This file is indexed.

/usr/include/trilinos/Stokhos_TensorProductPseudoSpectralOperator.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
// @HEADER
// ***********************************************************************
// 
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
// 
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_TENSOR_PRODUCT_PSEUDO_SPECTRAL_OPERATOR_HPP
#define STOKHOS_TENSOR_PRODUCT_PSEUDO_SPECTRAL_OPERATOR_HPP

#include "Stokhos_PseudoSpectralOperator.hpp"
#include "Stokhos_ProductBasis.hpp"
#include "Stokhos_TensorProductBasis.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_BLAS.hpp"

namespace Stokhos {

  /*!
   * \brief An operator for building pseudo-spectral coefficients using 
   * tensor-product quadrature.
   */
  template <typename ordinal_t, 
	    typename value_t, 
	    typename point_compare_type = 
	    typename DefaultPointCompare<ordinal_t,value_t>::type>
  class TensorProductPseudoSpectralOperator : 
    public PseudoSpectralOperator<ordinal_t,value_t,point_compare_type> {
  public:

    typedef ordinal_t ordinal_type;
    typedef value_t value_type;
    typedef PseudoSpectralOperator<ordinal_type,value_type,point_compare_type> base_type;
    typedef typename base_type::point_type point_type;    
    typedef typename base_type::point_set_type point_set_type;
    typedef typename base_type::point_map_type point_map_type;
    typedef typename base_type::iterator iterator;
    typedef typename base_type::const_iterator const_iterator;
    typedef typename base_type::set_iterator set_iterator;
    typedef typename base_type::const_set_iterator const_set_iterator;

    typedef MultiIndex<ordinal_type> multiindex_type;
    
    //! Constructor
    TensorProductPseudoSpectralOperator(
      const ProductBasis<ordinal_type,value_type>& product_basis, 
      bool use_pst_ = false, 
      multiindex_type multiindex = multiindex_type(),
      const point_compare_type& point_compare = point_compare_type()) : 
      use_pst(use_pst_),
      coeff_sz(product_basis.size()),
      dim(product_basis.dimension()),
      points(point_compare),
      reorder(false) {

      // Check if we need to reorder for PST
      // This isn't a perfect test since it doesn't catch not tensor-product
      // bases
      typedef LexographicLess< MultiIndex<ordinal_type> > lexo_type;
      if (use_pst) {
	typedef TensorProductBasis<ordinal_type,value_type,lexo_type> tb_type;
	const tb_type *tb = dynamic_cast<const tb_type*>(&product_basis);
	if (tb == NULL) 
	  reorder = true;
      }

      Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type,value_type> > > bases_ = product_basis.getCoordinateBases();

      // Make sure order of each 1-D basis is large enough for 
      // supplied set of coefficients
      Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type,value_type> > > bases(bases_);
      multiindex_type max_orders = product_basis.getMaxOrders();
      for (ordinal_type i=0; i<dim; ++i) {
	if (bases[i]->order() < max_orders[i])
	  bases[i] = bases[i]->cloneWithOrder(max_orders[i]);
      }

      // Check for default quadrature order
      if (multiindex.dimension() == 0)
	multiindex = max_orders;

      // Compute quad points, weights, values
      Teuchos::Array< Teuchos::Array<value_type> > gp(dim);
      Teuchos::Array< Teuchos::Array<value_type> > gw(dim);
      Teuchos::Array< Teuchos::Array< Teuchos::Array<value_type> > > gv(dim);
      multiindex_type n(dim);
      if (use_pst) {
	qp2pce_k.resize(dim);
	pce2qp_k.resize(dim);
      }
      for (ordinal_type k=0; k<dim; k++) {
	bases[k]->getQuadPoints(2*multiindex[k], gp[k], gw[k], gv[k]);
	n[k] = gp[k].size()-1;

	// Generate quadrature operators for PST
	if (use_pst) {
	  ordinal_type npc = bases[k]->size();
	  ordinal_type nqp = gp[k].size();
	  qp2pce_k[k].reshape(npc,nqp);
	  pce2qp_k[k].reshape(nqp,npc);
	  qp2pce_k[k].putScalar(1.0);
	  pce2qp_k[k].putScalar(1.0);
	  for (ordinal_type j=0; j<nqp; j++) {
	    for (ordinal_type i=0; i<npc; i++) {
	      qp2pce_k[k](i,j) *= gw[k][j]*gv[k][j][i] / 
		bases[k]->norm_squared(i);
	      pce2qp_k[k](j,i) *= gv[k][j][i];
	    }
	  }
	}
      }

      // Generate points and weights
      Stokhos::TensorProductIndexSet<ordinal_type> pointIndexSet(n);
      typedef typename TensorProductIndexSet<ordinal_type>::iterator index_iterator;
      index_iterator point_iterator = pointIndexSet.begin();
      index_iterator point_end = pointIndexSet.end();
      point_type point(dim);
      while (point_iterator != point_end) {
	value_type w = 1.0;
	for (ordinal_type k=0; k<dim; k++) {
	  point[k] = gp[k][(*point_iterator)[k]];
	  w *= gw[k][(*point_iterator)[k]];
	}
	points[point] = std::make_pair(w,ordinal_type(0));
	++point_iterator;
      }

      // Generate linear ordering of points
      ordinal_type nqp = points.size();
      point_map.resize(nqp);      
      ordinal_type idx=0;
      typename point_set_type::iterator di = points.begin();
      typename point_set_type::iterator di_end = points.end();
      while (di != di_end) {
	di->second.second = idx;
	point_map[idx] = di->first;
	++idx;
	++di;
      }

      // Build permutation array for reordering if coefficients aren't
      // lexographically ordered
      if (use_pst && reorder) {
	typedef std::map<multiindex_type,ordinal_type,lexo_type> reorder_type;
	reorder_type reorder_map;
	for (ordinal_type i=0; i<coeff_sz; ++i)
	  reorder_map[product_basis.term(i)] = i;
	perm.resize(coeff_sz);
	ordinal_type idx = 0;
	for (typename reorder_type::iterator it = reorder_map.begin();
	     it != reorder_map.end(); ++it)
	  perm[idx++] = it->second;
	TEUCHOS_ASSERT(idx == coeff_sz);
      }

      // Generate quadrature operator for direct apply
      // Always do this because we may not use PST in some situations
      ordinal_type npc = product_basis.size();
      qp2pce.reshape(npc,nqp);
      pce2qp.reshape(nqp,npc);
      qp2pce.putScalar(1.0);
      pce2qp.putScalar(1.0);
      for (point_iterator = pointIndexSet.begin(); 
	   point_iterator != point_end; 
	   ++point_iterator) {
	for (ordinal_type k=0; k<dim; k++)
	  point[k] = gp[k][(*point_iterator)[k]];
	ordinal_type j = points[point].second;
	for (ordinal_type i=0; i<npc; i++) {
	  for (ordinal_type k=0; k<dim; k++) {
	    ordinal_type l = (*point_iterator)[k];
	    ordinal_type m = product_basis.term(i)[k];
	    qp2pce(i,j) *= gw[k][l]*gv[k][l][m] / bases[k]->norm_squared(m);
	    pce2qp(j,i) *= gv[k][l][m];
	  }
	}
      }
      
    }

    //! Destructor
    virtual ~TensorProductPseudoSpectralOperator() {}

    //! Number of points
    ordinal_type point_size() const { return points.size(); }

    //! Number of coefficients
    ordinal_type coeff_size() const { return coeff_sz; }

    //! Iterator to begining of point set
    iterator begin() { return point_map.begin(); }
    
    //! Iterator to end of point set
    iterator end() { return point_map.end(); }

    //! Iterator to begining of point set
    const_iterator begin() const { return point_map.begin(); }

    //! Iterator to end of point set
    const_iterator end() const { return point_map.end(); }

    //! Iterator to begining of point set
    set_iterator set_begin() { return points.begin(); }

    //! Iterator to end of point set
    set_iterator set_end() { return points.end(); }

    //! Iterator to begining of point set
    const_set_iterator set_begin() const { return points.begin(); }

    //! Iterator to end of point set
    const_set_iterator set_end() const { return points.end(); }

    //! Get point index for given point
    ordinal_type index(const point_type& point) const { 
      const_set_iterator it = points.find(point);
      TEUCHOS_TEST_FOR_EXCEPTION(
	it == points.end(), std::logic_error, "Invalid term " << point);
      return it->second.second;
    }

    //! Get point for given index
    const point_type& point(ordinal_type n) const { return point_map[n]; }

    //! Transform values at quadrature points to PCE coefficients
    /*!
     * \c input is a vector storing values of a function at the quadrature
     * points, and \c result will contain the resulting polynomial chaos
     * coefficients.  \c input and \c result can have multiple columns for
     * vector-valued functions and set \c trans to true if these (multi-) 
     * vectors are layed out in a transposed fashion.
     */
    virtual void transformQP2PCE(
      const value_type& alpha, 
      const Teuchos::SerialDenseMatrix<ordinal_type,value_type>& input,
      Teuchos::SerialDenseMatrix<ordinal_type,value_type>& result, 
      const value_type& beta,
      bool trans = false) const {
      if (use_pst)
	apply_pst(qp2pce_k, alpha, input, result, beta, trans, false, reorder);
      else
	apply_direct(qp2pce, alpha, input, result, beta, trans);
    }

    //! Transform PCE coefficients to quadrature values
    /*!
     * \c input is a vector storing polynomial chaos coefficients
     * and \c result will contain the resulting values at the quadrature points.
     * \c input and \c result can have multiple columns for
     * vector-valued functions and set \c trans to true if these (multi-) 
     * vectors are layed out in a transposed fashion.
     */
    virtual void transformPCE2QP(
      const value_type& alpha, 
      const Teuchos::SerialDenseMatrix<ordinal_type,value_type>& input,
      Teuchos::SerialDenseMatrix<ordinal_type,value_type>& result, 
      const value_type& beta,
      bool trans = false) const {

      // Only use PST if it was requested and number of rows/columns match
      // (since we may allow fewer rows in input than columns of pce2qp)
      bool can_use_pst = use_pst;
      if (trans) 
	can_use_pst = can_use_pst && (input.numCols() == pce2qp.numRows());
      else
	can_use_pst = can_use_pst && (input.numRows() == pce2qp.numRows());

      if (can_use_pst)	
	apply_pst(pce2qp_k, alpha, input, result, beta, trans, reorder, false);
      else 
	apply_direct(pce2qp, alpha, input, result, beta, trans);
    }

  protected:

    //! Apply transformation operator using direct method
    void apply_direct(
      const Teuchos::SerialDenseMatrix<ordinal_type,value_type>& A,
      const value_type& alpha, 
      const Teuchos::SerialDenseMatrix<ordinal_type,value_type>& input,
      Teuchos::SerialDenseMatrix<ordinal_type,value_type>& result, 
      const value_type& beta,
      bool trans) const {
      if (trans) {
	TEUCHOS_ASSERT(input.numCols() <= A.numCols());
	TEUCHOS_ASSERT(result.numCols() == A.numRows());
	TEUCHOS_ASSERT(result.numRows() == input.numRows());
	blas.GEMM(Teuchos::NO_TRANS, Teuchos::TRANS, input.numRows(), 
		  A.numRows(), input.numCols(), alpha, input.values(), 
		  input.stride(), A.values(), A.stride(), beta, 
		  result.values(), result.stride());
      }
      else {
	TEUCHOS_ASSERT(input.numRows() <= A.numCols());
	TEUCHOS_ASSERT(result.numRows() == A.numRows());
	TEUCHOS_ASSERT(result.numCols() == input.numCols());
	blas.GEMM(Teuchos::NO_TRANS, Teuchos::NO_TRANS, A.numRows(), 
		  input.numCols(), input.numRows(), alpha, A.values(), 
		  A.stride(), input.values(), input.stride(), beta, 
		  result.values(), result.stride());
      }
    }

    //! Apply tranformation operator using PST method
    /*!
     * For k=1,...,d, let A_k be the m_k-by-n_k quadrature operator for
     * dimension k and A = A_1 \otimes ... \otimes A_d be m-\by-n where 
     * m = m_1...m_d and n = n_1...n_d.  For any two matrices
     * B and C and vector x, (B \otimes C)x = vec( C*X*B^T ) = 
     * vec( C*(B*X^T)^T ) where x = vec(X), and the vec() operator makes a 
     * vector out of a matrix by stacking columns.  Applying this formula
     * recursively to A yields the simple algorithm for computing y = A*x
     * (x is n-by-1 and y is m-by-1):
     *    X = x;
     *    for k=1:d
     *      n = n / n_k;
     *      X = reshape(X, n, n_k);
     *      X = A_k*X';
     *      n = n * m_k;
     *    end
     *    y = reshape(X, m, 1);
     *
     * When x has p columns, it is somehwat more complicated because the
     * standard transpose above isn't correct.  Instead the transpose
     * needs to be applied to each p block in X.
     *
     * The strategy here for dealing with transposed input and result
     * is to transpose them when copying to/from the temporary buffers
     * used in the algorithm.
     */
    void apply_pst(
      const Teuchos::Array< Teuchos::SerialDenseMatrix<ordinal_type,value_type> >& Ak,
      const value_type& alpha, 
      const Teuchos::SerialDenseMatrix<ordinal_type,value_type>& input,
      Teuchos::SerialDenseMatrix<ordinal_type,value_type>& result, 
      const value_type& beta,
      bool trans,
      bool reorder_input,
      bool reorder_result) const {

      ordinal_type n, m, p;
      if (trans) {
	TEUCHOS_ASSERT(input.numRows() == result.numRows());
	n = input.numCols();
	p = input.numRows();
	m = result.numCols();
      }
      else {
	TEUCHOS_ASSERT(input.numCols() == result.numCols());
	n = input.numRows();
	p = input.numCols();
	m = result.numRows();
      }    
      ordinal_type M = 1;
      ordinal_type N = 1;
      for (ordinal_type k=0; k<dim; ++k) {
	M *= Ak[k].numRows();
	N *= Ak[k].numCols();
      }
      TEUCHOS_ASSERT(n == N);
      TEUCHOS_ASSERT(m == M);
      ordinal_type sz = std::max(n,m);  

      // Temporary buffers used in algorithm
      Teuchos::Array<value_type> tmp1(sz*p),  tmp2(sz*p);

      // Copy input to tmp1 (transpose if necessary)
      if (trans) {
	if (reorder_input) {
	  ordinal_type idx;
	  for (ordinal_type j=0; j<p; j++)
	    for (ordinal_type i=0; i<n; i++) {
	      idx = perm[i];
	      tmp1[i+j*n] = input(j,idx);
	    }
	}
	else {
	  for (ordinal_type j=0; j<p; j++)
	    for (ordinal_type i=0; i<n; i++)
	      tmp1[i+j*n] = input(j,i);
	}
      }
      else {
	if (reorder_input) {
	  ordinal_type idx;
	  for (ordinal_type j=0; j<p; j++)
	    for (ordinal_type i=0; i<n; i++) {
	      idx = perm[i];
	      tmp1[i+j*n] = input(idx,j);
	    }
	}
	else {
	  for (ordinal_type j=0; j<p; j++)
	    for (ordinal_type i=0; i<n; i++)
	      tmp1[i+j*n] = input(i,j);
	}
      }
      
      // Loop over each term in Kronecker product
      for (ordinal_type k=0; k<dim; k++) {
	ordinal_type mk = Ak[k].numRows();
	ordinal_type nk = Ak[k].numCols();
	n = n / nk;
	
	// x = reshape(x, n, n_k)
	Teuchos::SerialDenseMatrix<ordinal_type,value_type> x(
	  Teuchos::View, &tmp1[0], n, n, nk*p);

	// y = x'
	Teuchos::SerialDenseMatrix<ordinal_type,value_type> y(
	  Teuchos::View, &tmp2[0], nk, nk, n*p);
	for (ordinal_type l=0; l<p; l++)
	  for (ordinal_type j=0; j<n; j++)
	    for (ordinal_type i=0; i<nk; i++)
	      y(i,j+l*n) = x(j,i+l*nk);

	// x = A_k*x
	Teuchos::SerialDenseMatrix<ordinal_type,value_type> z(
	  Teuchos::View, &tmp1[0], mk, mk, n*p);
	ordinal_type ret = 
	  z.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, Ak[k], y, 0.0);
	TEUCHOS_ASSERT(ret == 0);

	n = n * mk;
      }

      // Sum answer into result (transposing and/or reordering if necessary)
      if (trans) {
	if (reorder_result) {
	  ordinal_type idx;
	  for (ordinal_type j=0; j<p; j++)
	    for (ordinal_type i=0; i<m; i++) {
	      idx = perm[i];
	      result(j,idx) = beta*result(j,idx) + alpha*tmp1[i+j*m];
	    }
	}
	else {
	  for (ordinal_type j=0; j<p; j++)
	    for (ordinal_type i=0; i<m; i++)
	      result(j,i) = beta*result(j,i) + alpha*tmp1[i+j*m];
	}
      }
      else {
	if (reorder_result) {
	  ordinal_type idx;
	  for (ordinal_type j=0; j<p; j++)
	    for (ordinal_type i=0; i<m; i++) {
	      idx = perm[i];
	      result(idx,j) = beta*result(idx,j) + alpha*tmp1[i+j*m];
	    }
	}
	else {
	  for (ordinal_type j=0; j<p; j++)
	    for (ordinal_type i=0; i<m; i++)
	      result(i,j) = beta*result(i,j) + alpha*tmp1[i+j*m];
	}
      }
    }

  protected:

    //! Use partial-summation-transformation
    bool use_pst;

    //! Number of coefficients
    ordinal_type coeff_sz;

    //! Dimension
    ordinal_type dim;

    //! Quadrature points
    point_set_type points;

    //! Map index to point term
    point_map_type point_map;

    //! Do we need to reorder coefficients for PST
    bool reorder;

    //! Permutation array when reordering for PST
    Teuchos::Array<ordinal_type> perm;

    //! Matrix mapping points to coefficients
    Teuchos::SerialDenseMatrix<ordinal_type,value_type> qp2pce;

    //! Matrix mapping coefficients to points
    Teuchos::SerialDenseMatrix<ordinal_type,value_type> pce2qp;

    //! Matrix mapping points to coefficients for each dimension for PST
    Teuchos::Array< Teuchos::SerialDenseMatrix<ordinal_type,value_type> > qp2pce_k;

    //! Matrix mapping coefficients to points for each dimension for PST
    Teuchos::Array< Teuchos::SerialDenseMatrix<ordinal_type,value_type> > pce2qp_k;

    //! BLAS wrappers
    Teuchos::BLAS<ordinal_type,value_type> blas;

  };

}

#endif