This file is indexed.

/usr/include/trilinos/Teuchos_SerialQRDenseSolver_UQ_PCE.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef _TEUCHOS_SERIALQRDENSESOLVER_UQ_PCE_HPP_
#define _TEUCHOS_SERIALQRDENSESOLVER_UQ_PCE_HPP_
/*! \file Teuchos_SerialQRDenseSolver.hpp
  \brief Templated class for solving dense linear problems.
*/

#include <new>
#include "Teuchos_SerialQRDenseSolver.hpp"

#include "Sacado_UQ_PCE.hpp"

/*! \class Teuchos::SerialQRDenseSolver
  \brief Specialization for Sacado::UQ::PCE< Storage<...> >
*/

namespace Teuchos {

  template<typename OrdinalType, typename Storage>
  class SerialQRDenseSolver<OrdinalType, Sacado::UQ::PCE<Storage> >
    : public CompObject,
      public Object
  {

  public:

    typedef Sacado::UQ::PCE<Storage> ScalarType;
    typedef typename ScalarTraits<ScalarType>::magnitudeType MagnitudeType;

    //! @name Constructor/Destructor Methods
    //@{
    //! Default constructor; matrix should be set using setMatrix(), LHS and RHS set with setVectors().
    SerialQRDenseSolver();

    //! SerialQRDenseSolver destructor.
    virtual ~SerialQRDenseSolver() {}
    //@}

    //! @name Set Methods
    //@{

    //! Sets the pointers for coefficient matrix
    /*! Row dimension of A must be greater than or equal to the column dimension of A.
    */
    int setMatrix(const RCP<SerialDenseMatrix<OrdinalType, ScalarType> >& A);

    //! Sets the pointers for left and right hand side vector(s).
    /*! Row dimension of X must match column dimension of matrix A, row dimension of B
      must match row dimension of A.
    */
    int setVectors(const RCP<SerialDenseMatrix<OrdinalType, ScalarType> >& X,
                   const RCP<SerialDenseMatrix<OrdinalType, ScalarType> >& B);
    //@}

    //! @name Strategy Modifying Methods
    //@{

    //! Causes equilibration to be called just before the matrix factorization as part of the call to \c factor.
    /*! \note This method must be called before the factorization is performed, otherwise it will have no effect.
   */
    void factorWithEquilibration(bool flag) {
      base_QR_.factorWithEquilibration(flag);
    }

    //! If \c flag is true, causes all subsequent function calls to work with the adjoint of \e this matrix, otherwise not.
    void solveWithTranspose(bool flag) {
      base_QR_.solveWithTranspose(flag);
    }

    //! All subsequent function calls will work with the transpose-type set by this method (\c Teuchos::NO_TRANS or Teuchos::CONJ_TRANS).
    void solveWithTransposeFlag(Teuchos::ETransp trans) {
      base_QR_.solveWithTranspose(trans);
    }

    //@}

    //! @name Factor/Solve/Invert Methods
    //@{

    //! Computes the in-place QR factorization of the matrix using the LAPACK routine \e _GETRF or the Eigen class \e HouseholderQR
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int factor() { return base_QR_.factor(); }

    //! Computes the solution X to AX = B for the \e this matrix and the B provided to SetVectors()..
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int solve() { return base_QR_.solve(); }

    //! Determines if \e this matrix should be scaled.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int computeEquilibrateScaling() {
      return base_QR_.computeEquilibrateScaling();
    }

    //! Equilibrates the \e this matrix.
    /*!
      \note This method will be called automatically in solve() method if factorWithEquilibration( true ) is called.
      \return Integer error code, set to 0 if successful.
    */
    int equilibrateMatrix() { return base_QR_.equilibrateMatrix(); }

    //! Equilibrates the current RHS.
    /*!
      \note This method will be called automatically in solve() method if factorWithEquilibration( true ) is called.
      \return Integer error code, set to 0 if successful.
    */
    int equilibrateRHS() { return base_QR_.equilibrateRHS(); }

    //! Unscales the solution vectors if equilibration was used to solve the system.
    /*!
      \note This method will be called automatically in solve() method if factorWithEquilibration( true ) is called.
      \return Integer error code, set to 0 if successful.
    */
    int unequilibrateLHS() { return base_QR_.unequilibrateLHS(); }

    //! Explicitly forms the unitary matrix Q.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int formQ();

    //! Explicitly forms the upper triangular matrix R.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int formR();

    //! Left multiply the input matrix by the unitary matrix Q or its adjoint.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int multiplyQ (ETransp transq, SerialDenseMatrix<OrdinalType, ScalarType> &C);

    //! Solve input matrix on the left with the upper triangular matrix R or its adjoint.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int solveR (ETransp transr, SerialDenseMatrix<OrdinalType, ScalarType> &C);
    //@}

    //! @name Query methods
    //@{

    //! Returns true if adjoint of \e this matrix has and will be used.
    bool transpose() { return base_QR_.transpose(); }

    //! Returns true if matrix is factored (factor available via getFactoredMatrix()).
    bool factored() { return base_QR_.factored(); }

    //! Returns true if factor is equilibrated (factor available via getFactoredMatrix()).
    bool equilibratedA() { return base_QR_.equilibratedA(); }

    //! Returns true if RHS is equilibrated (RHS available via getRHS()).
    bool equilibratedB() { return base_QR_.equilibratedB(); }

    //! Returns true if the LAPACK general rules for equilibration suggest you should equilibrate the system.
    bool shouldEquilibrate() { return base_QR_.shouldEquilibrate(); }

    //! Returns true if the current set of vectors has been solved.
    bool solved() { return base_QR_.solved(); }

    //! Returns true if Q has been formed explicitly.
    bool formedQ() { return base_QR_.formedQ(); }

    //! Returns true if R has been formed explicitly.
    bool formedR() { return base_QR_.formedR();}

    //@}

    //! @name Data Accessor methods
    //@{

    //! Returns pointer to current matrix.
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getMatrix() const {return(Matrix_);}

    //! Returns pointer to factored matrix (assuming factorization has been performed).
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getFactoredMatrix()  const {return(Factor_);}

    //! Returns pointer to Q (assuming factorization has been performed).
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getQ()  const {return(FactorQ_);}

    //! Returns pointer to R (assuming factorization has been performed).
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getR()  const {return(FactorR_);}

    //! Returns pointer to current LHS.
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getLHS() const {return(LHS_);}

    //! Returns pointer to current RHS.
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getRHS() const {return(RHS_);}

    //! Returns row dimension of system.
    OrdinalType numRows()  const {return(M_);}

    //! Returns column dimension of system.
    OrdinalType numCols()  const {return(N_);}

    //! Returns pointer to pivot vector (if factorization has been computed), zero otherwise.
    std::vector<ScalarType> tau()  const { return base_QR_.tau(); }

    //! Returns the absolute value of the largest element of \e this matrix (returns -1 if not yet computed).
    MagnitudeType ANORM()  const { return base_QR_.ANORM(); }

    //@}

    //! @name I/O methods
    //@{
    //! Print service methods; defines behavior of ostream << operator.
    void Print(std::ostream& os) const;
    //@}
  protected:

    typedef typename ScalarType::value_type BaseScalarType;
    typedef SerialQRDenseSolver<OrdinalType,BaseScalarType> BaseQRType;
    typedef SerialDenseMatrix<OrdinalType, BaseScalarType> BaseMatrixType;
    typedef SerialDenseMatrix<OrdinalType, ScalarType> MatrixType;

    void resetMatrix();
    void resetVectors();
    RCP<BaseMatrixType> createBaseMatrix(const RCP<MatrixType>& mat) const;
    RCP<MatrixType> createMatrix(const RCP<BaseMatrixType>& base_mat) const;
    BaseQRType base_QR_;

    OrdinalType M_;
    OrdinalType N_;
    OrdinalType SacadoSize_;

    RCP<MatrixType> Matrix_;
    RCP<MatrixType> LHS_;
    RCP<MatrixType> RHS_;
    RCP<MatrixType> Factor_;
    RCP<MatrixType> FactorQ_;
    RCP<MatrixType> FactorR_;

    RCP<BaseMatrixType> Base_Matrix_;
    RCP<BaseMatrixType> Base_LHS_;
    RCP<BaseMatrixType> Base_RHS_;
    RCP<BaseMatrixType> Base_Factor_;
    RCP<BaseMatrixType> Base_FactorQ_;
    RCP<BaseMatrixType> Base_FactorR_;

  private:

    // SerialQRDenseSolver copy constructor (put here because we don't want user access)
    SerialQRDenseSolver(const SerialQRDenseSolver& Source);
    SerialQRDenseSolver & operator=(const SerialQRDenseSolver& Source);

  };

  namespace details {

    // Helper traits class for converting between arrays of
    // Sacado::UQ::PCE and its corresponding value type
    template <typename Storage> struct PCEArrayHelper;

    template <typename Ordinal, typename Value, typename Device>
    struct PCEArrayHelper< Stokhos::DynamicStorage<Ordinal,Value,Device> >
    {
      typedef Stokhos::DynamicStorage<Ordinal,Value,Device> Storage;
      typedef Sacado::UQ::PCE<Storage> pce_type;
      typedef typename pce_type::cijk_type cijk_type;

      static Value* getValueArray(pce_type* v, Ordinal len) {
        if (len == 0)
          return 0;
        return v[0].coeff(); // Assume data is contiguous
      }

      static pce_type* getPCEArray(Value *v, Ordinal len, Ordinal vector_size){
        if (len == 0)
          return 0;
        pce_type* v_pce =
          static_cast<pce_type*>(operator new(len*sizeof(pce_type)));
        cijk_type cijk = Kokkos::getGlobalCijkTensor<cijk_type>();
        for (Ordinal i=0; i<len; ++i)
          new (v_pce+i) pce_type(cijk, vector_size, v+i*vector_size, false);
        return v_pce;
      }

    };

  }

  // Helper traits to distinguish work arrays for real and complex-valued datatypes.
  using namespace details;

//=============================================================================

template<typename OrdinalType, typename Storage>
SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
SerialQRDenseSolver()
  : CompObject(),
    Object("Teuchos::SerialQRDenseSolver"),
    M_(0),
    N_(0)
{
  resetMatrix();
}

//=============================================================================

template<typename OrdinalType, typename Storage>
void SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
resetVectors()
{
  LHS_ = Teuchos::null;
  RHS_ = Teuchos::null;
}
//=============================================================================

template<typename OrdinalType, typename Storage>
void SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
resetMatrix()
{
  resetVectors();
  M_ = 0;
  N_ = 0;
}
//=============================================================================

template<typename OrdinalType, typename Storage>
RCP<SerialDenseMatrix<OrdinalType, typename Sacado::UQ::PCE<Storage>::value_type> >
SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
createBaseMatrix(
  const RCP<SerialDenseMatrix<OrdinalType,ScalarType> >& mat) const
{
  BaseScalarType* base_ptr =
    PCEArrayHelper<Storage>::getValueArray(
      mat->values(), mat->stride()*mat->numCols());
  RCP<BaseMatrixType> base_mat =
    rcp(new BaseMatrixType(Teuchos::View,
                           base_ptr,
                           mat->stride()*SacadoSize_,
                           mat->numRows()*SacadoSize_,
                           mat->numCols()));
  return base_mat;
}
//=============================================================================

template<typename OrdinalType, typename Storage>
RCP<SerialDenseMatrix<OrdinalType, Sacado::UQ::PCE<Storage> > >
SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
createMatrix(
  const RCP<SerialDenseMatrix<OrdinalType,BaseScalarType> >& base_mat) const
{
  ScalarType* ptr =
    PCEArrayHelper<Storage>::getPCEArray(
      base_mat->values(), base_mat->stride()*base_mat->numCols(), SacadoSize_);
  RCP<MatrixType> mat =
    rcp(new MatrixType(Teuchos::View,
                       ptr,
                       base_mat->stride()/SacadoSize_,
                       base_mat->numRows()/SacadoSize_,
                       base_mat->numCols()));
  return mat;
}
//=============================================================================

template<typename OrdinalType, typename Storage>
int SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
setMatrix(const RCP<SerialDenseMatrix<OrdinalType,ScalarType> >& A)
{
  TEUCHOS_TEST_FOR_EXCEPTION(
    A->numRows() < A->numCols(), std::invalid_argument,
    "SerialQRDenseSolver<T>::setMatrix: the matrix A must have A.numRows() >= A.numCols()!");

  resetMatrix();
  Matrix_ = A;
  Factor_ = A;
  FactorQ_ = A;
  FactorR_ = A;
  M_ = A->numRows();
  N_ = A->numCols();
  if (Storage::is_static)
    SacadoSize_ = Storage::static_size;
  else if (M_ > 0 && N_ > 0)
    SacadoSize_ = (*A)(0,0).size();
  else
    SacadoSize_ = 0;

  return base_QR_.setMatrix( createBaseMatrix(A) );
}
//=============================================================================

template<typename OrdinalType, typename Storage>
int SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
setVectors(
  const RCP<SerialDenseMatrix<OrdinalType,ScalarType> >& X,
  const RCP<SerialDenseMatrix<OrdinalType,ScalarType> >& B)
{
  // Check that these new vectors are consistent
  TEUCHOS_TEST_FOR_EXCEPTION(
    B->numCols() != X->numCols(), std::invalid_argument,
    "SerialQRDenseSolver<T>::setVectors: X and B have different numbers of columns!");
  TEUCHOS_TEST_FOR_EXCEPTION(
    B->values()==0, std::invalid_argument,
    "SerialQRDenseSolver<T>::setVectors: B is an empty SerialDenseMatrix<T>!");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X->values()==0, std::invalid_argument,
    "SerialQRDenseSolver<T>::setVectors: X is an empty SerialDenseMatrix<T>!");
  TEUCHOS_TEST_FOR_EXCEPTION(
    B->stride()<1, std::invalid_argument,
    "SerialQRDenseSolver<T>::setVectors: B has an invalid stride!");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X->stride()<1, std::invalid_argument,
    "SerialQRDenseSolver<T>::setVectors: X has an invalid stride!");

  resetVectors();
  LHS_ = X;
  RHS_ = B;

  return base_QR_.setVectors( createBaseMatrix(X), createBaseMatrix(B) );
}

//=============================================================================

template<typename OrdinalType, typename Storage>
int SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
formQ() {
  int ret = base_QR_.formQ();
  FactorQ_ = createMatrix( base_QR_.getQ() );
  return(ret);
}

//=============================================================================

template<typename OrdinalType, typename Storage>
int SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
formR() {
  int ret = base_QR_.formR();
  FactorR_ = createMatrix( base_QR_.getR() );
  Factor_ = createMatrix( base_QR_.getFactoredMatrix() );
  return(ret);
}

//=============================================================================

template<typename OrdinalType, typename Storage>
int  SerialQRDenseSolver<OrdinalType, Sacado::UQ::PCE<Storage> >::
multiplyQ(ETransp transq, SerialDenseMatrix<OrdinalType, ScalarType> &C)
{
  return base_QR_.multiplyQ(transq, createBaseMatrix(C));
}

//=============================================================================

template<typename OrdinalType, typename Storage>
int  SerialQRDenseSolver<OrdinalType, Sacado::UQ::PCE<Storage> >::
solveR(ETransp transr, SerialDenseMatrix<OrdinalType, ScalarType> &C)
{
  return base_QR_.solveR(transr, createBaseMatrix(C));
}

//=============================================================================

template<typename OrdinalType, typename Storage>
void SerialQRDenseSolver<OrdinalType,Sacado::UQ::PCE<Storage> >::
Print(std::ostream& os) const {

  if (Matrix_!=Teuchos::null) os << "Solver Matrix"          << std::endl << *Matrix_ << std::endl;
  if (Factor_!=Teuchos::null) os << "Solver Factored Matrix" << std::endl << *Factor_ << std::endl;
  if (LHS_   !=Teuchos::null) os << "Solver LHS"             << std::endl << *LHS_    << std::endl;
  if (RHS_   !=Teuchos::null) os << "Solver RHS"             << std::endl << *RHS_    << std::endl;

}

} // namespace Teuchos

#endif /* _TEUCHOS_SERIALQRDENSESOLVER_UQ_PCE_HPP_ */