adder {
      public:
        typedef Ordinal index_type;
        typedef Scalar value_type;
        typedef Element<Scalar, Ordinal> element_type;
        typedef typename std::vector<element_type>::size_type size_type;

        /// \brief Default constructor.
        ///
        /// If you call the default constructor, we assume that you
        /// want tolerant mode (in which the Adder tries to infer the
        /// matrix dimensions and number of entries from the actual
        /// matrix data, not from any metadata).  Tolerant mode is
        /// similar to what Matlab does if you give it an ASCII file
        /// of (i,j,Aij) triples.  It may get the matrix dimensions
        /// (m,n) wrong if the lower right entry of the matrix is zero
        /// and is not supplied explicitly by calling operator().
        Adder () :
          expectedNumRows_(0),
          expectedNumCols_(0),
          expectedNumEntries_(0),
          seenNumRows_(0),
          seenNumCols_(0),
          seenNumEntries_(0),
          tolerant_ (true),
          debug_ (false)
        {}

        /// \brief Standard constructor.
        ///
        /// \param expectedNumRows [in] Number of rows in the matrix,
        ///   as specified by the matrix metadata.
        ///
        /// \param expectedNumCols [in] Number of columns in the
        ///   matrix, as specified by the matrix metadata.
        ///
        /// \param expectedNumEntries [in] Number of entries in the
        ///   matrix, as specified by the matrix metadata.
        ///
        /// \param tolerant [in] Whether the "expected" metadata is
        ///   required to match what the read-in matrix entries tell
        ///   us.
        ///
        /// \param debug [in] If true, we may print copious status
        ///   output for debugging purposes.
        Adder (const Ordinal expectedNumRows,
               const Ordinal expectedNumCols,
               const Ordinal expectedNumEntries,
               const bool tolerant=false,
               const bool debug=false) :
          expectedNumRows_(expectedNumRows),
          expectedNumCols_(expectedNumCols),
          expectedNumEntries_(expectedNumEntries),
          seenNumRows_(0),
          seenNumCols_(0),
          seenNumEntries_(0),
          tolerant_ (tolerant),
          debug_ (debug)
        {}

        /// \brief Add an entry to the sparse matrix.
        ///
        /// If tolerant==false, this method will perform error
        /// checking to ensure that the matrix data matches the
        /// metadata.  For example, it will check that i and j are in
        /// bounds.  If countAgainstTotal is true, it will also check
        /// to make sure you haven't added more than the expected
        /// number of matrix entries.  Regardless, this method will
        /// update the "actual" metadata.
        ///
        /// \param i [in] (1-based) row index
        /// \param j [in] (1-based) column index
        /// \param Aij [in] Value of the entry A(i,j)
        /// \param countAgainstTotal [in] Whether to count the entry
        ///   to insert against the total expected number of entries.
        ///   The default is true.  Make this false if you are
        ///   inserting an entry that wasn't stored in the original
        ///   Matrix Market file, which you're adding in order to
        ///   preserve symmetry or some other related structural
        ///   property of the matrix.
        void
        operator() (const Ordinal i,
                    const Ordinal j,
                    const Scalar& Aij,
                    const bool countAgainstTotal=true)
        {
          if (! tolerant_) {
            const bool indexPairOutOfRange = i < 1 || j < 1 ||
              i > expectedNumRows_ || j > expectedNumCols_;

            TEUCHOS_TEST_FOR_EXCEPTION(indexPairOutOfRange,
              std::invalid_argument, "Matrix is " << expectedNumRows_ << " x "
              << expectedNumCols_ << ", so entry A(" << i << "," << j << ") = "
              << Aij << " is out of range.");
            if (countAgainstTotal) {
              TEUCHOS_TEST_FOR_EXCEPTION(seenNumEntries_ >= expectedNumEntries_,
                std::invalid_argument, "Cannot add entry A(" << i << "," << j
                << ") = " << Aij << " to matrix; already have expected number "
                "of entries " << expectedNumEntries_ << ".");
            }
          }
          // i and j are 1-based indices, but we store them as 0-based.
          elts_.push_back (element_type (i-1, j-1, Aij));

          // Keep track of the rightmost column containing a matrix
          // entry, and the bottommost row containing a matrix entry.
          // This gives us a lower bound for the dimensions of the
          // matrix, and a check for the reported dimensions of the
          // matrix in the Matrix Market file.
          seenNumRows_ = std::max (seenNumRows_, i);
          seenNumCols_ = std::max (seenNumCols_, j);
          if (countAgainstTotal) {
            ++seenNumEntries_;
          }
        }

        /// \brief Print the sparse matrix data.
        ///
        /// We always print the data sorted.  You may also merge
        /// duplicate entries if you prefer.
        ///
        /// \param out [out] Output stream to which to print
        /// \param doMerge [in] Whether to merge entries before printing
        /// \param replace [in] If merging, whether to replace duplicate
        ///   entries; otherwise their values are added together.
        void
        print (std::ostream& out, const bool doMerge, const bool replace=false)
        {
          if (doMerge) {
            merge (replace);
          } else {
            std::sort (elts_.begin(), elts_.end());
          }
          // Print out the results, delimited by newlines.
          typedef std::ostream_iterator<element_type> iter_type;
          std::copy (elts_.begin(), elts_.end(), iter_type (out, "\n"));
        }

        /// \brief Merge duplicate elements.
        ///
        /// Merge elements of the sparse matrix that have the same row
        /// and column indices ("duplicates").  Resize the array of
        /// elements to fit just the "unique" (not duplicate)
        /// elements.
        ///
        /// \param replace [in] If true, replace each duplicate
        ///   element with the next element sharing the same row and
        ///   column index.  This means that results will depend on
        ///   the order in which the duplicate elements were added.
        ///   Otherwise, duplicate elements have their values added
        ///   together; in that case, the result is independent (in
        ///   exact arithmetic, not in finite-precision arithmetic) of
        ///   their order.
        ///
        /// \return (# unique elements, # removed elements)
        ///
        /// \note This method does not change the "expected" or "seen"
        ///   numbers of entries, since both of those count entries
        ///   with the same row and column indices as separate
        ///   entries.
        std::pair<size_type, size_type>
        merge (const bool replace=false)
        {
          typedef typename std::vector<element_type>::iterator iter_type;

          // Start with a sorted container.  Element objects sort in
          // lexicographic order of their (row, column) indices, for
          // easy conversion to CSR format.  If you expect that the
          // elements will usually be sorted in the desired order, you
          // can check first whether they are already sorted.  We have
          // no such expectation, so we don't even bother to spend the
          // extra O(# entries) operations to check.
          std::sort (elts_.begin(), elts_.end());

          // Walk through the array of elements in place, merging
          // duplicates and pushing unique elements up to the front of
          // the array.  We can't use std::unique for this because it
          // doesn't let us merge duplicate elements; it only removes
          // them from the sequence.
          size_type numUnique = 0;
          iter_type cur = elts_.begin();
          if (cur == elts_.end()) { // No elements to merge
            return std::make_pair (numUnique, size_type (0));
          }
          else {
            iter_type next = cur;
            ++next; // There is one unique element
            ++numUnique;
            while (next != elts_.end()) {
              if (*cur == *next) {
                // Merge in the duplicated element *next
                cur->merge (*next, replace);
              } else {
                // *cur is already a unique element.  Move over one to
                // *make space for the new unique element.
                ++cur;
                *cur = *next; // Add the new unique element
                ++numUnique;
              }
              // Look at the "next" not-yet-considered element
              ++next;
            }
            // Remember how many elements we removed before resizing.
            const size_type numRemoved = elts_.size() - numUnique;
            elts_.resize (numUnique);
            return std::make_pair (numUnique, numRemoved);
          }
        }

        /// \brief Merge duplicate elements and convert to zero-based CSR.
        ///
        /// Merge elements of the sparse matrix that have the same row
        /// and column indices ("duplicates").  Resize the array of
        /// elements to fit just the "unique" (not duplicate)
        /// elements.  Return a CSR (compressed sparse row) version of
        /// the data, with zero-based indices.
        ///
        /// We combine merge and conversion to CSR because the latter
        /// requires the former.
        ///
        /// \param numUniqueElts [out] Same as the first return value
        ///   of merge().
        ///
        /// \param numRemovedElts [out] Same as the second return
        ///   value of merge().
        ///
        /// \param rowptr [out] Array of numRows+1 offsets, where
        ///   numRows is the number of rows in the sparse matrix.  For
        ///   row i (zero-based indexing), the entries of that row are
        ///   in indices rowptr[i] .. rowptr[i+1]-1 of colind and
        ///   values.
        ///
        /// \param colind [out] Column indices of the matrix.  Same
        ///   number of entries as values.  colind[k] is the column
        ///   index of values[k].
        ///
        /// \param values [out] Values stored in the matrix.
        ///
        /// \param replace [in] If true, replace each duplicate
        ///   element with the next element sharing the same row and
        ///   column index.  This means that results will depend on
        ///   the order in which the duplicate elements were added.
        ///   Otherwise, duplicate elements have their values added
        ///   together; in that case, the result is independent (in
        ///   exact arithmetic, not in finite-precision arithmetic) of
        ///   their order.
        ///
        /// \note This method does not change the "expected" or "seen"
        ///   numbers of entries, since both of those count entries
        ///   with the same row and column indices as separate
        ///   entries.
        void
        mergeAndConvertToCSR (size_type& numUniqueElts,
                              size_type& numRemovedElts,
                              Teuchos::ArrayRCP<Ordinal>& rowptr,
                              Teuchos::ArrayRCP<Ordinal>& colind,
                              Teuchos::ArrayRCP<Scalar>& values,
                              const bool replace=false)
        {
          using Teuchos::arcp;
          using Teuchos::ArrayRCP;

          std::pair<size_type, size_type> mergeResult = merge (replace);

          // At this point, elts_ is already in CSR order.
          // Now we can allocate and fill the ind and val arrays.
          ArrayRCP<Ordinal> ind = arcp<Ordinal> (elts_.size ());
          ArrayRCP<Scalar> val = arcp<Scalar> (elts_.size ());

          // Number of rows in the matrix.
          const Ordinal nrows = tolerant_ ? seenNumRows_ : expectedNumRows_;
          ArrayRCP<Ordinal> ptr = arcp<Ordinal> (nrows + 1);

          // Copy over the elements, and fill in the ptr array with
          // offsets.  Note that merge() sorted the entries by row
          // index, so we can assume the row indices are increasing in
          // the list of entries.
          Ordinal curRow = 0;
          Ordinal curInd = 0;
          typedef typename std::vector<element_type>::const_iterator iter_type;
          ptr[0] = 0; // ptr always has at least one entry.
          for (iter_type it = elts_.begin(); it != elts_.end(); ++it) {
            const Ordinal i = it->rowIndex ();
            const Ordinal j = it->colIndex ();
            const Scalar Aij = it->value ();

            TEUCHOS_TEST_FOR_EXCEPTION(i < curRow, std::logic_error, "The "
              "current matrix entry's row index " << i << " is less then what "
              "should be the current row index lower bound " << curRow << ".");
            for (Ordinal k = curRow+1; k <= i; ++k) {
              ptr[k] = curInd;
            }
            curRow = i;

            TEUCHOS_TEST_FOR_EXCEPTION(
              static_cast<size_t> (curInd) >= elts_.size (),
              std::logic_error, "The current index " << curInd << " into ind "
              "and val is >= the number of matrix entries " << elts_.size ()
              << ".");
            ind[curInd] = j;
            val[curInd] = Aij;
            ++curInd;
          }
          for (Ordinal k = curRow+1; k <= nrows; ++k) {
            ptr[k] = curInd;
          }

          // Assign to outputs here, to ensure the strong exception
          // guarantee (assuming that ArrayRCP's operator= doesn't
          // throw).
          rowptr = ptr;
          colind = ind;
          values = val;
          numUniqueElts = mergeResult.first;
          numRemovedElts = mergeResult.second;
        }

        //! A temporary const view of the entries of the matrix.
        const std::vector<element_type>& getEntries() const {
          return elts_;
        }

        //! Clear all the added matrix entries and reset metadata.
        void clear() {
          seenNumRows_ = 0;
          seenNumCols_ = 0;
          seenNumEntries_ = 0;
          elts_.resize (0);
        }

        /// \brief Computed number of rows.
        ///
        /// "Computed" means "as seen from the matrix data."
        const Ordinal numRows() const { return seenNumRows_; }

        /// \brief Computed number of columns.
        ///
        /// "Computed" means "as seen from the matrix data."
        const Ordinal numCols() const { return seenNumCols_; }

      private:
        Ordinal expectedNumRows_, expectedNumCols_, expectedNumEntries_;
        Ordinal seenNumRows_, seenNumCols_, seenNumEntries_;
        bool tolerant_;
        bool debug_;

        //! The actual matrix entries, stored as an array of structs.
        std::vector<element_type> elts_;
      };
    } // namespace Raw
  } // namespace MatrixMarket
} // namespace Teuchos

#endif // #ifndef __Teuchos_MatrixMarket_Raw_Adder_hpp