This file is indexed.

/usr/include/trilinos/Teuchos_LAPACK.hpp is in libtrilinos-teuchos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
// @HEADER
// ***********************************************************************
//
//                    Teuchos: Common Tools Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef _TEUCHOS_LAPACK_HPP_
#define _TEUCHOS_LAPACK_HPP_

/*! \file Teuchos_LAPACK.hpp
    \brief Templated interface class to LAPACK routines.
*/
/** \example LAPACK/cxx_main.cpp
    This is an example of how to use the Teuchos::LAPACK class.
*/

#include "Teuchos_ConfigDefs.hpp"
#include "Teuchos_ScalarTraits.hpp"

/*! \class Teuchos::LAPACK
    \brief The Templated LAPACK Wrapper Class.

    The Teuchos::LAPACK class is a wrapper that encapsulates LAPACK
    (Linear Algebra Package).  LAPACK provides portable, high-
    performance implementations of linear, eigen, SVD, etc solvers.

    The standard LAPACK interface is Fortran-specific.  Unfortunately, the
    interface between C++ and Fortran is not standard across all computer
    platforms.  The Teuchos::LAPACK class provides C++ wrappers for the LAPACK
    kernels in order to insulate the rest of Teuchos from the details of C++ to Fortran
    translation.  A Teuchos::LAPACK object is essentially nothing, but allows access to
    the LAPACK wrapper functions.

    Teuchos::LAPACK is a serial interface only.  This is appropriate since the standard
    LAPACK are only specified for serial execution (or shared memory parallel).

    \note
        <ol>
                <li>These templates are specialized to use the Fortran LAPACK routines for
                scalar types \c float and \c double.

                <li>If Teuchos is configured with \c -DTeuchos_ENABLE_COMPLEX:BOOL=ON then these templates
                are specialized for scalar types \c std::complex<float> and \c std::complex<double> also.

                <li>A short description is given for each method.  For more detailed documentation, see the
                LAPACK website (\c http://www.netlib.org/lapack/ ).
        </ol>
*/

namespace Teuchos
{

  template<class T>
  struct UndefinedLAPACKRoutine
  {
    // This function should not compile if there is an attempt to instantiate!
    static inline T notDefined() { return T::LAPACK_routine_not_defined_for_this_type(); }
  };

  template<typename OrdinalType, typename ScalarType>
  class LAPACK
  {
  public:

    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;

    //! @name Constructors/Destructors.
    //@{

    //! Default Constructor.
    inline LAPACK(void) {}

    //! Copy Constructor.
    inline LAPACK(const LAPACK<OrdinalType, ScalarType>& lapack) {}

    //! Destructor.
    inline virtual ~LAPACK(void) {}
    //@}

    //! @name Symmetric Positive Definite Linear System Routines.
    //@{

    //! Computes the \c L*D*L' factorization of a Hermitian/symmetric positive definite tridiagonal matrix \c A.
    void PTTRF(const OrdinalType n, ScalarType* d, ScalarType* e, OrdinalType* info) const;

    //! Solves a tridiagonal system \c A*X=B using the \L*D*L' factorization of \c A computed by PTTRF.
    void PTTRS(const OrdinalType n, const OrdinalType nrhs, const ScalarType* d, const ScalarType* e, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;

    //! Computes Cholesky factorization of a real symmetric positive definite matrix \c A.
    void POTRF(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const;

    //! Solves a system of linear equations \c A*X=B, where \c A is a symmetric positive definite matrix factored by POTRF and the \c nrhs solutions are returned in \c B.
    void POTRS(const char UPLO, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;

    //! Computes the inverse of a real symmetric positive definite matrix \c A using the Cholesky factorization \c A from POTRF.
    void POTRI(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const;

    //! Estimates the reciprocal of the condition number (1-norm) of a real symmetric positive definite matrix \c A using the Cholesky factorization from POTRF.

    void POCON(const char UPLO, const OrdinalType n, const ScalarType* A, const OrdinalType lda, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;

    //! Computes the solution to a real system of linear equations \c A*X=B, where \c A is a symmetric positive definite matrix and the \c nrhs solutions are returned in \c B.
    void POSV(const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;

    //! Computes row and column scalings intended to equilibrate a symmetric positive definite matrix \c A and reduce its condition number (w.r.t. 2-norm).
    void POEQU(const OrdinalType n, const ScalarType* A, const OrdinalType lda, MagnitudeType* S, MagnitudeType* scond, MagnitudeType* amax, OrdinalType* info) const;

    //! Improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite, and provides error bounds and backward error estimates for the solution.
    void PORFS(const char UPLO, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;

    //! Uses the Cholesky factorization to compute the solution to a real system of linear equations \c A*X=B, where \c A is symmetric positive definite.  System can be equilibrated by POEQU and iteratively refined by PORFS, if requested.
    void POSVX(const char FACT, const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* AF, const OrdinalType ldaf, char EQUED, ScalarType* S, ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* rcond, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;
    //@}

    //! @name General Linear System Routines.
    //@{

    //! Solves an over/underdetermined real \c m by \c n linear system \c A using QR or LQ factorization of A.
    void GELS(const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /// \brief Use the SVD to solve a possibly rank-deficient linear least-squares problem.
    ///
    /// GELSS uses the singular value decomposition (SVD) to compute
    /// the minimum-norm solution to a possibly rank-deficient linear
    /// least-squares problem.  The problem may be under- or
    /// overdetermined.
    ///
    /// LAPACK's _GELSS routines take different arguments, depending
    /// on whether they are for real or complex arithmetic.  This is
    /// because _GELSS imitates the interface of LAPACK's SVD routine.
    /// LAPACK's SVD routine takes an additional RWORK workspace array
    /// argument for COMPLEX*8 (CGELSS) and COMPLEX*16 (ZGELSS).
    /// LAPACK's real SVD routines (SGELSS and DGELSS) do not take the
    /// RWORK argument.
    ///
    /// This class had already exposed GELSS for ScalarType = float
    /// and double that does <i>not</i> include an RWORK argument.
    /// Backwards compatibility requirements prevent us from simply
    /// changing that interface.  We could provide a different
    /// interface for LAPACK specializations with ScalarType =
    /// std::complex<T>, but that would make the GELSS interface not
    /// generic at compile time.  This would make using GELSS in
    /// generic code harder (for example, you would need to specialize
    /// code that <i>uses</i> GELSS on a Boolean, which specifies
    /// whether ScalarType is complex).
    ///
    /// We fix this problem by providing an overloaded generic GELSS
    /// interface that does take an RWORK argument.  This does not
    /// change the existing interface, but provides the additional
    /// capability to solve complex-valued least-squares problems.
    /// The RWORK argument is ignored when ScalarType is real, and may
    /// therefore be set to NULL in that case.
    ///
    void GELSS(const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* S, const MagnitudeType rcond, OrdinalType* rank, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const;

    //! Legacy GELSS interface for real-valued ScalarType.
    void GELSS(const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* S, const ScalarType rcond, OrdinalType* rank, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    //! Solves the linear equality-constrained least squares (LSE) problem where \c A is an \c m by \c n matrix,\c B is a \c p by \c n matrix \c C is a given \c m-vector, and D is a given \c p-vector.
    void GGLSE(const OrdinalType m, const OrdinalType n, const OrdinalType p, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* C, ScalarType* D, ScalarType* X, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    //! Computes a QR factorization of a general \c m by \c n matrix \c A.
    void GEQRF (const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    //! BLAS 2 version of GEQRF, with known workspace size.
    void GEQR2 (const OrdinalType m, const OrdinalType n, ScalarType A[], const OrdinalType lda, ScalarType TAU[], ScalarType WORK[], OrdinalType* const info) const;

    //! Computes an LU factorization of a general \c m by \c n matrix \c A using partial pivoting with row interchanges.
    void GETRF(const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, OrdinalType* info) const;

    //! Solves a system of linear equations \c A*X=B or \c A'*X=B with a general \c n by \c n matrix \c A using the LU factorization computed by GETRF.
    void GETRS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;

    //! Multiplies the \c m by \c n matrix \c A by the real scalar \c cto/cfrom.
    void LASCL(const char TYPE, const OrdinalType kl, const OrdinalType ku, const MagnitudeType cfrom, const MagnitudeType cto, const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const;

    //! Computes a QR factorization with column pivoting of a matrix \c A: A*P = Q*R using Level 3 BLAS
    void
    GEQP3(const OrdinalType m,
          const OrdinalType n, ScalarType* A,
          const OrdinalType lda,
          OrdinalType *jpvt,
          ScalarType* TAU,
          ScalarType* WORK,
          const OrdinalType lwork,
          MagnitudeType* RWORK,
          OrdinalType* info ) const;

    //! Apply a series of row interchanges to the matrix A.
    void
    LASWP (const OrdinalType N,
           ScalarType A[],
           const OrdinalType LDA,
           const OrdinalType K1,
           const OrdinalType K2,
           const OrdinalType IPIV[],
           const OrdinalType INCX) const;

    //! Computes an LU factorization of a general banded \c m by \c n matrix \c A using partial pivoting with row interchanges.
    void GBTRF(const OrdinalType m, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, OrdinalType* info) const;

    //! Solves a system of linear equations \c A*X=B or \c A'*X=B with a general banded \c n by \c n matrix \c A using the LU factorization computed by GBTRF.
    void GBTRS(const char TRANS, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;

    //! Computes an LU factorization of a \c n by \c n tridiagonal matrix \c A using partial pivoting with row interchanges.
    void GTTRF(const OrdinalType n, ScalarType* dl, ScalarType* d, ScalarType* du, ScalarType* du2, OrdinalType* IPIV, OrdinalType* info) const;

    //! Solves a system of linear equations \c A*X=B or \c A'*X=B or \c A^H*X=B with a tridiagonal matrix \c A using the LU factorization computed by GTTRF.
    void GTTRS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* dl, const ScalarType* d, const ScalarType* du, const ScalarType* du2, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;

    //! Computes the inverse of a matrix \c A using the LU factorization computed by GETRF.
    void GETRI(const OrdinalType n, ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /// \brief Robustly solve a possibly singular triangular linear system.
    ///
    /// \note This routine is slower than the BLAS' TRSM, but can
    ///   detect possible singularity of A.
    void
    LATRS (const char UPLO,
           const char TRANS,
           const char DIAG,
           const char NORMIN,
           const OrdinalType N,
           ScalarType* A,
           const OrdinalType LDA,
           ScalarType* X,
           MagnitudeType* SCALE,
           MagnitudeType* CNORM,
           OrdinalType* INFO) const;

    //! Estimates the reciprocal of the condition number of a general real matrix \c A, in either the 1-norm or the infinity-norm, using the LU factorization computed by GETRF.
    void GECON(const char NORM, const OrdinalType n, const ScalarType* A, const OrdinalType lda, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;

    //! Estimates the reciprocal of the condition number of a general banded real matrix \c A, in either the 1-norm or the infinity-norm, using the LU factorization computed by GETRF.
    void GBCON(const char NORM, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;

    //! Returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \c n by \c n band matrix \c A, with \c kl sub-diagonals and \c ku super-diagonals.
    typename ScalarTraits<ScalarType>::magnitudeType LANGB(const char NORM, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, MagnitudeType* WORK) const;

    //! Computes the solution to a real system of linear equations \c A*X=B, where \c A is factored through GETRF and the \c nrhs solutions are computed through GETRS.
    void GESV(const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;

    //! Computes row and column scalings intended to equilibrate an \c m by \c n matrix \c A and reduce its condition number.
    void GEEQU(const OrdinalType m, const OrdinalType n, const ScalarType* A, const OrdinalType lda, ScalarType* R, ScalarType* C, ScalarType* rowcond, ScalarType* colcond, ScalarType* amax, OrdinalType* info) const;

    //! Improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution.  Use after GETRF/GETRS.
    void GERFS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const OrdinalType* IPIV, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;

    //! Computes row and column scalings intended to equilibrate an \c m by \c n banded matrix \c A and reduce its condition number.
    void GBEQU(const OrdinalType m, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, MagnitudeType* R, MagnitudeType* C, MagnitudeType* rowcond, MagnitudeType* colcond, MagnitudeType* amax, OrdinalType* info) const;

    //! Improves the computed solution to a banded system of linear equations and provides error bounds and backward error estimates for the solution.  Use after GBTRF/GBTRS.
    void GBRFS(const char TRANS, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const OrdinalType* IPIV, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;

    //! Uses the LU factorization to compute the solution to a real system of linear equations \c A*X=B, returning error bounds on the solution and a condition estimate.
    void GESVX(const char FACT, const char TRANS, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* AF, const OrdinalType ldaf, OrdinalType* IPIV, char EQUED, ScalarType* R, ScalarType* C, ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* rcond, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;

    /*! \brief Reduces a real symmetric matrix \c A to tridiagonal form by orthogonal similarity transformations.
        \note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
    */
    void SYTRD(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* D, ScalarType* E, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    //! Reduces a real general matrix \c A to upper Hessenberg form by orthogonal similarity transformations.
    void GEHRD(const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* A, const OrdinalType lda, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    //! Solves a triangular linear system of the form \c A*X=B or \c A**T*X=B, where \c A is a triangular matrix.
    void TRTRS(const char UPLO, const char TRANS, const char DIAG, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;

    //! Computes the inverse of an upper or lower triangular matrix \c A.
    void TRTRI(const char UPLO, const char DIAG, const OrdinalType n, const ScalarType* A, const OrdinalType lda, OrdinalType* info) const;
    //@}

    //! @name Symmetric Eigenproblem Routines
    //@{
    /*! \brief Computes the eigenvalues and, optionally, eigenvectors of a symmetric \c n by \c n matrix \c A in packed storage.
        \note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
    */
    void SPEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* AP, ScalarType* W, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, OrdinalType* info) const;

    /*! \brief Computes all the eigenvalues and, optionally, eigenvectors of a symmetric \c n by \c n matrix A.
        \note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
    */
    void SYEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* W, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /*! \brief Computes all the eigenvalues and, optionally, eigenvectors of a symmetric \c n by \c n matrix pencil \c {A,B}, where \c A is symmetric and \c B is symmetric positive-definite.
        \note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
    */
    void SYGV(const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* W, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /*! \brief Computes all the eigenvalues and, optionally, eigenvectors of a Hermitian \c n by \c n matrix A.
        \note This method will call SYEV when ScalarType is \c float or \c double.
    */
    void HEEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* W, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const;

    /*! \brief Computes all the eigenvalues and, optionally, eigenvectors of a generalized Hermitian-definite \c n by \c n matrix pencil \c {A,B}, where \c A is Hermitian and \c B is Hermitian positive-definite.
        \note This method will call SYGV when ScalarType is \c float or \c double.
    */
    void HEGV(const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* W, ScalarType* WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType* info) const;

    //! Computes the eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal \c n by \c n matrix \c A using implicit QL/QR.  The eigenvectors can only be computed if \c A was reduced to tridiagonal form by SYTRD.
    void STEQR(const char COMPZ, const OrdinalType n, ScalarType* D, ScalarType* E, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, OrdinalType* info) const;
    //@}

    //! @name Non-Hermitian Eigenproblem Routines
    //@{
    //! Computes the eigenvalues of a real upper Hessenberg matrix \c H and, optionally, the matrices \c T and \c Z from the Schur decomposition, where T is an upper quasi-triangular matrix and Z contains the Schur vectors.
    void HSEQR(const char JOB, const char COMPZ, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* H, const OrdinalType ldh, ScalarType* WR, ScalarType* WI, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /*! Computes for an \c n by \c n nonsymmetric matrix \c A, the eigenvalues, the Schur form \c T, and, optionally, the matrix of Schur vectors \c Z. When \c ScalarType is \c float or \c double, the real Schur form is computed.
       \note (This is the version used for \c float and \c double, where \c select requires two arguments to represent a complex eigenvalue.)
    */
    void GEES(const char JOBVS, const char SORT, OrdinalType (*ptr2func)(ScalarType*, ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, ScalarType* WR, ScalarType* WI, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, OrdinalType* BWORK, OrdinalType* info) const;

    /*! Computes for an \c n by \c n nonsymmetric matrix \c A, the eigenvalues, the Schur form \c T, and, optionally, the matrix of Schur vectors \c Z. When \c ScalarType is \c float or \c double, the real Schur form is computed.
       \note (This is the version used for \c std::complex<float> and \c std::complex<double>, where \c select requires one arguments to represent a complex eigenvalue.)
    */
    void GEES(const char JOBVS, const char SORT, OrdinalType (*ptr2func)(ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, ScalarType* W, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* BWORK, OrdinalType* info) const;

    /*! Computes for an \c n by \c n nonsymmetric matrix \c A, the eigenvalues, the Schur form \c T, and, optionally, the matrix of Schur vectors \c Z. When \c ScalarType is \c float or \c double, the real Schur form is computed.
       \note (This is the version used for any \c ScalarType, when the user doesn't want to enable the sorting functionality.)
    */
    void GEES(const char JOBVS, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, MagnitudeType* WR, MagnitudeType* WI, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* BWORK, OrdinalType* info) const;

    /// \brief Computes for an \c n by \c n real nonsymmetric matrix \c A, the eigenvalues and, optionally, the left and/or right eigenvectors.
    ///
    /// Real and imaginary parts of the eigenvalues are returned in
    /// separate arrays, WR for real and WI for complex.  The RWORK
    /// array is only referenced if ScalarType is complex.
    void GEEV(const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* WR, MagnitudeType* WI, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const;

    /*! Computes for an \c n by \c n real nonsymmetric matrix \c A, the eigenvalues and, optionally, the left and/or right eigenvectors.
        Optionally, it can compute a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors.
        \note (This is the function is only defined for \c ScalarType = \c float or \c double.)
    */
    void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* WR, ScalarType* WI, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, OrdinalType* ilo, OrdinalType* ihi, MagnitudeType* SCALE, MagnitudeType* abnrm, MagnitudeType* RCONDE, MagnitudeType* RCONDV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* IWORK, OrdinalType* info) const;

    /*! Computes for a pair of \c n by \c n nonsymmetric matrices (\c A,\c B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
        Optionally, it can compute a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors.
        \note (This is the function is only defined for \c ScalarType = \c float or \c double.)
    */
    void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* ALPHAR, MagnitudeType* ALPHAI, ScalarType* BETA, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, OrdinalType* ilo, OrdinalType* ihi, MagnitudeType* lscale, MagnitudeType* rscale, MagnitudeType* abnrm, MagnitudeType* bbnrm, MagnitudeType* RCONDE, MagnitudeType* RCONDV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* IWORK, OrdinalType* BWORK, OrdinalType* info) const;

    /*! Computes for a pair of \c n by \c n nonsymmetric matrices (\c A,\c B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
       \note (This is the function is only defined for \c ScalarType = \c float or \c double.)
    */
    void GGEV(const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, ScalarType *BETA, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const;


    /*! Reorders the real Schur factorization of a real matrix so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \c T, and the leading columns of \c Q form an orthonormal basis of the corresponding right invariant subspace.
       \note (This function is only defined for \c ScalarType = \c float or \c double.)
    */
  void TRSEN(const char JOB, const char COMPQ, const OrdinalType *SELECT, const OrdinalType n, ScalarType *T, const OrdinalType ldt, ScalarType *Q, const OrdinalType ldq, MagnitudeType *WR, MagnitudeType *WI, OrdinalType *M, ScalarType *S, MagnitudeType *SEP, ScalarType *WORK, const OrdinalType lwork, OrdinalType *IWORK, const OrdinalType liwork, OrdinalType *info ) const;


    /*! Reorders the generalized real Schur decomposition of a real matrix pair (\c A, \c B), so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \c A and the upper triangular \c B.
       \note (This function is only defined for \c ScalarType = \c float or \c double.)
    */
  void TGSEN(const OrdinalType ijob, const OrdinalType wantq, const OrdinalType wantz, const OrdinalType *SELECT, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, MagnitudeType *BETA, ScalarType *Q, const OrdinalType ldq, ScalarType *Z, const OrdinalType ldz, OrdinalType *M, MagnitudeType *PL, MagnitudeType *PR, MagnitudeType *DIF, ScalarType *WORK, const OrdinalType lwork, OrdinalType *IWORK, const OrdinalType liwork, OrdinalType *info ) const;


    /*! Computes for a pair of \c n by \c n nonsymmetric matrices (\c A,\c B) the generalized eigenvalues, the generalized real Schur form (\c S,\c T), optionally, the left and/or right matrices of Schur vectors.
       \note (This is the function is only defined for \c ScalarType = \c float or \c double.)
    */
    void GGES(const char JOBVL, const char JOBVR, const char SORT, OrdinalType (*ptr2func)(ScalarType *, ScalarType *, ScalarType *), const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, OrdinalType *sdim, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, MagnitudeType *BETA, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, ScalarType *WORK, const OrdinalType lwork, OrdinalType *BWORK, OrdinalType *info ) const;

    //@}


    //! @name Singular Value Decompositon Routines
    //@{
    //! Computes the singular values (and optionally, vectors) of a real matrix \c A.
    void GESVD(const char JOBU, const char JOBVT, const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* S, ScalarType* U, const OrdinalType ldu, ScalarType* V, const OrdinalType ldv, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const;
    //@}


    //! @name Orthogonal matrix routines
    //@{

    /// Apply Householder reflectors (real case).
    ///
    /// Overwrite the general real \c m by \c n matrix \c C with the
    /// product of \c Q and \c C, whiere Q is the product of \c k
    /// elementary (Householder) reflectors as returned by GEQRF.
    ///
    /// \note This method is not defined when ScalarType is complex.
    /// Call UNMQR in that case.  ("OR" stands for "orthogonal";
    /// "UN" stands for "unitary.")
    void ORMQR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /// \brief BLAS 2 version of ORMQR; known workspace size.
    ///
    /// \note This method is not defined when ScalarType is complex.
    /// Call UNM2R in that case.  ("OR" stands for "orthogonal"; "UN"
    /// stands for "unitary.")
    void ORM2R(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, const ScalarType A[], const OrdinalType lda, const ScalarType TAU[], ScalarType C[], const OrdinalType ldc, ScalarType WORK[], OrdinalType* const info) const;

    /// \brief Apply Householder reflectors (complex case).
    ///
    /// Overwrite the general complex \c m by \c n matrix \c C with
    /// the product of \c Q and \c C, where Q is the product of \c k
    /// elementary (Householder) reflectors as returned by GEQRF.
    ///
    /// \note This method will call ORMQR when ScalarType is real.
    /// (Unitary real matrices are orthogonal.)
    void UNMQR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /// \brief BLAS 2 version of UNMQR; known workspace size.
    ///
    /// \note This method will call ORM2R when ScalarType is real.
    /// (Unitary real matrices are orthogonal.)
    void UNM2R(const char SIDE, const char TRANS, const OrdinalType M, const OrdinalType N, const OrdinalType K, const ScalarType A[], const OrdinalType LDA, const ScalarType TAU[], ScalarType C[], const OrdinalType LDC, ScalarType WORK[], OrdinalType* const INFO) const;

    /// \brief Compute explicit Q factor from QR factorization (GEQRF) (real case).
    ///
    /// Generate the \c m by \c n matrix Q with orthonormal columns
    /// corresponding to the first \c n columns of a product of \c k
    /// elementary reflectors of order \c m, as returned by \c GEQRF.
    ///
    /// \note This method is not defined when ScalarType is complex.
    /// Call \c UNGQR in that case.  ("OR" stands for "orthogonal";
    /// "UN" stands for "unitary.")
    void ORGQR(const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /// \brief Compute explicit QR factor from QR factorization (GEQRF) (complex case).
    ///
    /// Generate the \c m by \c n matrix Q with orthonormal columns
    /// corresponding tothe first \c n columns of a product of \c k
    /// elementary reflectors of order \c m, as returned by \c GEQRF.
    ///
    /// \note This method will call \c ORGQR when ScalarType is real.
    /// (Unitary real matrices are orthogonal.)
    void UNGQR(const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /*! \brief Generates a real orthogonal matrix \c Q which is the product of \c ihi-ilo elementary reflectors of order \c n, as returned by GEHRD.  On return \c Q is stored in \c A.
    \note This method is not defined when ScalarType is complex.
    */
    void ORGHR(const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;

    /*! \brief Overwrites the general real \c m by \c n matrix \c C with the product of \c C and \c Q, which is a product of \c ihi-ilo elementary reflectors, as returned by GEHRD.
    \note This method is not defined when ScalarType is complex.
    */
    void ORMHR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, const ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
    //@}

    //! @name Triangular Matrix Routines
    //@{

    /*! Computes some or all of the right and/or left eigenvectors of an upper triangular matrix \c T. If ScalarType is \c float or \c double, then the matrix is quasi-triangular and arugments \c RWORK is ignored.
    */
    void TREVC(const char SIDE, const char HOWMNY, OrdinalType* select, const OrdinalType n, const ScalarType* T, const OrdinalType ldt, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType* m, ScalarType* WORK, OrdinalType* info) const;

    /*! Computes some or all of the right and/or left eigenvectors of an upper triangular matrix \c T. If ScalarType is \c float or \c double, then the matrix is quasi-triangular and arugments \c RWORK is ignored.
       \note (This is the version used for any \c ScalarType, when the user doesn't want to enable the selecting functionality, with HOWMNY='A'.)
    */
    void TREVC(const char SIDE, const OrdinalType n, const ScalarType* T, const OrdinalType ldt, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType* m, ScalarType* WORK, MagnitudeType* RWORK, OrdinalType* info) const;

    /*! Reorders the Schur factorization of a matrix \c T via unitary similarity transformations so that the diagonal element of \c T with row index \c ifst is moved to row \c ilst. If \c ScalarType is \c float or \c double, then \c T should be in real Schur form and the operation affects the diagonal block referenced by \c ifst.
      \note This method will ignore the WORK vector when ScalarType is \c std::complex<float> or \c std::complex<double>.
    */
    void TREXC(const char COMPQ, const OrdinalType n, ScalarType* T, const OrdinalType ldt, ScalarType* Q, const OrdinalType ldq, OrdinalType ifst, OrdinalType ilst, ScalarType* WORK, OrdinalType* info) const;

    /*! Computes some or all of the right and/or left eigenvectors of a pair of real matrices ( \c S, \c P ), where \c S is a quasi-triangular matrix and \c P is upper triangular.
       \note This method is only defined for \c ScalarType = \c float or \c double.
    */
    void TGEVC(const char SIDE, const char HOWMNY, const OrdinalType *SELECT, const OrdinalType n, ScalarType *S, const OrdinalType lds, ScalarType *P, const OrdinalType ldp, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType *M, ScalarType *WORK, OrdinalType *info) const;


    //@}

    //! @name Rotation/Reflection generators
    //@{

    //! Gnerates a plane rotation that zeros out the second component of the input vector.
    void LARTG( const ScalarType f, const ScalarType g, MagnitudeType* c, ScalarType* s, ScalarType* r ) const;

    //! Generates an elementary reflector of order \c n that zeros out the last \c n-1 components of the input vector.
    void LARFG( const OrdinalType n, ScalarType* alpha, ScalarType* x, const OrdinalType incx, ScalarType* tau ) const;

    //@}

    //! @name Matrix Balancing Routines
    //@{

    //! Balances a general matrix A, through similarity transformations to make the rows and columns as close in norm as possible.
    void GEBAL(const char JOBZ, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType ilo, OrdinalType ihi, MagnitudeType* scale, OrdinalType* info) const;

    //! Forms the left or right eigenvectors of a general matrix that has been balanced by GEBAL by backward transformation of the computed eigenvectors \c V.
    void GEBAK(const char JOBZ, const char SIDE, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, const MagnitudeType* scale , const OrdinalType m, ScalarType* V, const OrdinalType ldv, OrdinalType* info) const;

    //@}

    //! @name Random number generators
    //@{
    //! Returns a random number from a uniform or normal distribution.
    ScalarType LARND( const OrdinalType idist, OrdinalType* seed ) const;

    //! Returns a vector of random numbers from a chosen distribution.
    void LARNV( const OrdinalType idist, OrdinalType* seed, const OrdinalType n, ScalarType* v ) const;
    //@}

    //! @name Machine Characteristics Routines.
    //@{
    /*! \brief Determines machine parameters for floating point characteristics.
        \note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
    */
    ScalarType LAMCH(const char CMACH) const;

    /*! \brief Chooses problem-dependent parameters for the local environment.
        \note This method should give parameters for good, but not optimal, performance on many currently
        available computers.
    */
    OrdinalType ILAENV( const OrdinalType ispec, const std::string& NAME, const std::string& OPTS, const OrdinalType N1 = -1, const OrdinalType N2 = -1, const OrdinalType N3 = -1, const OrdinalType N4 = -1 ) const;
    //@}

    //! @name Miscellaneous Utilities.
    //@{
    /*! \brief Computes x^2 + y^2 safely, to avoid overflow.
        \note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
    */
    ScalarType LAPY2(const ScalarType x, const ScalarType y) const;
    //@}
  };

  // END GENERAL TEMPLATE DECLARATION //

  // BEGIN GENERAL TEMPLATE IMPLEMENTATION //


  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::PTTRF(const OrdinalType n, ScalarType* d, ScalarType* e, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::PTTRS(const OrdinalType n, const OrdinalType nrhs, const ScalarType* d, const ScalarType* e, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::POTRF(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::POTRS(const char UPLO, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::POTRI(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::POCON(const char UPLO, const OrdinalType n, const ScalarType* A, const OrdinalType lda, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::POSV(const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::POEQU(const OrdinalType n, const ScalarType* A, const OrdinalType lda, MagnitudeType* S, MagnitudeType* scond, MagnitudeType* amax, OrdinalType* info) const
  {
    // Test the input parameters
    *info = 0;
    if (n < 0) {
      *info = -1;
    } else if (lda < TEUCHOS_MAX(1, n)) {
      *info = -3;
    }
    if (*info != 0) {
      return;
    }

    ScalarType sZero = ScalarTraits<ScalarType>::zero();
    ScalarType sOne  = ScalarTraits<ScalarType>::one();
    MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);
    MagnitudeType mOne = ScalarTraits<ScalarType>::magnitude(sOne);

    // Quick return
    if (n == 0) {
      *scond = mOne;
      *amax = mZero;
      return;
    }

    // Find the minimum and maximum diagonal elements
    S[0] = ScalarTraits<ScalarType>::magnitude( A[0] );
    MagnitudeType smin = S[0];
    *amax = S[0];
    for (OrdinalType i=0; i<n; ++i) {
      S[i] = ScalarTraits<ScalarType>::magnitude( A[i*lda + i] );
      smin = TEUCHOS_MIN( smin, S[i] );
      *amax = TEUCHOS_MAX( *amax, S[i] );
    }

    if (smin < mZero) {
      // Find the first non-positve diagonal element and return an error code
      for (OrdinalType i=0; i<n; ++i) {
        if (S[i] < mZero)
          *info = i;
      }
    } else {
      // Set the scale factors to the reciprocals of the diagonal elements
      for (OrdinalType i=0; i<n; ++i) {
        S[i] = mOne / ScalarTraits<ScalarType>::squareroot( S[i] );
      }
      // Compute scond = min(S(i)) / max(S(i))
      *scond = ScalarTraits<ScalarType>::squareroot( smin ) / ScalarTraits<ScalarType>::squareroot( *amax );
    }
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::PORFS(const char UPLO, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::POSVX(const char FACT, const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* AF, const OrdinalType ldaf, char EQUED, ScalarType* S, ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* rcond, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GELS(const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GELSS(const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* S, const MagnitudeType rcond, OrdinalType* rank, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GELSS(const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* S, const ScalarType rcond, OrdinalType* rank, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GGLSE(const OrdinalType m, const OrdinalType n, const OrdinalType p, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* C, ScalarType* D, ScalarType* X, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GEQRF( const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GEQR2 (const OrdinalType m, const OrdinalType n, ScalarType A[], const OrdinalType lda, ScalarType TAU[], ScalarType WORK[], OrdinalType* const info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GETRF(const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GETRS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::LASCL(const char TYPE, const OrdinalType kl, const OrdinalType ku, const MagnitudeType cfrom, const MagnitudeType cto, const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const
  {
    MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
    ScalarType sZero = ScalarTraits<ScalarType>::zero();
    ScalarType sOne  = ScalarTraits<ScalarType>::one();
    MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);
    MagnitudeType mOne = ScalarTraits<ScalarType>::magnitude(sOne);

    MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin);
    MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);

    OrdinalType i, j;
    ScalarType* ptr;
    MagnitudeType mul;
    bool done = false;

    MagnitudeType cfromc = cfrom;
    MagnitudeType ctoc = cto;
    MagnitudeType cfrom1;
    MagnitudeType cto1;

    while (!done) {

      cfrom1 = cfromc*smlnum;
      if (cfrom1 == cfromc) {
        // cfromc is an inf. Multiply by a correctly signed zero for finite ctoc, or a NaN if ctoc is infinite.
        mul = ctoc / cfromc;
        done = true;
        cto1 = ctoc;
    } else {
        cto1 = ctoc / bignum;
        if (cto1 == ctoc) {
          // ctoc is either 0 or an inf. In both cases, ctoc itself serves as the correct multiplication factor.
          mul = ctoc;
          done = true;
          cfromc = mOne;
        } else if (ScalarTraits<ScalarType>::magnitude(cfrom1) > ScalarTraits<ScalarType>::magnitude(ctoc) && ctoc != mZero) {
          mul = smlnum;
          done = false;
          cfromc = cfrom1;
        } else if (ScalarTraits<ScalarType>::magnitude(cto1) > ScalarTraits<ScalarType>::magnitude(cfromc)) {
          mul = bignum;
          done = false;
          ctoc = cto1;
        } else {
          mul = ctoc / cfromc;
          done = true;
        }
      }

      for (j=0; j<n; j++) {
        ptr = A + j*lda;
        for (i=0; i<m; i++) { *ptr = mul * (*ptr); ptr++; }
      }
    }

  }

  template<typename OrdinalType, typename ScalarType>
  void
  LAPACK<OrdinalType,ScalarType>::
  GEQP3 (const OrdinalType m,
         const OrdinalType n,
         ScalarType* A,
         const OrdinalType lda,
         OrdinalType *jpvt,
         ScalarType* TAU,
         ScalarType* WORK,
         const OrdinalType lwork,
         MagnitudeType* RWORK,
         OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void
  LAPACK<OrdinalType, ScalarType>::
  LASWP (const OrdinalType N,
         ScalarType A[],
         const OrdinalType LDA,
         const OrdinalType K1,
         const OrdinalType K2,
         const OrdinalType IPIV[],
         const OrdinalType INCX) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GBTRF(const OrdinalType m, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GBTRS(const char TRANS, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GTTRF(const OrdinalType n, ScalarType* dl, ScalarType* d, ScalarType* du, ScalarType* du2, OrdinalType* IPIV, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GTTRS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* dl, const ScalarType* d, const ScalarType* du, const ScalarType* du2, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GETRI(const OrdinalType n, ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void
  LAPACK<OrdinalType,ScalarType>::
  LATRS (const char UPLO,
         const char TRANS,
         const char DIAG,
         const char NORMIN,
         const OrdinalType N,
         ScalarType* A,
         const OrdinalType LDA,
         ScalarType* X,
         MagnitudeType* SCALE,
         MagnitudeType* CNORM,
         OrdinalType* INFO) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GECON(const char NORM, const OrdinalType n, const ScalarType* A, const OrdinalType lda, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GBCON(const char NORM, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  typename ScalarTraits<ScalarType>::magnitudeType LAPACK<OrdinalType,ScalarType>::LANGB(const char NORM, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, MagnitudeType* WORK) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GESV(const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GEEQU(const OrdinalType m, const OrdinalType n, const ScalarType* A, const OrdinalType lda, ScalarType* R, ScalarType* C, ScalarType* rowcond, ScalarType* colcond, ScalarType* amax, OrdinalType* info) const
  {

    // Test the input parameters
    *info = 0;
    if (m < 0) {
      *info = -1;
    } else if (n < 0) {
      *info = -2;
    } else if (lda < TEUCHOS_MAX(1, m)) {
      *info = -4;
    }
    if (*info != 0) {
      return;
    }

    ScalarType sZero = ScalarTraits<ScalarType>::zero();
    ScalarType sOne  = ScalarTraits<ScalarType>::one();
    MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);
    MagnitudeType mOne = ScalarTraits<ScalarType>::magnitude(sOne);

    // Quick return
    if (m == 0 || n == 0) {
      *rowcond = mOne;
      *colcond = mOne;
      *amax = mZero;
      return;
    }

    MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
    MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin);
    MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);

    // Compute the row scale factors
    for (OrdinalType i=0; i<m; i++) {
      R[i] = mZero;
    }

    // Find the maximum element in each row
    for (OrdinalType j=0; j<n; j++) {
      for (OrdinalType i=0; i<m; i++) {
        R[i] = TEUCHOS_MAX( R[i], ScalarTraits<ScalarType>::magnitude( A[j*lda + i] ) );
      }
    }

    // Find the maximum and minimum scale factors
    MagnitudeType rcmin = bignum;
    MagnitudeType rcmax = mZero;
    for (OrdinalType i=0; i<m; i++) {
      rcmax = TEUCHOS_MAX( rcmax, R[i] );
      rcmin = TEUCHOS_MIN( rcmin, R[i] );
    }
    *amax = rcmax;

    if (rcmin == mZero) {
      // Find the first zero scale factor and return an error code
      for (OrdinalType i=0; i<m; i++) {
        if (R[i] == mZero)
          *info = i;
      }
    } else {
      // Invert the scale factors
      for (OrdinalType i=0; i<m; i++) {
        R[i] = mOne / TEUCHOS_MIN( TEUCHOS_MAX( R[i], smlnum ), bignum );
      }
      // Compute rowcond = min(R(i)) / max(R(i))
      *rowcond = TEUCHOS_MAX( rcmin, smlnum ) / TEUCHOS_MIN( rcmax, bignum );
    }

    // Compute the column scale factors
    for (OrdinalType j=0; j<n; j++) {
      C[j] = mZero;
    }

    // Find the maximum element in each column, assuming the row scaling computed above
    for (OrdinalType j=0; j<n; j++) {
      for (OrdinalType i=0; i<m; i++) {
        C[j] = TEUCHOS_MAX( C[j], R[i]*ScalarTraits<ScalarType>::magnitude( A[j*lda + i] ) );
      }
    }

    // Find the maximum and minimum scale factors
    rcmin = bignum;
    rcmax = mZero;
    for (OrdinalType j=0; j<n; j++) {
      rcmax = TEUCHOS_MAX( rcmax, C[j] );
      rcmin = TEUCHOS_MIN( rcmin, C[j] );
    }

    if (rcmin == mZero) {
      // Find the first zero scale factor and return an error code
      for (OrdinalType j=0; j<n; j++) {
        if (C[j] == mZero)
          *info = m+j;
      }
    } else {
      // Invert the scale factors
      for (OrdinalType j=0; j<n; j++) {
        C[j] = mOne / TEUCHOS_MIN( TEUCHOS_MAX( C[j], smlnum ), bignum );
      }
      // Compute colcond = min(C(j)) / max(C(j))
      *colcond = TEUCHOS_MAX( rcmin, smlnum ) / TEUCHOS_MIN( rcmax, bignum );
    }
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GERFS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const OrdinalType* IPIV, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GBEQU(const OrdinalType m, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, MagnitudeType* R, MagnitudeType* C, MagnitudeType* rowcond, MagnitudeType* colcond, MagnitudeType* amax, OrdinalType* info) const
  {

    // Test the input parameters
   * info = 0;
    if (m < 0) {
      *info = -1;
    } else if (n < 0) {
      *info = -2;
    } else if (kl < 0) {
      *info = -3;
    } else if (ku < 0) {
      *info = -4;
    } else if (lda < kl+ku+1) {
      *info = -6;
    }
    if (*info != 0) {
      return;
    }

    ScalarType sZero = ScalarTraits<ScalarType>::zero();
    ScalarType sOne  = ScalarTraits<ScalarType>::one();
    MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);
    MagnitudeType mOne = ScalarTraits<ScalarType>::magnitude(sOne);

    // Quick return
    if (m == 0 || n == 0) {
      *rowcond = mOne;
      *colcond = mOne;
      *amax = mZero;
      return;
    }

    MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
    MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin);
    MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);

    // Compute the row scale factors
    for (OrdinalType i=0; i<m; i++) {
      R[i] = mZero;
    }

    // Find the maximum element in each row
    for (OrdinalType j=0; j<n; j++) {
      for (OrdinalType i=TEUCHOS_MAX(j-ku,0); i<TEUCHOS_MIN(j+kl,m-1); i++) {
        R[i] = TEUCHOS_MAX( R[i], ScalarTraits<ScalarType>::magnitude( A[j*lda + ku+i-j] ) );
      }
    }

    // Find the maximum and minimum scale factors
    MagnitudeType rcmin = bignum;
    MagnitudeType rcmax = mZero;
    for (OrdinalType i=0; i<m; i++) {
      rcmax = TEUCHOS_MAX( rcmax, R[i] );
      rcmin = TEUCHOS_MIN( rcmin, R[i] );
    }
    *amax = rcmax;

    if (rcmin == mZero) {
      // Find the first zero scale factor and return an error code
      for (OrdinalType i=0; i<m; i++) {
        if (R[i] == mZero)
          *info = i;
      }
    } else {
      // Invert the scale factors
      for (OrdinalType i=0; i<m; i++) {
        R[i] = mOne / TEUCHOS_MIN( TEUCHOS_MAX( R[i], smlnum ), bignum );
      }
      // Compute rowcond = min(R(i)) / max(R(i))
      *rowcond = TEUCHOS_MAX( rcmin, smlnum ) / TEUCHOS_MIN( rcmax, bignum );
    }

    // Compute the column scale factors
    for (OrdinalType j=0; j<n; j++) {
      C[j] = mZero;
    }

    // Find the maximum element in each column, assuming the row scaling computed above
    for (OrdinalType j=0; j<n; j++) {
      for (OrdinalType i=TEUCHOS_MAX(j-ku,0); i<TEUCHOS_MIN(j+kl,m-1); i++) {
        C[j] = TEUCHOS_MAX( C[j], R[i]*ScalarTraits<ScalarType>::magnitude( A[j*lda + ku+i-j] ) );
      }
    }

    // Find the maximum and minimum scale factors
    rcmin = bignum;
    rcmax = mZero;
    for (OrdinalType j=0; j<n; j++) {
      rcmax = TEUCHOS_MAX( rcmax, C[j] );
      rcmin = TEUCHOS_MIN( rcmin, C[j] );
    }

    if (rcmin == mZero) {
      // Find the first zero scale factor and return an error code
      for (OrdinalType j=0; j<n; j++) {
        if (C[j] == mZero)
          *info = m+j;
      }
    } else {
      // Invert the scale factors
      for (OrdinalType j=0; j<n; j++) {
        C[j] = mOne / TEUCHOS_MIN( TEUCHOS_MAX( C[j], smlnum ), bignum );
      }
      // Compute colcond = min(C(j)) / max(C(j))
      *colcond = TEUCHOS_MAX( rcmin, smlnum ) / TEUCHOS_MIN( rcmax, bignum );
    }
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GBRFS(const char TRANS, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const OrdinalType* IPIV, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GESVX(const char FACT, const char TRANS, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* AF, const OrdinalType ldaf, OrdinalType* IPIV, char EQUED, ScalarType* R, ScalarType* C, ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* rcond, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::SYTRD(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* D, ScalarType* E, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::GEHRD(const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* A, const OrdinalType lda, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::TRTRS(const char UPLO, const char TRANS, const char DIAG, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::TRTRI(const char UPLO, const char DIAG, const OrdinalType n, const ScalarType* A, const OrdinalType lda, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::SPEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* AP, ScalarType* W, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::SYEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* W, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::SYGV(const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* W, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::HEEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* W, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::HEGV(const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* W, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::STEQR(const char COMPZ, const OrdinalType n, ScalarType* D, ScalarType* E, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::HSEQR(const char JOB, const char COMPZ, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* H, const OrdinalType ldh, ScalarType* WR, ScalarType* WI, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GEES(const char JOBVS, const char SORT, OrdinalType (*ptr2func)(ScalarType*, ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, ScalarType* WR, ScalarType* WI, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, OrdinalType* BWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GEES(const char JOBVS, const char SORT, OrdinalType (*ptr2func)(ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, ScalarType* W, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType* BWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GEES(const char JOBVS, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, MagnitudeType* WR, MagnitudeType* WI, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType* BWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GEEV(const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* WR, MagnitudeType* WI, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* rwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* WR, ScalarType* WI, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, OrdinalType* ilo, OrdinalType* ihi, MagnitudeType* SCALE, MagnitudeType* abnrm, MagnitudeType* RCONDE, MagnitudeType* RCONDV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* IWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GESVD(const char JOBU, const char JOBVT, const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* S, ScalarType* U, const OrdinalType ldu, ScalarType* V, const OrdinalType ldv, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* ALPHAR, MagnitudeType* ALPHAI, ScalarType* BETA, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, OrdinalType* ilo, OrdinalType* ihi, MagnitudeType* lscale, MagnitudeType* rscale, MagnitudeType* abnrm, MagnitudeType* bbnrm, MagnitudeType* RCONDE, MagnitudeType* RCONDV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* IWORK, OrdinalType* BWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GGEV(const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, ScalarType *BETA, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }


  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::TRSEN(const char JOB, const char COMPQ, const OrdinalType *SELECT, const OrdinalType n, ScalarType *T, const OrdinalType ldt, ScalarType *Q, const OrdinalType ldq, MagnitudeType *WR, MagnitudeType *WI, OrdinalType *M, ScalarType *S, MagnitudeType *SEP, ScalarType *WORK, const OrdinalType lwork, OrdinalType *IWORK, const OrdinalType liwork, OrdinalType *info ) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }


  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType,ScalarType>::TGSEN(const OrdinalType ijob, const OrdinalType wantq, const OrdinalType wantz, const OrdinalType *SELECT, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, MagnitudeType *BETA, ScalarType *Q, const OrdinalType ldq, ScalarType *Z, const OrdinalType ldz, OrdinalType *M, MagnitudeType *PL, MagnitudeType *PR, MagnitudeType *DIF, ScalarType *WORK, const OrdinalType lwork, OrdinalType *IWORK, const OrdinalType liwork, OrdinalType *info ) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }


  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GGES(const char JOBVL, const char JOBVR, const char SORT, OrdinalType (*ptr2func)(ScalarType*, ScalarType*, ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* sdim, MagnitudeType* ALPHAR, MagnitudeType* ALPHAI, MagnitudeType* BETA, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, ScalarType* WORK, const OrdinalType lwork, OrdinalType *BWORK, OrdinalType* info ) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::ORMQR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::ORM2R(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, const ScalarType A[], const OrdinalType lda, const ScalarType TAU[], ScalarType C[], const OrdinalType ldc, ScalarType WORK[], OrdinalType* const info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::UNMQR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::UNM2R(const char SIDE, const char TRANS, const OrdinalType M, const OrdinalType N, const OrdinalType K, const ScalarType A[], const OrdinalType LDA, const ScalarType TAU[], ScalarType C[], const OrdinalType LDC, ScalarType WORK[], OrdinalType* const INFO) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::ORGQR(const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::UNGQR(const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::ORGHR(const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::ORMHR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, const ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::TREVC(const char SIDE, const char HOWMNY, OrdinalType* select, const OrdinalType n, const ScalarType* T, const OrdinalType ldt, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType* m, ScalarType* WORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::TREVC(const char SIDE, const OrdinalType n, const ScalarType* T, const OrdinalType ldt, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType* m, ScalarType* WORK, MagnitudeType* RWORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::TREXC(const char COMPQ, const OrdinalType n, ScalarType* T, const OrdinalType ldt, ScalarType* Q, const OrdinalType ldq, OrdinalType ifst, OrdinalType ilst, ScalarType* WORK, OrdinalType* info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }


  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::TGEVC(const char SIDE, const char HOWMNY, const OrdinalType *SELECT, const OrdinalType n, ScalarType *S, const OrdinalType lds, ScalarType *P, const OrdinalType ldp, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType *M, ScalarType *WORK, OrdinalType *info) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }


  template<typename OrdinalType, typename ScalarType>
  ScalarType LAPACK<OrdinalType, ScalarType>::LAMCH(const char CMACH) const
  {
    return UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  OrdinalType LAPACK<OrdinalType, ScalarType>::ILAENV( const OrdinalType ispec, const std::string& NAME, const std::string& OPTS, const OrdinalType N1, const OrdinalType N2, const OrdinalType N3, const OrdinalType N4 ) const
  {
    return UndefinedLAPACKRoutine<OrdinalType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  ScalarType LAPACK<OrdinalType, ScalarType>::LAPY2(const ScalarType x, const ScalarType y) const
  {
    return UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::LARTG( const ScalarType f, const ScalarType g, MagnitudeType* c, ScalarType* s, ScalarType* r ) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::LARFG( const OrdinalType n, ScalarType* alpha, ScalarType* x, const OrdinalType incx, ScalarType* tau ) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GEBAL( const char JOBZ, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType ilo, OrdinalType ihi, MagnitudeType* scale, OrdinalType* info ) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }


  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::GEBAK( const char JOBZ, const char SIDE, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, const MagnitudeType* scale, const OrdinalType m, ScalarType* V, const OrdinalType ldv, OrdinalType* info ) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  ScalarType LAPACK<OrdinalType, ScalarType>::LARND( const OrdinalType idist, OrdinalType* seed ) const
  {
    return UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  template<typename OrdinalType, typename ScalarType>
  void LAPACK<OrdinalType, ScalarType>::LARNV( const OrdinalType idist, OrdinalType* seed, const OrdinalType n, ScalarType* v ) const
  {
    UndefinedLAPACKRoutine<ScalarType>::notDefined();
  }

  // END GENERAL TEMPLATE IMPLEMENTATION //

#ifndef DOXYGEN_SHOULD_SKIP_THIS

  // BEGIN INT, FLOAT SPECIALIZATION DECLARATION //

  template<>
  class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, float>
  {
  public:
    inline LAPACK(void) {}
    inline LAPACK(const LAPACK<int, float>& lapack) {}
    inline virtual ~LAPACK(void) {}

    // Symmetric positive definite linear system routines
    void POTRF(const char UPLO, const int n, float* A, const int lda, int * info) const;
    void POTRS(const char UPLO, const int n, const int nrhs, const float* A, const int lda, float* B, const int ldb, int* info) const;
    void PTTRF(const int n, float* d, float* e, int* info) const;
    void PTTRS(const int n, const int nrhs, const float* d, const float* e, float* B, const int ldb, int* info) const;
    void POTRI(const char UPLO, const int n, float* A, const int lda, int* info) const;
    void POCON(const char UPLO, const int n, const float* A, const int lda, const float anorm, float* rcond, float* WORK, int* IWORK, int* info) const;
    void POSV(const char UPLO, const int n, const int nrhs, float* A, const int lda, float* B, const int ldb, int* info) const;
    void POEQU(const int n, const float* A, const int lda, float* S, float* scond, float* amax, int* info) const;
    void PORFS(const char UPLO, const int n, const int nrhs, float* A, const int lda, const float* AF, const int ldaf, const float* B, const int ldb, float* X, const int ldx, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;
    void POSVX(const char FACT, const char UPLO, const int n, const int nrhs, float* A, const int lda, float* AF, const int ldaf, char EQUED, float* S, float* B, const int ldb, float* X, const int ldx, float* rcond, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;

    // General Linear System Routines
    void GELS(const char TRANS, const int m, const int n, const int nrhs, float* A, const int lda, float* B, const int ldb, float* WORK, const int lwork, int* info) const;
    void GELSS(const int m, const int n, const int nrhs, float* A, const int lda, float* B, const int ldb, float* S, const float rcond, int* rank, float* WORK, const int lwork, float* RWORK, int* info) const;
    void GELSS(const int m, const int n, const int nrhs, float* A, const int lda, float* B, const int ldb, float* S, const float rcond, int* rank, float* WORK, const int lwork, int* info) const;
    void GGLSE(const int m, const int n, const int p, float* A, const int lda, float* B, const int ldb, float* C, float* D, float* X, float* WORK, const int lwork, int* info) const;
    void GEQRF(const int m, const int n, float* A, const int lda, float* TAU, float* WORK, const int lwork, int* info) const;
    void GEQR2(const int m, const int n, float A[], const int lda, float TAU[], float WORK[], int* const info) const;

    void GETRF(const int m, const int n, float* A, const int lda, int* IPIV, int* info) const;
    void GETRS(const char TRANS, const int n, const int nrhs, const float* A, const int lda, const int* IPIV, float* B, const int ldb, int* info) const;
    void LASCL(const char TYPE, const int kl, const int ku, const float cfrom, const float cto, const int m, const int n, float* A, const int lda, int* info) const;

    void
    GEQP3 (const int m,
           const int n,
           float* A,
           const int lda,
           int *jpvt,
           float* TAU,
           float* WORK,
           const int lwork,
           float* RWORK,
           int* info) const;

    void LASWP (const int N,
                float A[],
                const int LDA,
                const int K1,
                const int K2,
                const int IPIV[],
                const int INCX) const;

    void GBTRF(const int m, const int n, const int kl, const int ku, float* A, const int lda, int* IPIV, int* info) const;
    void GBTRS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const float* A, const int lda, const int* IPIV, float* B, const int ldb, int* info) const;
    void GTTRF(const int n, float* dl, float* d, float* du, float* du2, int* IPIV, int* info) const;
    void GTTRS(const char TRANS, const int n, const int nrhs, const float* dl, const float* d, const float* du, const float* du2, const int* IPIV, float* B, const int ldb, int* info) const;


    void GETRI(const int n, float* A, const int lda, const int* IPIV, float* WORK, const int lwork, int* info) const;
    void LATRS (const char UPLO, const char TRANS, const char DIAG, const char NORMIN, const int N, float* A, const int LDA, float* X, float* SCALE, float* CNORM, int* INFO) const;
    void GECON(const char NORM, const int n, const float* A, const int lda, const float anorm, float* rcond, float* WORK, int* IWORK, int* info) const;
    void GBCON(const char NORM, const int n, const int kl, const int ku, const float* A, const int lda, int* IPIV, const float anorm, float* rcond, float* WORK, int* IWORK, int* info) const;
    float LANGB(const char NORM, const int n, const int kl, const int ku, const float* A, const int lda, float* WORK) const;
    void GESV(const int n, const int nrhs, float* A, const int lda, int* IPIV, float* B, const int ldb, int* info) const;
    void GEEQU(const int m, const int n, const float* A, const int lda, float* R, float* C, float* rowcond, float* colcond, float* amax, int* info) const;
    void GERFS(const char TRANS, const int n, const int nrhs, const float* A, const int lda, const float* AF, const int ldaf, const int* IPIV, const float* B, const int ldb, float* X, const int ldx, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;
    void GBEQU(const int m, const int n, const int kl, const int ku, const float* A, const int lda, float* R, float* C, float* rowcond, float* colcond, float* amax, int* info) const;
    void GBRFS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const float* A, const int lda, const float* AF, const int ldaf, const int* IPIV, const float* B, const int ldb, float* X, const int ldx, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;
    void GESVX(const char FACT, const char TRANS, const int n, const int nrhs, float* A, const int lda, float* AF, const int ldaf, int* IPIV, char EQUED, float* R, float* C, float* B, const int ldb, float* X, const int ldx, float* rcond, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;
    void SYTRD(const char UPLO, const int n, float* A, const int lda, float* D, float* E, float* TAU, float* WORK, const int lwork, int* info) const;
    void GEHRD(const int n, const int ilo, const int ihi, float* A, const int lda, float* TAU, float* WORK, const int lwork, int* info) const;
    void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int n, const int nrhs, const float* A, const int lda, float* B, const int ldb, int* info) const;
    void TRTRI(const char UPLO, const char DIAG, const int n, const float* A, const int lda, int* info) const;

    // Symmetric eigenvalue routines.
    void SPEV(const char JOBZ, const char UPLO, const int n, float* AP, float* W, float* Z, const int ldz, float* WORK, int* info) const;
    void SYEV(const char JOBZ, const char UPLO, const int n, float* A, const int lda, float* W, float* WORK, const int lwork, int* info) const;
    void SYGV(const int itype, const char JOBZ, const char UPLO, const int n, float* A, const int lda, float* B, const int ldb, float* W, float* WORK, const int lwork, int* info) const;
    void HEEV(const char JOBZ, const char UPLO, const int n, float* A, const int lda, float* W, float* WORK, const int lwork, float* RWORK, int* info) const;
    void HEGV(const int itype, const char JOBZ, const char UPLO, const int n, float* A, const int lda, float* B, const int ldb, float* W, float* WORK, const int lwork, float *RWORK, int* info) const;
    void STEQR(const char COMPZ, const int n, float* D, float* E, float* Z, const int ldz, float* WORK, int* info) const;

    // Non-Hermitian eigenvalue routines.
    void HSEQR(const char JOB, const char COMPZ, const int n, const int ilo, const int ihi, float* H, const int ldh, float* WR, float* WI, float* Z, const int ldz, float* WORK, const int lwork, int* info) const;
    void GEES(const char JOBVS, const char SORT, int (*ptr2func)(float*, float*), const int n, float* A, const int lda, int* sdim, float* WR, float* WI, float* VS, const int ldvs, float* WORK, const int lwork, int* BWORK, int* info) const;
    void GEES(const char JOBVS, const int n, float* A, const int lda, int* sdim, float* WR, float* WI, float* VS, const int ldvs, float* WORK, const int lwork, float* RWORK, int* BWORK, int* info) const;

    void GEEV(const char JOBVL, const char JOBVR, const int n, float* A, const int lda, float* WR, float* WI, float* VL, const int ldvl, float* VR, const int ldvr, float* WORK, const int lwork, int* info) const;
    void GEEV(const char JOBVL, const char JOBVR, const int n, float* A, const int lda, float* WR, float* WI, float* VL, const int ldvl, float* VR, const int ldvr, float* WORK, const int lwork, float* rwork, int* info) const;

    void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, float* A, const int lda, float* WR, float* WI, float* VL, const int ldvl, float* VR, const int ldvr, int* ilo, int* ihi, float* SCALE, float* abnrm, float* RCONDE, float* RCONDV, float* WORK, const int lwork, int* IWORK, int* info) const;
    void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, float* A, const int lda, float* B, const int ldb, float* ALPHAR, float* ALPHAI, float* BETA, float* VL, const int ldvl, float* VR, const int ldvr, int* ilo, int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* RCONDE, float* RCONDV, float* WORK, const int lwork, int* IWORK, int* BWORK, int* info) const;
    void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, float* A, const int lda, float* B, const int ldb, float* ALPHAR, float* ALPHAI, float* BETA, float* VL, const int ldvl, float* VR, const int ldvr, int* ilo, int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* RCONDE, float* RCONDV, float* WORK, const int lwork, float* rwork, int* IWORK, int* BWORK, int* info) const;
    void GGEV(const char JOBVL, const char JOBVR, const int n, float *A, const int lda, float *B, const int ldb, float *ALPHAR, float *ALPHAI, float *BETA, float *VL, const int ldvl, float *VR, const int ldvr, float *WORK, const int lwork, int *info) const;
    void TRSEN(const char JOB, const char COMPQ, const int *SELECT, const int n, float *T, const int ldt, float *Q, const int ldq, float *WR, float *WI, int *M, float *S, float *SEP, float *WORK, const int lwork, int *IWORK, const int liwork, int *info ) const;
    void TGSEN(const int ijob, const int wantq, const int wantz, const int *SELECT, const int n, float *A, const int lda, float *B, const int ldb, float *ALPHAR, float *ALPHAI, float *BETA, float *Q, const int ldq, float *Z, const int ldz, int *M, float *PL, float *PR, float *DIF, float *WORK, const int lwork, int *IWORK, const int liwork, int *info ) const;
    void GGES(const char JOBVL, const char JOBVR, const char SORT, int (*ptr2func)(float*, float*, float*), const int n, float* A, const int lda, float* B, const int ldb, int* sdim, float* ALPHAR, float* ALPHAI, float* BETA, float* VL, const int ldvl, float* VR, const int ldvr, float* WORK, const int lwork, int *bwork, int* info ) const;

    // SVD routine
    void GESVD(const char JOBU, const char JOBVT, const int m, const int n, float* A, const int lda, float* S, float* U, const int ldu, float* V, const int ldv, float* WORK, const int lwork, float* RWORK, int* info) const;

    // Orthogonal matrix routines.
    void ORMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, float* A, const int lda, const float* TAU, float* C, const int ldc, float* WORK, const int lwork, int* info) const;
    void ORM2R(const char SIDE, const char TRANS, const int m, const int n, const int k, const float A[], const int lda, const float TAU[], float C[], const int ldc, float WORK[], int* const info) const;
    void UNMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, float* A, const int lda, const float* TAU, float* C, const int ldc, float* WORK, const int lwork, int* info) const;
    void UNM2R(const char SIDE, const char TRANS, const int M, const int N, const int K, const float A[], const int LDA, const float TAU[], float C[], const int LDC, float WORK[], int* const INFO) const;
    void ORGQR(const int m, const int n, const int k, float* A, const int lda, const float* TAU, float* WORK, const int lwork, int* info) const;
    void UNGQR(const int m, const int n, const int k, float* A, const int lda, const float* TAU, float* WORK, const int lwork, int* info) const;
    void ORGHR(const int n, const int ilo, const int ihi, float* A, const int lda, const float* TAU, float* WORK, const int lwork, int* info) const;
    void ORMHR(const char SIDE, const char TRANS, const int m, const int n, const int ilo, const int ihi, const float* A, const int lda, const float* TAU, float* C, const int ldc, float* WORK, const int lwork, int* info) const;

    // Triangular matrix routines.
    void TREVC(const char SIDE, const char HOWMNY, int* select, const int n, const float* T, const int ldt, float* VL, const int ldvl, float* VR, const int ldvr, const int mm, int* m, float* WORK, int* info) const;
    void TREVC(const char SIDE, const int n, const float* T, const int ldt, float* VL, const int ldvl, float* VR, const int ldvr, const int mm, int* m, float* WORK, float *RWORK, int* info) const;
    void TREXC(const char COMPQ, const int n, float* T, const int ldt, float* Q, const int ldq, int ifst, int ilst, float* WORK, int* info) const;
    void TGEVC(const char SIDE, const char HOWMNY, const int *SELECT, const int n, float *S, const int lds, float *P, const int ldp, float *VL, const int ldvl, float *VR, const int ldvr, const int mm, int *M, float *WORK, int *info) const;

    // Rotation/reflection generators
    void LARTG( const float f, const float g, float* c, float* s, float* r ) const;
    void LARFG( const int n, float* alpha, float* x, const int incx, float* tau ) const;

    // Matrix balancing routines.
    void GEBAL(const char JOBZ, const int n, float* A, const int lda, int ilo, int ihi, float* scale, int* info) const;
    void GEBAK(const char JOBZ, const char SIDE, const int n, const int ilo, const int ihi, const float* scale, const int m, float* V, const int ldv, int* info) const;

    // Random number generators
    float LARND( const int idist, int* seed ) const;
    void LARNV( const int idist, int* seed, const int n, float* v ) const;

    // Machine characteristics.
    float LAMCH(const char CMACH) const;
    int ILAENV( const int ispec, const std::string& NAME, const std::string& OPTS, const int N1 = -1, const int N2 = -1, const int N3 = -1, const int N4 = -1 ) const;

    // Miscellaneous routines.
    float LAPY2(const float x, const float y) const;

  };

  // END INT, FLOAT SPECIALIZATION DECLARATION //

  // BEGIN INT, DOUBLE SPECIALIZATION DECLARATION //

  template<>
  class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, double>
  {
  public:
    inline LAPACK(void) {}
    inline LAPACK(const LAPACK<int, double>& lapack) {}
    inline virtual ~LAPACK(void) {}

    // Symmetric positive definite linear system routines
    void PTTRF(const int n, double* d, double* e, int* info) const;
    void PTTRS(const int n, const int nrhs, const double* d, const double* e, double* B, const int ldb, int* info) const;
    void POTRF(const char UPLO, const int n, double* A, const int lda, int* info) const;
    void POTRS(const char UPLO, const int n, const int nrhs, const double* A, const int lda, double* B, const int ldb, int* info) const;
    void POTRI(const char UPLO, const int n, double* A, const int lda, int* info) const;
    void POCON(const char UPLO, const int n, const double* A, const int lda, const double anorm, double* rcond, double* WORK, int* IWORK, int* info) const;
    void POSV(const char UPLO, const int n, const int nrhs, double* A, const int lda, double* B, const int ldb, int* info) const;
    void POEQU(const int n, const double* A, const int lda, double* S, double* scond, double* amax, int* info) const;
    void PORFS(const char UPLO, const int n, const int nrhs, double* A, const int lda, const double* AF, const int ldaf, const double* B, const int ldb, double* X, const int ldx, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;
    void POSVX(const char FACT, const char UPLO, const int n, const int nrhs, double* A, const int lda, double* AF, const int ldaf, char EQUED, double* S, double* B, const int ldb, double* X, const int ldx, double* rcond, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;

    // General linear system routines
    void GELS(const char TRANS, const int m, const int n, const int nrhs, double* A, const int lda, double* B, const int ldb, double* WORK, const int lwork, int* info) const;
    void GELSS(const int m, const int n, const int nrhs, double* A, const int lda, double* B, const int ldb, double* S, const double rcond, int* rank, double* WORK, const int lwork, double* RWORK, int* info) const;
    void GELSS(const int m, const int n, const int nrhs, double* A, const int lda, double* B, const int ldb, double* S, const double rcond, int* rank, double* WORK, const int lwork, int* info) const;
    void GGLSE(const int m, const int n, const int p, double* A, const int lda, double* B, const int ldb, double* C, double* D, double* X, double* WORK, const int lwork, int* info) const;
    void GEQRF(const int m, const int n, double* A, const int lda, double* TAU, double* WORK, const int lwork, int* info) const;
    void GEQR2(const int m, const int n, double A[], const int lda, double TAU[], double WORK[], int* const info) const;
    void GETRF(const int m, const int n, double* A, const int lda, int* IPIV, int* info) const;
    void GETRS(const char TRANS, const int n, const int nrhs, const double* A, const int lda, const int* IPIV, double* B, const int ldb, int* info) const;
    void LASCL(const char TYPE, const int kl, const int ku, const double cfrom, const double cto, const int m, const int n, double* A, const int lda, int* info) const;

    void
    GEQP3 (const int m,
           const int n,
           double* A,
           const int lda,
           int *jpvt,
           double* TAU,
           double* WORK,
           const int lwork,
           double* RWORK,
           int* info) const;

    void LASWP (const int N,
                double A[],
                const int LDA,
                const int K1,
                const int K2,
                const int IPIV[],
                const int INCX) const;

    void GBTRF(const int m, const int n, const int kl, const int ku, double* A, const int lda, int* IPIV, int* info) const;
    void GBTRS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const double* A, const int lda, const int* IPIV, double* B, const int ldb, int* info) const;
    void GTTRF(const int n, double* dl, double* d, double* du, double* du2, int* IPIV, int* info) const;
    void GTTRS(const char TRANS, const int n, const int nrhs, const double* dl, const double* d, const double* du, const double* du2, const int* IPIV, double* B, const int ldb, int* info) const;
    void GETRI(const int n, double* A, const int lda, const int* IPIV, double* WORK, const int lwork, int* info) const;
    void LATRS (const char UPLO, const char TRANS, const char DIAG, const char NORMIN, const int N, double* A, const int LDA, double* X, double* SCALE, double* CNORM, int* INFO) const;
    void GECON(const char NORM, const int n, const double* A, const int lda, const double anorm, double* rcond, double* WORK, int* IWORK, int* info) const;
    void GBCON(const char NORM, const int n, const int kl, const int ku, const double* A, const int lda, int* IPIV, const double anorm, double* rcond, double* WORK, int* IWORK, int* info) const;
    double LANGB(const char NORM, const int n, const int kl, const int ku, const double* A, const int lda, double* WORK) const;
    void GESV(const int n, const int nrhs, double* A, const int lda, int* IPIV, double* B, const int ldb, int* info) const;
    void GEEQU(const int m, const int n, const double* A, const int lda, double* R, double* C, double* rowcond, double* colcond, double* amax, int* info) const;
    void GERFS(const char TRANS, const int n, const int nrhs, const double* A, const int lda, const double* AF, const int ldaf, const int* IPIV, const double* B, const int ldb, double* X, const int ldx, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;
    void GBEQU(const int m, const int n, const int kl, const int ku, const double* A, const int lda, double* R, double* C, double* rowcond, double* colcond, double* amax, int* info) const;
    void GBRFS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const double* A, const int lda, const double* AF, const int ldaf, const int* IPIV, const double* B, const int ldb, double* X, const int ldx, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;
    void GESVX(const char FACT, const char TRANS, const int n, const int nrhs, double* A, const int lda, double* AF, const int ldaf, int* IPIV, char EQUED, double* R, double* C, double* B, const int ldb, double* X, const int ldx, double* rcond, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;
    void SYTRD(const char UPLO, const int n, double* A, const int lda, double* D, double* E, double* TAU, double* WORK, const int lwork, int* info) const;
    void GEHRD(const int n, const int ilo, const int ihi, double* A, const int lda, double* TAU, double* WORK, const int lwork, int* info) const;
    void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int n, const int nrhs, const double* A, const int lda, double* B, const int ldb, int* info) const;
    void TRTRI(const char UPLO, const char DIAG, const int n, const double* A, const int lda, int* info) const;

    // Symmetric eigenproblem routines.
    void SPEV(const char JOBZ, const char UPLO, const int n, double* AP, double* W, double* Z, const int ldz, double* WORK, int* info) const;
    void SYEV(const char JOBZ, const char UPLO, const int n, double* A, const int lda, double* W, double* WORK, const int lwork, int* info) const;
    void SYGV(const int itype, const char JOBZ, const char UPLO, const int n, double* A, const int lda, double* B, const int ldb, double* W, double* WORK, const int lwork, int* info) const;
    void HEEV(const char JOBZ, const char UPLO, const int n, double* A, const int lda, double* W, double* WORK, const int lwork, double* RWORK, int* info) const;
    void HEGV(const int itype, const char JOBZ, const char UPLO, const int n, double* A, const int lda, double* B, const int ldb, double* W, double* WORK, const int lwork, double *RWORK, int* info) const;
    void STEQR(const char COMPZ, const int n, double* D, double* E, double* Z, const int ldz, double* WORK, int* info) const;

    // Non-Hermitian eigenproblem routines.
    void HSEQR(const char JOB, const char COMPZ, const int n, const int ilo, const int ihi, double* H, const int ldh, double* WR, double* WI, double* Z, const int ldz, double* WORK, const int lwork, int* info) const;
    void GEES(const char JOBVS, const char SORT, int (*ptr2func)(double*, double*), const int n, double* A, const int lda, int* sdim, double* WR, double* WI, double* VS, const int ldvs, double* WORK, const int lwork, int* BWORK, int* info) const;
    void GEES(const char JOBVS, const int n, double* A, const int lda, int* sdim, double* WR, double* WI, double* VS, const int ldvs, double* WORK, const int lwork, double* RWORK, int* BWORK, int* info) const;

    void GEEV(const char JOBVL, const char JOBVR, const int n, double* A, const int lda, double* WR, double* WI, double* VL, const int ldvl, double* VR, const int ldvr, double* WORK, const int lwork, int* info) const;
    void GEEV(const char JOBVL, const char JOBVR, const int n, double* A, const int lda, double* WR, double* WI, double* VL, const int ldvl, double* VR, const int ldvr, double* WORK, const int lwork, double* RWORK, int* info) const;

    void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, double* A, const int lda, double* WR, double* WI, double* VL, const int ldvl, double* VR, const int ldvr, int* ilo, int* ihi, double* SCALE, double* abnrm, double* RCONDE, double* RCONDV, double* WORK, const int lwork, int* IWORK, int* info) const;
    void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, double* A, const int lda, double* B, const int ldb, double* ALPHAR, double* ALPHAI, double* BETA, double* VL, const int ldvl, double* VR, const int ldvr, int* ilo, int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* RCONDE, double* RCONDV, double* WORK, const int lwork, int* IWORK, int* BWORK, int* info) const;
    void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, double* A, const int lda, double* B, const int ldb, double* ALPHAR, double* ALPHAI, double* BETA, double* VL, const int ldvl, double* VR, const int ldvr, int* ilo, int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* RCONDE, double* RCONDV, double* WORK, const int lwork, double* rwork, int* IWORK, int* BWORK, int* info) const;
    void GGEV(const char JOBVL, const char JOBVR, const int n, double *A, const int lda, double *B, const int ldb, double *ALPHAR, double *ALPHAI, double *BETA, double *VL, const int ldvl, double *VR, const int ldvr, double *WORK, const int lwork, int *info) const;
    void TRSEN(const char JOB, const char COMPQ, const int *SELECT, const int n, double *T, const int ldt, double *Q, const int ldq, double *WR, double *WI, int *M, double *S, double *SEP, double *WORK, const int lwork, int *IWORK, const int liwork, int *info ) const;
    void TGSEN(const int ijob, const int wantq, const int wantz, const int *SELECT, const int n, double *A, const int lda, double *B, const int ldb, double *ALPHAR, double *ALPHAI, double *BETA, double *Q, const int ldq, double *Z, const int ldz, int *M, double *PL, double *PR, double *DIF, double *WORK, const int lwork, int *IWORK, const int liwork, int *info ) const;
    void GGES(const char JOBVL, const char JOBVR, const char SORT, int (*ptr2func)(double*, double*, double*), const int n, double* A, const int lda, double* B, const int ldb, int* sdim, double* ALPHAR, double* ALPHAI, double* BETA, double* VL, const int ldvl, double* VR, const int ldvr, double* WORK, const int lwork, int *bwork, int* info ) const;


    // SVD routine
    void GESVD(const char JOBU, const char JOBVT, const int m, const int n, double* A, const int lda, double* S, double* U, const int ldu, double* V, const int ldv, double* WORK, const int lwork, double* RWORK, int* info) const;

    // Orthogonal matrix routines.
    void ORMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, double* A, const int lda, const double* TAU, double* C, const int ldc, double* WORK, const int lwork, int* info) const;
    void ORM2R(const char SIDE, const char TRANS, const int m, const int n, const int k, const double A[], const int lda, const double TAU[], double C[], const int ldc, double WORK[], int* const info) const;
    void UNMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, double* A, const int lda, const double* TAU, double* C, const int ldc, double* WORK, const int lwork, int* info) const;
    void UNM2R(const char SIDE, const char TRANS, const int M, const int N, const int K, const double A[], const int LDA, const double TAU[], double C[], const int LDC, double WORK[], int* const INFO) const;
    void ORGQR(const int m, const int n, const int k, double* A, const int lda, const double* TAU, double* WORK, const int lwork, int* info) const;
    void UNGQR(const int m, const int n, const int k, double* A, const int lda, const double* TAU, double* WORK, const int lwork, int* info) const;
    void ORGHR(const int n, const int ilo, const int ihi, double* A, const int lda, const double* TAU, double* WORK, const int lwork, int* info) const;
    void ORMHR(const char SIDE, const char TRANS, const int m, const int n, const int ilo, const int ihi, const double* A, const int lda, const double* TAU, double* C, const int ldc, double* WORK, const int lwork, int* info) const;

    // Triangular matrix routines.
    void TREVC(const char SIDE, const char HOWMNY, int* select, const int n, const double* T, const int ldt, double* VL, const int ldvl, double* VR, const int ldvr, const int mm, int* m, double* WORK, int* info) const;
    void TREVC(const char SIDE, const int n, const double* T, const int ldt, double* VL, const int ldvl, double* VR, const int ldvr, const int mm, int* m, double* WORK, double* RWORK, int* info) const;
    void TREXC(const char COMPQ, const int n, double* T, const int ldt, double* Q, const int ldq, int ifst, int ilst, double* WORK, int* info) const;
    void TGEVC(const char SIDE, const char HOWMNY, const int *SELECT, const int n, double *S, const int lds, double *P, const int ldp, double *VL, const int ldvl, double *VR, const int ldvr, const int mm, int *M, double *WORK, int *info) const;

    // Rotation/reflection generators
    void LARTG( const double f, const double g, double* c, double* s, double* r ) const;
    void LARFG( const int n, double* alpha, double* x, const int incx, double* tau ) const;

    // Matrix balancing routines.
    void GEBAL(const char JOBZ, const int n, double* A, const int lda, int ilo, int ihi, double* scale, int* info) const;
    void GEBAK(const char JOBZ, const char SIDE, const int n, const int ilo, const int ihi, const double* scale, const int m, double* V, const int ldv, int* info) const;

    // Random number generators
    double LARND( const int idist, int* seed ) const;
    void LARNV( const int idist, int* seed, const int n, double* v ) const;

    // Machine characteristic routines.
    double LAMCH(const char CMACH) const;
    int ILAENV( const int ispec, const std::string& NAME, const std::string& OPTS, const int N1 = -1, const int N2 = -1, const int N3 = -1, const int N4 = -1 ) const;

    // Miscellaneous routines.
    double LAPY2(const double x, const double y) const;

  };

  // END INT, DOUBLE SPECIALIZATION DECLARATION //

#ifdef HAVE_TEUCHOS_COMPLEX

  // BEGIN INT, COMPLEX<FLOAT> SPECIALIZATION DECLARATION //

  template<>
  class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, std::complex<float> >
  {
  public:
    inline LAPACK(void) {}
    inline LAPACK(const LAPACK<int, std::complex<float> >& lapack) {}
    inline virtual ~LAPACK(void) {}

    // Symmetric positive definite linear system routines
    void PTTRF(const int n, std::complex<float>* d, std::complex<float>* e, int* info) const;
    void PTTRS(const int n, const int nrhs, const std::complex<float>* d, const std::complex<float>* e, std::complex<float>* B, const int ldb, int* info) const;
    void POTRF(const char UPLO, const int n, std::complex<float>* A, const int lda, int* info) const;
    void POTRS(const char UPLO, const int n, const int nrhs, const std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, int* info) const;
    void POTRI(const char UPLO, const int n, std::complex<float>* A, const int lda, int* info) const;
    void POCON(const char UPLO, const int n, const std::complex<float>* A, const int lda, const float anorm, float* rcond, std::complex<float>* WORK, float* rwork, int* info) const;
    void POSV(const char UPLO, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, int* info) const;
    void POEQU(const int n, const std::complex<float>* A, const int lda, float* S, float* scond, float* amax, int* info) const;
    void PORFS(const char UPLO, const int n, const int nrhs, std::complex<float>* A, const int lda, const std::complex<float>* AF, const int ldaf, const std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;
    void POSVX(const char FACT, const char UPLO, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* AF, const int ldaf, char EQUED, float* S, std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* rcond, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;

    // General Linear System Routines
    void GELS(const char TRANS, const int m, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, std::complex<float>* WORK, const int lwork, int* info) const;
    void GELSS(const int m, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, float* S, const float rcond, int* rank, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;
    void GEQRF(const int m, const int n, std::complex<float>* A, const int lda, std::complex<float>* TAU, std::complex<float>* WORK, const int lwork, int* info) const;
    void GEQR2(const int m, const int n, std::complex<float> A[], const int lda, std::complex<float> TAU[], std::complex<float> WORK[], int* const info) const;
    void UNGQR(const int m, const int n, const int k, std::complex<float>* A, const int lda, const std::complex<float>* TAU, std::complex<float>* WORK, const int lwork, int* info) const;
    void UNMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, std::complex<float>* A, const int lda, const std::complex<float>* TAU, std::complex<float>* C, const int ldc, std::complex<float>* WORK, const int lwork, int* info) const;
    void UNM2R(const char SIDE, const char TRANS, const int M, const int N, const int K, const std::complex<float> A[], const int LDA, const std::complex<float> TAU[], std::complex<float> C[], const int LDC, std::complex<float> WORK[], int* const INFO) const;
    void GETRF(const int m, const int n, std::complex<float>* A, const int lda, int* IPIV, int* info) const;
    void GETRS(const char TRANS, const int n, const int nrhs, const std::complex<float>* A, const int lda, const int* IPIV, std::complex<float>* B, const int ldb, int* info) const;
    void LASCL(const char TYPE, const int kl, const int ku, const float cfrom, const float cto, const int m, const int n, std::complex<float>* A, const int lda, int* info) const;

    void
    GEQP3 (const int m,
           const int n,
           std::complex<float>* A,
           const int lda,
           int *jpvt,
           std::complex<float>* TAU,
           std::complex<float>* WORK,
           const int lwork,
           float* RWORK,
           int* info) const;

    void LASWP (const int N,
                std::complex<float> A[],
                const int LDA,
                const int K1,
                const int K2,
                const int IPIV[],
                const int INCX) const;

    void GBTRF(const int m, const int n, const int kl, const int ku, std::complex<float>* A, const int lda, int* IPIV, int* info) const;
    void GBTRS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const std::complex<float>* A, const int lda, const int* IPIV, std::complex<float>* B, const int ldb, int* info) const;
    void GTTRF(const int n, std::complex<float>* dl, std::complex<float>* d, std::complex<float>* du, std::complex<float>* du2, int* IPIV, int* info) const;
    void GTTRS(const char TRANS, const int n, const int nrhs, const std::complex<float>* dl, const std::complex<float>* d, const std::complex<float>* du, const std::complex<float>* du2, const int* IPIV, std::complex<float>* B, const int ldb, int* info) const;
    void GETRI(const int n, std::complex<float>* A, const int lda, const int* IPIV, std::complex<float>* WORK, const int lwork, int* info) const;
    void LATRS (const char UPLO, const char TRANS, const char DIAG, const char NORMIN, const int N, std::complex<float>* A, const int LDA, std::complex<float>* X, float* SCALE, float* CNORM, int* INFO) const;
    void GECON(const char NORM, const int n, const std::complex<float>* A, const int lda, const float anorm, float* rcond, std::complex<float>* WORK, float* RWORK, int* info) const;
    void GBCON(const char NORM, const int n, const int kl, const int ku, const std::complex<float>* A, const int lda, int* IPIV, const float anorm, float* rcond, std::complex<float>* WORK, float* RWORK, int* info) const;
    float LANGB(const char NORM, const int n, const int kl, const int ku, const std::complex<float>* A, const int lda, float* WORK) const;
    void GESV(const int n, const int nrhs, std::complex<float>* A, const int lda, int* IPIV, std::complex<float>* B, const int ldb, int* info) const;
    void GEEQU(const int m, const int n, const std::complex<float>* A, const int lda, float* R, float* C, float* rowcond, float* colcond, float* amax, int* info) const;
    void GERFS(const char TRANS, const int n, const int nrhs, const std::complex<float>* A, const int lda, const std::complex<float>* AF, const int ldaf, const int* IPIV, const std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;
    void GBEQU(const int m, const int n, const int kl, const int ku, const std::complex<float>* A, const int lda, float* R, float* C, float* rowcond, float* colcond, float* amax, int* info) const;
    void GBRFS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const std::complex<float>* A, const int lda, const std::complex<float>* AF, const int ldaf, const int* IPIV, const std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;
    void GESVX(const char FACT, const char TRANS, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* AF, const int ldaf, int* IPIV, char EQUED, float* R, float* C, std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* rcond, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;
    void GEHRD(const int n, const int ilo, const int ihi, std::complex<float>* A, const int lda, std::complex<float>* TAU, std::complex<float>* WORK, const int lwork, int* info) const;
    void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int n, const int nrhs, const std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, int* info) const;
    void TRTRI(const char UPLO, const char DIAG, const int n, const std::complex<float>* A, const int lda, int* info) const;

    // Symmetric eigenvalue routines.
    void STEQR(const char COMPZ, const int n, float* D, float* E, std::complex<float>* Z, const int ldz, float* WORK, int* info) const;
    void HEEV(const char JOBZ, const char UPLO, const int n, std::complex<float>* A, const int lda, float* W, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;
    void HEGV(const int itype, const char JOBZ, const char UPLO, const int n, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, float* W, std::complex<float>* WORK, const int lwork, float *RWORK, int* info) const;

    // Non-Hermitian eigenvalue routines.
    void HSEQR(const char JOB, const char COMPZ, const int n, const int ilo, const int ihi, std::complex<float>* H, const int ldh, std::complex<float>* W, std::complex<float>* Z, const int ldz, std::complex<float>* WORK, const int lwork, int* info) const;
    void GEES(const char JOBVS, const char SORT, int (*ptr2func)(std::complex<float>*), const int n, std::complex<float>* A, const int lda, int* sdim, std::complex<float>* W, std::complex<float>* VS, const int ldvs, std::complex<float>* WORK, const int lwork, float* RWORK, int* BWORK, int* info) const;
    void GEES(const char JOBVS, const int n, std::complex<float>* A, const int lda, int* sdim, float* WR, float* WI, std::complex<float>* VS, const int ldvs, std::complex<float>* WORK, const int lwork, float* RWORK, int* BWORK, int* info) const;

    void GEEV(const char JOBVL, const char JOBVR, const int n, std::complex<float>* A, const int lda, std::complex<float>* W, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;
    void GEEV(const char JOBVL, const char JOBVR, const int n, std::complex<float>* A, const int lda, float* WR, float* WI, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;

    void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<float>* A, const int lda, std::complex<float>* W, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, int* ilo, int* ihi, float* SCALE, float* abnrm, float* RCONDE, float* RCONDV, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;

    void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, std::complex<float>* ALPHA, std::complex<float>* BETA, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, int* ilo, int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* RCONDE, float* RCONDV, std::complex<float>* WORK, const int lwork, float * RWORK, int* IWORK, int* BWORK, int* info) const;
    void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, float* ALPHAR, float* ALPHAI, std::complex<float>* BETA, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, int* ilo, int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* RCONDE, float* RCONDV, std::complex<float>* WORK, const int lwork, float * RWORK, int* IWORK, int* BWORK, int* info) const;
    void GGEV(const char JOBVL, const char JOBVR, const int n, std::complex<float> *A, const int lda, std::complex<float> *B, const int ldb, std::complex<float>* ALPHA, std::complex<float>* BETA, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, std::complex<float> *WORK, const int lwork, float* RWORK, int* info) const;

    // SVD routine
    void GESVD(const char JOBU, const char JOBVT, const int m, const int n, std::complex<float>* A, const int lda, float* S, std::complex<float>* U, const int ldu, std::complex<float>* V, const int ldv, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;

    // Triangular matrix routines.
    void TREVC(const char SIDE, const char HOWMNY, int* select, const int n, const std::complex<float>* T, const int ldt, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, const int mm, int* m, std::complex<float>* WORK, float* RWORK, int* info) const;
    void TREVC(const char SIDE, const int n, const std::complex<float>* T, const int ldt, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, const int mm, int* m, std::complex<float>* WORK, float* RWORK, int* info) const;
    void TREXC(const char COMPQ, const int n, std::complex<float>* T, const int ldt, std::complex<float>* Q, const int ldq, int ifst, int ilst, std::complex<float>* WORK, int* info) const;

    // Rotation/reflection generators
    void LARTG( const std::complex<float> f, const std::complex<float> g, float* c, std::complex<float>* s, std::complex<float>* r ) const;
    void LARFG( const int n, std::complex<float>* alpha, std::complex<float>* x, const int incx, std::complex<float>* tau ) const;

    // Matrix balancing routines.
    void GEBAL(const char JOBZ, const int n, std::complex<float>* A, const int lda, int ilo, int ihi, float* scale, int* info) const;
    void GEBAK(const char JOBZ, const char SIDE, const int n, const int ilo, const int ihi, const float* scale, const int m, std::complex<float>* V, const int ldv, int* info) const;

    // Random number generators
    std::complex<float> LARND( const int idist, int* seed ) const;
    void LARNV( const int idist, int* seed, const int n, std::complex<float>* v ) const;

    // Machine characteristics
    int ILAENV( const int ispec, const std::string& NAME, const std::string& OPTS, const int N1 = -1, const int N2 = -1, const int N3 = -1, const int N4 = -1 ) const;

  };

  // END INT, COMPLEX<FLOAT> SPECIALIZATION DECLARATION //

  // BEGIN INT, COMPLEX<DOUBLE> SPECIALIZATION DECLARATION //

  template<>
  class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, std::complex<double> >
  {
  public:
    inline LAPACK(void) {}
    inline LAPACK(const LAPACK<int, std::complex<double> >& lapack) {}
    inline virtual ~LAPACK(void) {}

    // Symmetric positive definite linear system routines
    void PTTRF(const int n, std::complex<double>* d, std::complex<double>* e, int* info) const;
    void PTTRS(const int n, const int nrhs, const std::complex<double>* d, const std::complex<double>* e, std::complex<double>* B, const int ldb, int* info) const;
    void POTRF(const char UPLO, const int n, std::complex<double>* A, const int lda, int* info) const;
    void POTRS(const char UPLO, const int n, const int nrhs, const std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, int* info) const;
    void POTRI(const char UPLO, const int n, std::complex<double>* A, const int lda, int* info) const;
    void POCON(const char UPLO, const int n, const std::complex<double>* A, const int lda, const double anorm, double* rcond, std::complex<double>* WORK, double* RWORK, int* info) const;
    void POSV(const char UPLO, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, int* info) const;
    void POEQU(const int n, const std::complex<double>* A, const int lda, double* S, double* scond, double* amax, int* info) const;
    void PORFS(const char UPLO, const int n, const int nrhs, std::complex<double>* A, const int lda, const std::complex<double>* AF, const int ldaf, const std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;
    void POSVX(const char FACT, const char UPLO, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* AF, const int ldaf, char EQUED, double* S, std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* rcond, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;

    // General Linear System Routines
    void GELS(const char TRANS, const int m, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, std::complex<double>* WORK, const int lwork, int* info) const;
    void GELSS(const int m, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, double* S, const double rcond, int* rank, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
    void GEQRF(const int m, const int n, std::complex<double>* A, const int lda, std::complex<double>* TAU, std::complex<double>* WORK, const int lwork, int* info) const;
    void GEQR2(const int m, const int n, std::complex<double> A[], const int lda, std::complex<double> TAU[], std::complex<double> WORK[], int* const info) const;
    void UNGQR(const int m, const int n, const int k, std::complex<double>* A, const int lda, const std::complex<double>* TAU, std::complex<double>* WORK, const int lwork, int* info) const;
    void UNMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, std::complex<double>* A, const int lda, const std::complex<double>* TAU, std::complex<double>* C, const int ldc, std::complex<double>* WORK, const int lwork, int* info) const;
    void UNM2R(const char SIDE, const char TRANS, const int M, const int N, const int K, const std::complex<double> A[], const int LDA, const std::complex<double> TAU[], std::complex<double> C[], const int LDC, std::complex<double> WORK[], int* const INFO) const;

    void GETRF(const int m, const int n, std::complex<double>* A, const int lda, int* IPIV, int* info) const;
    void GETRS(const char TRANS, const int n, const int nrhs, const std::complex<double>* A, const int lda, const int* IPIV, std::complex<double>* B, const int ldb, int* info) const;
    void LASCL(const char TYPE, const int kl, const int ku, const double cfrom, const double cto, const int m, const int n, std::complex<double>* A, const int lda, int* info) const;

    void
    GEQP3 (const int m,
           const int n,
           std::complex<double>* A,
           const int lda,
           int *jpvt,
           std::complex<double>* TAU,
           std::complex<double>* WORK,
           const int lwork,
           double* RWORK,
           int* info) const;

    void LASWP (const int N,
                std::complex<double> A[],
                const int LDA,
                const int K1,
                const int K2,
                const int IPIV[],
                const int INCX) const;

    void GBTRF(const int m, const int n, const int kl, const int ku, std::complex<double>* A, const int lda, int* IPIV, int* info) const;
    void GBTRS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const std::complex<double>* A, const int lda, const int* IPIV, std::complex<double>* B, const int ldb, int* info) const;
    void GTTRF(const int n, std::complex<double>* dl, std::complex<double>* d, std::complex<double>* du, std::complex<double>* du2, int* IPIV, int* info) const;
    void GTTRS(const char TRANS, const int n, const int nrhs, const std::complex<double>* dl, const std::complex<double>* d, const std::complex<double>* du, const std::complex<double>* du2, const int* IPIV, std::complex<double>* B, const int ldb, int* info) const;
    void GETRI(const int n, std::complex<double>* A, const int lda, const int* IPIV, std::complex<double>* WORK, const int lwork, int* info) const;
    void LATRS (const char UPLO, const char TRANS, const char DIAG, const char NORMIN, const int N, std::complex<double>* A, const int LDA, std::complex<double>* X, double* SCALE, double* CNORM, int* INFO) const;
    void GECON(const char NORM, const int n, const std::complex<double>* A, const int lda, const double anorm, double* rcond, std::complex<double>* WORK, double* RWORK, int* info) const;
    void GBCON(const char NORM, const int n, const int kl, const int ku, const std::complex<double>* A, const int lda, int* IPIV, const double anorm, double* rcond, std::complex<double>* WORK, double* RWORK, int* info) const;
    double LANGB(const char NORM, const int n, const int kl, const int ku, const std::complex<double>* A, const int lda, double* WORK) const;
    void GESV(const int n, const int nrhs, std::complex<double>* A, const int lda, int* IPIV, std::complex<double>* B, const int ldb, int* info) const;
    void GEEQU(const int m, const int n, const std::complex<double>* A, const int lda, double* R, double* C, double* rowcond, double* colcond, double* amax, int* info) const;
    void GERFS(const char TRANS, const int n, const int nrhs, const std::complex<double>* A, const int lda, const std::complex<double>* AF, const int ldaf, const int* IPIV, const std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;
    void GBEQU(const int m, const int n, const int kl, const int ku, const std::complex<double>* A, const int lda, double* R, double* C, double* rowcond, double* colcond, double* amax, int* info) const;
    void GBRFS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const std::complex<double>* A, const int lda, const std::complex<double>* AF, const int ldaf, const int* IPIV, const std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;
    void GESVX(const char FACT, const char TRANS, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* AF, const int ldaf, int* IPIV, char EQUED, double* R, double* C, std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* rcond, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;
    void GEHRD(const int n, const int ilo, const int ihi, std::complex<double>* A, const int lda, std::complex<double>* TAU, std::complex<double>* WORK, const int lwork, int* info) const;
    void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int n, const int nrhs, const std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, int* info) const;
    void TRTRI(const char UPLO, const char DIAG, const int n, const std::complex<double>* A, const int lda, int* info) const;

    // Symmetric eigenvalue routines.
    void STEQR(const char COMPZ, const int n, double* D, double* E, std::complex<double>* Z, const int ldz, double* WORK, int* info) const;
    void HEEV(const char JOBZ, const char UPLO, const int n, std::complex<double>* A, const int lda, double* W, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
    void HEGV(const int itype, const char JOBZ, const char UPLO, const int n, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, double* W, std::complex<double>* WORK, const int lwork, double *RWORK, int* info) const;

    // Non-hermitian eigenvalue routines.
    void HSEQR(const char JOB, const char COMPZ, const int n, const int ilo, const int ihi, std::complex<double>* H, const int ldh, std::complex<double>* W, std::complex<double>* Z, const int ldz, std::complex<double>* WORK, const int lwork, int* info) const;
    void GEES(const char JOBVS, const char SORT, int (*ptr2func)(std::complex<double>*), const int n, std::complex<double>* A, const int lda, int* sdim, std::complex<double>* W, std::complex<double>* VS, const int ldvs, std::complex<double>* WORK, const int lwork, double* RWORK, int* BWORK, int* info) const;
    void GEES(const char JOBVS, const int n, std::complex<double>* A, const int lda, int* sdim, double* WR, double* WI, std::complex<double>* VS, const int ldvs, std::complex<double>* WORK, const int lwork, double* RWORK, int* BWORK, int* info) const;

    void GEEV(const char JOBVL, const char JOBVR, const int n, std::complex<double>* A, const int lda, std::complex<double>* W, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
    void GEEV(const char JOBVL, const char JOBVR, const int n, std::complex<double>* A, const int lda, double* WR, double* WI, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;

    void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<double>* A, const int lda, std::complex<double>* W, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, int* ilo, int* ihi, double* SCALE, double* abnrm, double* RCONDE, double* RCONDV, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
    void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, std::complex<double>* ALPHA, std::complex<double>* BETA, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, int* ilo, int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* RCONDE, double* RCONDV, std::complex<double>* work, const int lwork, double* RWORK, int* IWORK, int* BWORK, int* info) const;
    void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, double* ALPHAR, double* ALPHAI, std::complex<double>* BETA, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, int* ilo, int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* RCONDE, double* RCONDV, std::complex<double>* work, const int lwork, double* RWORK, int* IWORK, int* BWORK, int* info) const;
    void GGEV(const char JOBVL, const char JOBVR, const int n, std::complex<double> *A, const int lda, std::complex<double> *B, const int ldb, std::complex<double>* ALPHA, std::complex<double>* BETA, std::complex<double>* VL, const int ldvl, std::complex<double>*VR, const int ldvr, std::complex<double> *WORK, const int lwork, double* RWORK, int* info) const;

    // SVD routine
    void GESVD(const char JOBU, const char JOBVT, const int m, const int n, std::complex<double>* A, const int lda, double* S, std::complex<double>* U, const int ldu, std::complex<double>* V, const int ldv, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;

    // Triangular matrix routines.
    void TREVC(const char SIDE, const char HOWMNY, int* select, const int n, const std::complex<double>* T, const int ldt, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, const int mm, int* m, std::complex<double>* WORK, double* RWORK, int* info) const;
    void TREVC(const char SIDE, const int n, const std::complex<double>* T, const int ldt, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, const int mm, int* m, std::complex<double>* WORK, double* RWORK, int* info) const;
    void TREXC(const char COMPQ, const int n, std::complex<double>* T, const int ldt, std::complex<double>* Q, const int ldq, int ifst, int ilst, std::complex<double>* WORK, int* info) const;

    // Rotation/reflection generators
    void LARTG( const std::complex<double> f, const std::complex<double> g, double* c, std::complex<double>* s, std::complex<double>* r ) const;
    void LARFG( const int n, std::complex<double>* alpha, std::complex<double>* x, const int incx, std::complex<double>* tau ) const;

    // Matrix balancing routines.
    void GEBAL(const char JOBZ, const int n, std::complex<double>* A, const int lda, int ilo, int ihi, double* scale, int* info) const;
    void GEBAK(const char JOBZ, const char SIDE, const int n, const int ilo, const int ihi, const double* scale, const int m, std::complex<double>* V, const int ldv, int* info) const;

    // Random number generators
    std::complex<double> LARND( const int idist, int* seed ) const;
    void LARNV( const int idist, int* seed, const int n, std::complex<double>* v ) const;

    // Machine characteristics
    int ILAENV( const int ispec, const std::string& NAME, const std::string& OPTS, const int N1 = -1, const int N2 = -1, const int N3 = -1, const int N4 = -1 ) const;

  };

  // END INT, COMPLEX<DOUBLE> SPECIALIZATION DECLARATION //

#endif // HAVE_TEUCHOS_COMPLEX

#ifdef HAVE_TEUCHOSCORE_QUADMATH

  // BEGIN int, __float128 SPECIALIZATION DECLARATION //

  // mfh 18 Sep 2015: I had to write this specialization by hand,
  // since LAPACK does not provide it, so it is not complete.
  template<>
  class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, __float128>
  {
  public:
    inline LAPACK(void) {}
    inline LAPACK(const LAPACK<int, __float128>& lapack) {}
    inline virtual ~LAPACK(void) {}

    void GEQRF(const int m, const int n, __float128* A, const int lda, __float128* TAU, __float128* WORK, const int lwork, int* info) const;
    void GEQR2(const int m, const int n, __float128 A[], const int lda, __float128 TAU[], __float128 WORK[], int* const info) const;
    void GETRF(const int m, const int n, __float128* A, const int lda, int* IPIV, int* info) const;
    void GETRS(const char TRANS, const int n, const int nrhs, const __float128* A, const int lda, const int* IPIV, __float128* B, const int ldb, int* info) const;
    void GETRI(const int n, __float128* A, const int lda, const int* IPIV, __float128* WORK, const int lwork, int* info) const;
    void LASWP (const int N, __float128 A[], const int LDA, const int K1, const int K2, const int IPIV[], const int INCX) const;

    void ORM2R(const char SIDE, const char TRANS, const int m, const int n, const int k, const __float128 A[], const int lda, const __float128 TAU[], __float128 C[], const int ldc, __float128 WORK[], int* const info) const;
    void ORGQR(const int m, const int n, const int k, __float128* A, const int lda, const __float128* TAU, __float128* WORK, const int lwork, int* info) const;
    void UNGQR(const int m, const int n, const int k, __float128* A, const int lda, const __float128* TAU, __float128* WORK, const int lwork, int* info) const;

    void LARFG( const int n, __float128* alpha, __float128* x, const int incx, __float128* tau ) const;

    __float128 LAPY2 (const __float128 x, const __float128 y) const;
    void LASCL (const char TYPE, const int kl, const int ku, const __float128 cfrom, const __float128 cto, const int m, const int n, __float128* A, const int lda, int* info) const;

    void GBTRF (const int m, const int n, const int kl, const int ku, __float128* A, const int lda, int* IPIV, int* info) const;
    void GBTRS (const char TRANS, const int n, const int kl, const int ku, const int nrhs, const __float128* A, const int lda, const int* IPIV, __float128* B, const int ldb, int* info) const;
  };

  // END int, __float128 SPECIALIZATION DECLARATION //

#endif // HAVE_TEUCHOSCORE_QUADMATH

#endif // DOXYGEN_SHOULD_SKIP_THIS

} // namespace Teuchos

#endif // _TEUCHOS_LAPACK_HPP_