This file is indexed.

/usr/include/trilinos/Stokhos_TiledCrsProductTensor.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_TILED_CRS_PRODUCT_TENSOR_HPP
#define STOKHOS_TILED_CRS_PRODUCT_TENSOR_HPP

#include "Kokkos_Core.hpp"

#include "Stokhos_Multiply.hpp"
#include "Stokhos_ProductBasis.hpp"
#include "Stokhos_Sparse3Tensor.hpp"
#include "Stokhos_Sparse3TensorPartition.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Stokhos_TinyVec.hpp"


//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

namespace Stokhos {

template< typename ValueType, class ExecutionSpace >
class TiledCrsProductTensor {
public:

  typedef ExecutionSpace  execution_space;
  typedef int size_type;
  typedef ValueType   value_type;

// Vectorsize used in multiply algorithm
#if defined(__AVX__)
  static const size_type host_vectorsize = 32/sizeof(value_type);
  static const bool use_intrinsics = true;
#elif defined(__MIC__)
  static const size_type host_vectorsize = 16;
  static const bool use_intrinsics = true;
#else
  static const size_type host_vectorsize = 2;
  static const bool use_intrinsics = false;
#endif
  static const size_type cuda_vectorsize = 32;
  static const bool is_cuda =
#if defined( KOKKOS_HAVE_CUDA )
    Kokkos::Impl::is_same<ExecutionSpace,Kokkos::Cuda>::value;
#else
    false ;
#endif
  static const size_type vectorsize = is_cuda ? cuda_vectorsize : host_vectorsize;

  // Alignment in terms of number of entries of CRS rows
  static const size_type tensor_align = vectorsize;

private:

  typedef Kokkos::LayoutRight layout_type;
  typedef Kokkos::View< value_type[], execution_space >  vec_type;
  typedef Kokkos::View< size_type[], execution_space > coord_array_type;
  typedef Kokkos::View< size_type[][2], Kokkos::LayoutLeft, execution_space > coord2_array_type;
  typedef Kokkos::View< size_type[][3], execution_space > coord_offset_type;
  typedef Kokkos::View< size_type[][3], execution_space > coord_range_type;
  typedef Kokkos::View< value_type[], execution_space > value_array_type;
  typedef Kokkos::View< size_type**, layout_type, execution_space > entry_array_type;
  typedef Kokkos::View< size_type**, layout_type, execution_space > row_map_array_type;
  typedef Kokkos::View< size_type[], execution_space > num_row_array_type;

  coord_array_type   m_coord;
  coord2_array_type  m_coord2;
  coord_offset_type  m_coord_offset;
  coord_range_type   m_coord_range;
  value_array_type   m_value;
  entry_array_type   m_num_entry;
  row_map_array_type m_row_map;
  num_row_array_type m_num_rows;
  size_type          m_dimension;
  size_type          m_tile_size;
  size_type          m_entry_max;
  size_type          m_max_num_rows;
  size_type          m_nnz;
  size_type          m_flops;

public:

  inline
  ~TiledCrsProductTensor() {}

  inline
  TiledCrsProductTensor() :
    m_coord(),
    m_coord2(),
    m_coord_offset(),
    m_coord_range(),
    m_value(),
    m_num_entry(),
    m_row_map(),
    m_num_rows(),
    m_dimension(0),
    m_tile_size(0),
    m_entry_max(0),
    m_max_num_rows(0),
    m_nnz(0),
    m_flops(0) {}

  inline
  TiledCrsProductTensor( const TiledCrsProductTensor & rhs ) :
    m_coord( rhs.m_coord ),
    m_coord2( rhs.m_coord2 ),
    m_coord_offset( rhs.m_coord_offset ),
    m_coord_range( rhs.m_coord_range ),
    m_value( rhs.m_value ),
    m_num_entry( rhs.m_num_entry ),
    m_row_map( rhs.m_row_map ),
    m_num_rows( rhs.m_num_rows ),
    m_dimension( rhs.m_dimension ),
    m_tile_size( rhs.m_tile_size ),
    m_entry_max( rhs.m_entry_max ),
    m_max_num_rows( rhs.m_max_num_rows ),
    m_nnz( rhs.m_nnz ),
    m_flops( rhs.m_flops ) {}

  inline
  TiledCrsProductTensor & operator = ( const TiledCrsProductTensor & rhs )
  {
    m_coord = rhs.m_coord;
    m_coord2 = rhs.m_coord2;
    m_coord_offset = rhs.m_coord_offset;
    m_coord_range = rhs.m_coord_range;
    m_value = rhs.m_value;
    m_num_entry = rhs.m_num_entry;
    m_row_map = rhs.m_row_map;
    m_num_rows = rhs.m_num_rows;
    m_dimension = rhs.m_dimension;
    m_tile_size = rhs.m_tile_size;
    m_entry_max = rhs.m_entry_max;
    m_max_num_rows = rhs.m_max_num_rows;
    m_nnz = rhs.m_nnz;
    m_flops = rhs.m_flops;
    return *this;
  }

  /** \brief  Dimension of the tensor. */
  KOKKOS_INLINE_FUNCTION
  size_type dimension() const { return m_dimension; }

  /** \brief  Number of sparse entries. */
  KOKKOS_INLINE_FUNCTION
  size_type entry_count() const
  { return m_coord.dimension_0(); }

  /** \brief  Maximum sparse entries for any coordinate */
  KOKKOS_INLINE_FUNCTION
  size_type entry_maximum() const
  { return m_entry_max; }

  /** \brief  Maximum number of rows in any tile. */
  KOKKOS_INLINE_FUNCTION
  size_type max_num_rows() const
  { return m_max_num_rows; }

  /** \brief  Number of rows in given tile. */
  KOKKOS_INLINE_FUNCTION
  size_type num_rows( size_type tile ) const
  { return m_num_rows(tile); }

  /** \brief  Begin entries with a coordinate 'i' */
  KOKKOS_INLINE_FUNCTION
  const size_type& entry_begin( size_type tile, size_type i ) const
  { return m_row_map(tile,i); }

  /** \brief  End entries with a coordinate 'i' */
  KOKKOS_INLINE_FUNCTION
  size_type entry_end( size_type tile, size_type i ) const
  { return m_row_map(tile,i) + m_num_entry(tile,i); }

   /** \brief  Return row_map ptr */
  KOKKOS_INLINE_FUNCTION
  const size_type* row_map_ptr() const
  { return m_row_map.ptr_on_device(); }

  /** \brief  Number of entries with a coordinate 'i' */
  KOKKOS_INLINE_FUNCTION
  const size_type& num_entry( size_type tile, size_type i ) const
  { return m_num_entry(tile,i); }

  /** \brief  Coordinates of an entry */
  KOKKOS_INLINE_FUNCTION
  const size_type& coord( const size_type entry, const size_type c ) const
  { return m_coord2( entry, c ); }

  /** \brief  Coordinates of an entry */
  KOKKOS_INLINE_FUNCTION
  const size_type& coord( const size_type entry ) const
  { return m_coord( entry ); }

  /** \brief  Value of an entry */
  KOKKOS_INLINE_FUNCTION
  const value_type & value( const size_type entry ) const
  { return m_value( entry ); }

  /** \brief Number of non-zero's */
  KOKKOS_INLINE_FUNCTION
  size_type num_non_zeros() const
  { return m_nnz; }

  /** \brief Number flop's per multiply-add */
  KOKKOS_INLINE_FUNCTION
  size_type num_flops() const
  { return m_flops; }

  /** \brief Number tiles */
  KOKKOS_INLINE_FUNCTION
  size_type tile_size() const
  { return m_tile_size; }

  /** \brief Number tiles */
  KOKKOS_INLINE_FUNCTION
  size_type num_tiles() const
  { return m_coord_offset.dimension_0(); }

  /** \brief Coordinate offset */
  KOKKOS_INLINE_FUNCTION
  const size_type& offset( const size_type entry, const size_type c ) const
  { return m_coord_offset( entry, c ); }

  /** \brief Coordinate range */
  KOKKOS_INLINE_FUNCTION
  const size_type& range( const size_type entry, const size_type c ) const
  { return m_coord_range( entry, c ); }

  template <typename OrdinalType>
  static TiledCrsProductTensor
  create( const Stokhos::ProductBasis<OrdinalType,ValueType>& basis,
          const Stokhos::Sparse3Tensor<OrdinalType,ValueType>& Cijk,
          const Teuchos::ParameterList& params)
  {
    typedef Stokhos::CijkData<OrdinalType,ValueType> Cijk_Data_type;

    const size_type tile_size = params.get<int>("Tile Size");
    const size_type max_tiles = params.get<int>("Max Tiles");

    // Build tensor data list
    Teuchos::ArrayRCP<Cijk_Data_type> coordinate_list =
      Stokhos::build_cijk_coordinate_list(Cijk, Stokhos::CIJK_TWO_WAY_SYMMETRY);

    // Partition via RCB
    typedef Stokhos::RCB<Cijk_Data_type> rcb_type;
    typedef typename rcb_type::Box box_type;
    rcb_type rcb(tile_size, max_tiles, coordinate_list());
    Teuchos::RCP< Teuchos::Array< Teuchos::RCP<box_type> > > parts =
      rcb.get_parts();
    size_type num_parts = rcb.get_num_parts();

    // Compute number of non-zeros for each row in each part
    size_type total_num_rows = 0, max_num_rows = 0, entry_count = 0;
    Teuchos::Array< Teuchos::Array<size_type> > coord_work( num_parts );
    for (size_type part=0; part<num_parts; ++part) {
      Teuchos::RCP<box_type> box = (*parts)[part];
      size_type num_rows = box->delta_x;
      total_num_rows += num_rows;
      max_num_rows = std::max(max_num_rows, num_rows);
      coord_work[part].resize(num_rows, 0);

      size_type nc = box->coords.size();
      for (size_type c=0; c<nc; ++c) {
        size_type i = box->coords[c](0) - box->xmin;
        ++(coord_work[part][i]);
        ++entry_count;
      }
    }

    // Pad each row to have size divisible by alignment size
    for (size_type part=0; part<num_parts; ++part) {
      size_type sz = coord_work[part].size();
      for ( size_type i = 0; i < sz; ++i ) {
        const size_t rem = coord_work[part][i] % tensor_align;
        if (rem > 0) {
          const size_t pad = tensor_align - rem;
          coord_work[part][i] += pad;
          entry_count += pad;
        }
      }
    }

    // Allocate tensor data
    TiledCrsProductTensor tensor;
    tensor.m_coord =
      coord_array_type( "tensor_coord", entry_count );
    tensor.m_coord2 =
      coord2_array_type( "tensor_coord2", entry_count );
    tensor.m_coord_offset =
      coord_offset_type( "tensor_coord_offset", num_parts );
    tensor.m_coord_range =
      coord_range_type( "tensor_coord_range", num_parts );
    tensor.m_value =
      value_array_type( "tensor_value", entry_count );
    tensor.m_num_entry =
      entry_array_type( "tensor_num_entry", num_parts, max_num_rows );
    tensor.m_row_map =
      row_map_array_type( "tensor_row_map", num_parts, max_num_rows+1 );
    tensor.m_num_rows =
      num_row_array_type( "tensor_num_rows", num_parts );
    tensor.m_dimension = basis.size();
    tensor.m_tile_size = tile_size;
    tensor.m_max_num_rows = max_num_rows;

    // Create mirror, is a view if is host memory
    typename coord_array_type::HostMirror host_coord =
      Kokkos::create_mirror_view( tensor.m_coord );
    typename coord2_array_type::HostMirror host_coord2 =
      Kokkos::create_mirror_view( tensor.m_coord2 );
    typename coord_offset_type::HostMirror host_coord_offset =
      Kokkos::create_mirror_view( tensor.m_coord_offset );
    typename coord_range_type::HostMirror host_coord_range =
      Kokkos::create_mirror_view( tensor.m_coord_range );
    typename value_array_type::HostMirror host_value =
      Kokkos::create_mirror_view( tensor.m_value );
    typename entry_array_type::HostMirror host_num_entry =
      Kokkos::create_mirror_view( tensor.m_num_entry );
    typename row_map_array_type::HostMirror host_row_map =
      Kokkos::create_mirror_view( tensor.m_row_map );
    typename num_row_array_type::HostMirror host_num_rows =
      Kokkos::create_mirror_view( tensor.m_num_rows );

    // Compute row map
    size_type sum = 0;
    for (size_type part=0; part<num_parts; ++part) {
      size_type nc = coord_work[part].size();
      host_row_map(part,0) = sum;
      for (size_type t=0; t<nc; ++t) {
        sum += coord_work[part][t];
        host_row_map(part,t+1) = sum;
      }
    }

    // Copy per part row offsets back into coord_work
    for (size_type part=0; part<num_parts; ++part) {
      size_type nc = coord_work[part].size();
      for (size_type t=0; t<nc; ++t) {
        coord_work[part][t] = host_row_map(part,t);
      }
    }

    // Fill in coordinate and value arrays
    for (size_type part=0; part<num_parts; ++part) {
      Teuchos::RCP<box_type> box = (*parts)[part];

      host_coord_offset(part,0) = box->xmin;
      host_coord_offset(part,1) = box->ymin;
      host_coord_offset(part,2) = box->zmin;

      host_coord_range(part,0) = box->delta_x;
      host_coord_range(part,1) = box->delta_y;
      host_coord_range(part,2) = box->delta_z;

      host_num_rows(part) = coord_work[part].size(); // also == box->delta_x

      size_type nc = box->coords.size();
      for (size_type t=0; t<nc; ++t) {
        const size_type i = box->coords[t].i;
        const size_type j = box->coords[t].j;
        const size_type k = box->coords[t].k;
        const value_type c = box->coords[t].c;

        const size_type row = i - box->xmin;
        const size_type n = coord_work[part][row];
        ++coord_work[part][row];

        host_value(n) = c;
        host_coord2(n,0) = j - box->ymin;
        host_coord2(n,1) = k - box->zmin;
        host_coord(n) = ( host_coord2(n,1) << 16 ) | host_coord2(n,0);

        ++host_num_entry(part,row);
        ++tensor.m_nnz;
      }
    }

    // Copy data to device if necessary
    Kokkos::deep_copy( tensor.m_coord, host_coord );
    Kokkos::deep_copy( tensor.m_coord2, host_coord2 );
    Kokkos::deep_copy( tensor.m_coord_offset, host_coord_offset );
    Kokkos::deep_copy( tensor.m_coord_range, host_coord_range );
    Kokkos::deep_copy( tensor.m_value, host_value );
    Kokkos::deep_copy( tensor.m_num_entry, host_num_entry );
    Kokkos::deep_copy( tensor.m_row_map, host_row_map );
    Kokkos::deep_copy( tensor.m_num_rows, host_num_rows );

    tensor.m_entry_max = 0;
    tensor.m_flops = 0;
    for (size_type part=0; part<num_parts; ++part) {
      for ( size_type i = 0; i < host_num_rows(part); ++i ) {
        tensor.m_entry_max = std::max( tensor.m_entry_max,
                                       host_num_entry(part,i) );
        tensor.m_flops += 5*host_num_entry(part,i) + 1;
      }
    }

    return tensor;
  }
};

template< class Device, typename OrdinalType, typename ValueType >
TiledCrsProductTensor<ValueType, Device>
create_tiled_product_tensor(
  const Stokhos::ProductBasis<OrdinalType,ValueType>& basis,
  const Stokhos::Sparse3Tensor<OrdinalType,ValueType>& Cijk,
  const Teuchos::ParameterList& params)
{
  return TiledCrsProductTensor<ValueType, Device>::create(
    basis, Cijk, params );
}

template < typename ValueType, typename Device >
class BlockMultiply< TiledCrsProductTensor< ValueType , Device > >
{
public:

  typedef typename Device::size_type size_type ;
  typedef TiledCrsProductTensor< ValueType , Device > tensor_type ;

  template< typename MatrixValue , typename VectorValue >
  KOKKOS_INLINE_FUNCTION
  static void apply( const tensor_type & tensor ,
                     const MatrixValue * const a ,
                     const VectorValue * const x ,
                           VectorValue * const y )
  {
    const size_type block_size = 2;
    typedef TinyVec<ValueType,block_size,false> TV;

    const size_type n_tile = tensor.num_tiles();

    for ( size_type tile = 0 ; tile < n_tile ; ++tile ) {

      const size_type i_offset = tensor.offset(tile, 0);
      const size_type j_offset = tensor.offset(tile, 1);
      const size_type k_offset = tensor.offset(tile, 2);

      const size_type n_row = tensor.num_rows(tile);

      for ( size_type i = 0 ; i < n_row ; ++i ) {

        const size_type nEntry = tensor.num_entry(tile,i);
        const size_type iEntryBeg = tensor.entry_begin(tile,i);
        const size_type iEntryEnd = iEntryBeg + nEntry;
              size_type iEntry    = iEntryBeg;

        VectorValue ytmp = 0 ;

        // Do entries with a blocked loop of size block_size
        if (block_size > 1) {
          const size_type nBlock = nEntry / block_size;
          const size_type nEntryB = nBlock * block_size;
          const size_type iEnd = iEntryBeg + nEntryB;

          TV vy;
          vy.zero();
          int j[block_size], k[block_size];

          for ( ; iEntry < iEnd ; iEntry += block_size ) {

            for (size_type ii=0; ii<block_size; ++ii) {
              j[ii] = tensor.coord(iEntry+ii,0) + j_offset;
              k[ii] = tensor.coord(iEntry+ii,1) + k_offset;
            }
            TV aj(a, j), ak(a, k), xj(x, j), xk(x, k),
              c(&(tensor.value(iEntry)));

            // vy += c * ( aj * xk + ak * xj)
            aj.times_equal(xk);
            ak.times_equal(xj);
            aj.plus_equal(ak);
            c.times_equal(aj);
            vy.plus_equal(c);

          }

          ytmp += vy.sum();
        }

        // Do remaining entries with a scalar loop
        for ( ; iEntry<iEntryEnd; ++iEntry) {
          const size_type j = tensor.coord(iEntry,0) + j_offset;
          const size_type k = tensor.coord(iEntry,1) + k_offset;

          ytmp += tensor.value(iEntry) * ( a[j] * x[k] + a[k] * x[j] );
        }

        y[i+i_offset] += ytmp ;
        //y[i] += ytmp ;
      }
    }
  }

  KOKKOS_INLINE_FUNCTION
  static size_type matrix_size( const tensor_type & tensor )
  { return tensor.dimension(); }

  KOKKOS_INLINE_FUNCTION
  static size_type vector_size( const tensor_type & tensor )
  { return tensor.dimension(); }
};

} /* namespace Stokhos */

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

#endif /* #ifndef STOKHOS_TILED_CRS_PRODUCT_TENSOR_HPP */