This file is indexed.

/usr/include/trilinos/Thyra_TsqrAdaptor.hpp is in libtrilinos-stratimikos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// @HEADER
// ***********************************************************************
//
//         Stratimikos: Thyra-based strategies for linear solvers
//                Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef __Thyra_TsqrAdaptor_hpp
#define __Thyra_TsqrAdaptor_hpp

#include "BelosConfigDefs.hpp"

// BelosThyraAdapter.hpp only includes this file if HAVE_BELOS_TSQR is
// defined.  Thus, it's OK to include TSQR header files here.

#include "Thyra_MultiVectorBase.hpp"
#include "Thyra_SpmdVectorSpaceBase.hpp"

#ifdef HAVE_MPI
#  include "Teuchos_DefaultMpiComm.hpp"
#endif // HAVE_MPI
#include "Teuchos_DefaultSerialComm.hpp"
#include "Teuchos_ParameterListAcceptorDefaultBase.hpp"

#include <stdexcept>


namespace Thyra {

  /// \class TsqrAdaptor
  /// \brief Stub adaptor from Thyra::MultiVectorBase to TSQR
  ///
  /// TSQR (Tall Skinny QR factorization) is an orthogonalization
  /// kernel that is as accurate as Householder QR, yet requires only
  /// \f$2 \log P\f$ messages between $P$ MPI processes, independently
  /// of the number of columns in the multivector.
  ///
  /// TSQR works independently of the particular multivector
  /// implementation, and interfaces to the latter via an adaptor
  /// class.  This class is the adaptor class for \c MultiVectorBase.
  /// It templates on the MultiVector (MV) type so that it can pick up
  /// that class' typedefs.  In particular, TSQR chooses its intranode
  /// implementation based on the Kokkos Node type of the multivector.
  ///
  /// \warning This is a stub adaptor that just placates the compiler
  ///   and does nothing.  It's not hard to implement a Thyra adaptor,
  ///   but in order for the adaptor to be efficient, it requires
  ///   special cases for extracting the actual multivector
  ///   implementation (e.g., Epetra_MultiVector or
  ///   Tpetra::MultiVector) out of the Thyra wrapper.
  template<class Scalar>
  class TsqrAdaptor : public Teuchos::ParameterListAcceptorDefaultBase {
  public:
    typedef Thyra::MultiVectorBase<Scalar> MV;
    typedef Scalar scalar_type;
    typedef int ordinal_type; // MultiVectorBase really does use int for this
    typedef Teuchos::SerialDenseMatrix<ordinal_type, scalar_type> dense_matrix_type;
    typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;

    /// \brief Constructor (that accepts a parameter list).
    ///
    /// \param plist [in] List of parameters for configuring TSQR.
    ///   The specific parameter keys that are read depend on the TSQR
    ///   implementation.  For details, call \c getValidParameters()
    ///   and examine the documentation embedded therein.
    TsqrAdaptor (const Teuchos::RCP<Teuchos::ParameterList>& /* plist */)
    {
      throw std::logic_error ("Thyra adaptor for TSQR not implemented");
    }

    //! Constructor (that uses default parameters).
    TsqrAdaptor ()
    {
      throw std::logic_error ("Thyra adaptor for TSQR not implemented");
    }

    Teuchos::RCP<const Teuchos::ParameterList>
    getValidParameters () const
    {
      throw std::logic_error ("Thyra adaptor for TSQR not implemented");
    }

    void
    setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& /* plist */)
    {
      throw std::logic_error ("Thyra adaptor for TSQR not implemented");
    }

    /// \brief Compute QR factorization [Q,R] = qr(A,0).
    ///
    /// \param A [in/out] On input: the multivector to factor.
    ///   Overwritten with garbage on output.
    ///
    /// \param Q [out] On output: the (explicitly stored) Q factor in
    ///   the QR factorization of the (input) multivector A.
    ///
    /// \param R [out] On output: the R factor in the QR factorization
    ///   of the (input) multivector A.
    ///
    /// \param forceNonnegativeDiagonal [in] If true, then (if
    ///   necessary) do extra work (modifying both the Q and R
    ///   factors) in order to force the R factor to have a
    ///   nonnegative diagonal.
    ///
    /// \warning Currently, this method only works if A and Q have the
    ///   same communicator and row distribution ("map," in Petra
    ///   terms) as those of the multivector given to this TsqrAdaptor
    ///   instance's constructor.  Otherwise, the result of this
    ///   method is undefined.
    void
    factorExplicit (MV& /* A */,
                    MV& /* Q */,
                    dense_matrix_type& /* R */,
                    const bool /* forceNonnegativeDiagonal */ = false)
    {
      throw std::logic_error ("Thyra adaptor for TSQR not implemented");
    }

    /// \brief Rank-revealing decomposition
    ///
    /// Using the R factor and explicit Q factor from
    /// factorExplicit(), compute the singular value decomposition
    /// (SVD) of R (\f$R = U \Sigma V^*\f$).  If R is full rank (with
    /// respect to the given relative tolerance tol), don't change Q
    /// or R.  Otherwise, compute \f$Q := Q \cdot U\f$ and \f$R :=
    /// \Sigma V^*\f$ in place (the latter may be no longer upper
    /// triangular).
    ///
    /// \param Q [in/out] On input: explicit Q factor computed by
    ///   factorExplicit().  (Must be an orthogonal resp. unitary
    ///   matrix.)  On output: If R is of full numerical rank with
    ///   respect to the tolerance tol, Q is unmodified.  Otherwise, Q
    ///   is updated so that the first rank columns of Q are a basis
    ///   for the column space of A (the original matrix whose QR
    ///   factorization was computed by factorExplicit()).  The
    ///   remaining columns of Q are a basis for the null space of A.
    ///
    /// \param R [in/out] On input: ncols by ncols upper triangular
    ///   matrix with leading dimension ldr >= ncols.  On output: if
    ///   input is full rank, R is unchanged on output.  Otherwise, if
    ///   \f$R = U \Sigma V^*\f$ is the SVD of R, on output R is
    ///   overwritten with $\Sigma \cdot V^*$.  This is also an ncols by
    ///   ncols matrix, but may not necessarily be upper triangular.
    ///
    /// \param tol [in] Relative tolerance for computing the numerical
    ///   rank of the matrix R.
    ///
    /// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq ncols\f$.
    int
    revealRank (MV& /* Q */,
                dense_matrix_type& /* R */,
                const magnitude_type& /* tol */)
    {
      throw std::logic_error ("Thyra adaptor for TSQR not implemented");
    }

  private:
    /// \brief Attempt to get a communicator out of the given multivector.
    ///
    /// This only works if the multivector's range (VectorSpaceBase)
    /// is actually an SpmdVectorSpaceBase object, and if that
    /// object's Comm is either an MpiComm (in an MPI build) or a
    /// SerialComm (in either an MPI build or a no-MPI build).
    ///
    /// If the attempt does <i>not</i> succeed, this method throws
    /// std::runtime_error.  If it <i>does</i> succeed, it returns the
    /// (suitably wrapped) communicator.
    static Teuchos::RCP<const Teuchos::Comm<int> >
    getComm (const MV& X)
    {
      using Teuchos::RCP;
      using Teuchos::rcp;
      using Teuchos::rcp_dynamic_cast;
      using Teuchos::rcp_implicit_cast;
      typedef Thyra::VectorSpaceBase<Scalar> space_base_type;
      typedef Thyra::SpmdVectorSpaceBase<Scalar> space_type;

      // Thyra stores the communicator in the "vector space," but only
      // if that vector space is an SpmdVectorSpaceBase.
      RCP<const space_base_type> rangeBase = X.range ();
      TEUCHOS_TEST_FOR_EXCEPTION(rangeBase.is_null (), std::runtime_error, "X.range() is null.");
      RCP<const space_type> range = rcp_dynamic_cast<const space_type> (rangeBase);
      TEUCHOS_TEST_FOR_EXCEPTION(range.is_null (), std::runtime_error, "X.range() is not an SpmdVectorSpaceBase.");

      // Thyra annoyingly uses a (possibly) different template
      // parameter for its Teuchos::Comm than everybody else.  The
      // least hackish way to work around this is to convert the Comm
      // to one of two subclasses (MpiComm or SerialComm).  If it's an
      // MpiComm, we can extract the RCP<const OpaqueWrapper<MPI_Comm>
      // > and make a new MpiComm<int> from it.  If it's a SerialComm,
      // just create a new SerialComm<int>.  If it's neither of those,
      // then I have no idea what to do.  Note that MpiComm is only
      // defined if HAVE_MPI is defined.
      RCP<const Teuchos::Comm<Thyra::Ordinal> > thyraComm = range->getComm ();
#ifdef HAVE_MPI
      RCP<const Teuchos::MpiComm<Thyra::Ordinal> > thyraMpiComm =
        rcp_dynamic_cast<const Teuchos::MpiComm<Thyra::Ordinal> > (thyraComm);
      if (thyraMpiComm.is_null ()) {
        RCP<const Teuchos::SerialComm<Thyra::Ordinal> > thyraSerialComm =
          rcp_dynamic_cast<const Teuchos::SerialComm<Thyra::Ordinal> > (thyraComm);
        TEUCHOS_TEST_FOR_EXCEPTION(
          thyraSerialComm.is_null (), std::runtime_error,
          "Thyra's communicator is neither an MpiComm nor a SerialComm.  "
          "Sorry, I have no idea what to do with it in that case.");
        // It's a SerialComm.  Make a SerialComm of our own.
        // SerialComm instances are all the same, so there's no need
        // to keep the original one.
        return rcp_implicit_cast<const Teuchos::Comm<int> > (rcp (new Teuchos::SerialComm<int>));
      }
      else { // Yippie, we have an MpiComm.
        RCP<const Teuchos::OpaqueWrapper<MPI_Comm> > rawMpiComm = thyraMpiComm->getRawMpiComm ();
        // NOTE (mfh 18 Jun 2013) Since the error handler is attached
        // to the MPI_Comm, not to the Teuchos widget, we don't have
        // to set the error handler again on the new MpiComm object.
        return rcp_implicit_cast<const Teuchos::Comm<int> > (rcp (new Teuchos::MpiComm<int> (rawMpiComm)));
      }
#else // NOT HAVE_MPI
      // Either it's a SerialComm or I don't know what to do with it.
      RCP<const Teuchos::SerialComm<Thyra::Ordinal> > thyraSerialComm =
        rcp_dynamic_cast<const Teuchos::SerialComm<Thyra::Ordinal> > (thyraComm);
      TEUCHOS_TEST_FOR_EXCEPTION(
        thyraSerialComm.is_null (), std::runtime_error,
        "Thyra's communicator is not a SerialComm, and MPI is not enabled, so "
        "it can't be an MpiComm either.  That means it must be some other "
        "subclass of Comm, about which I don't know.  "
        "Sorry, I have no idea what to do with it in that case.");
      // It's a SerialComm.  Make a SerialComm of our own.
      // SerialComm instances are all the same, so there's no need
      // to keep the original one.
      return rcp_implicit_cast<const Teuchos::Comm<int> > (rcp (new Teuchos::SerialComm<int>));
#endif // HAVE_MPI
    }

    /// \brief Finish intranode TSQR initialization.
    ///
    /// \note It's OK to call this method more than once; it is idempotent.
    void
    prepareNodeTsqr (const MV& /* X */)
    {
      throw std::logic_error ("Thyra adaptor for TSQR not implemented");
    }

    /// \brief Finish internode TSQR initialization.
    ///
    /// Input X is a valid Thyra::MultiVectorBase instance whose
    /// communicator wrapper we will use to prepare TSQR.  It is not
    /// modified.
    ///
    /// \note It's OK to call this method more than once; it is idempotent.
    ///
    /// This method may fail if MV is not the right kind of
    /// multivector, that is, if it does not have a communicator or if
    /// we don't know how to extract a communicator from it.  If it
    /// fails in this way, it will throw std::runtime_error.
    void
    prepareDistTsqr (const MV& /* X */)
    {
      throw std::logic_error ("Thyra adaptor for TSQR not implemented");
    }

    /// \brief Finish TSQR initialization.
    ///
    /// The intranode and internode TSQR implementations both have a
    /// two-stage initialization procedure: first, setting parameters
    /// (which may happen at construction), and second, getting
    /// information they need from the multivector input in order to
    /// finish initialization.  For intranode TSQR, this may include
    /// the Kokkos Node instance; for internode TSQR, this includes
    /// the communicator.  The second stage of initialization happens
    /// in this class' computational routines; all of those routines
    /// accept one or more multivector inputs, which this method can
    /// use for finishing initialization.  Thus, users of this class
    /// never need to see the two-stage initialization.
    ///
    /// \param X [in] Multivector object, used only to access the
    ///   underlying communicator object (in this case, the
    ///   Teuchos::Comm<int>) and (possibly) the Kokkos Node instance.
    ///   All multivector objects used with this adapter must have the
    ///   same communicator and Kokkos Node instance (if applicable).
    void
    prepareTsqr (const MV& /* X */)
    {
      throw std::logic_error ("Thyra adaptor for TSQR not implemented");
    }
  };

} // namespace Tpetra

#endif // __Thyra_TsqrAdaptor_hpp