This file is indexed.

/usr/include/trilinos/Stokhos_SimpleTiledCrsProductTensor.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_SIMPLE_TILED_CRS_PRODUCT_TENSOR_HPP
#define STOKHOS_SIMPLE_TILED_CRS_PRODUCT_TENSOR_HPP

#include "Kokkos_Core.hpp"

#include "Stokhos_Multiply.hpp"
#include "Stokhos_ProductBasis.hpp"
#include "Stokhos_Sparse3Tensor.hpp"
#include "Stokhos_Sparse3TensorPartition.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Stokhos_TinyVec.hpp"


//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

namespace Stokhos {

template< typename ValueType, class ExecutionSpace >
class SimpleTiledCrsProductTensor {
public:

  typedef ExecutionSpace execution_space;
  typedef int size_type;
  typedef ValueType value_type;

// Vectorsize used in multiply algorithm
#if defined(__AVX__)
  static const size_type host_vectorsize = 32/sizeof(value_type);
  static const bool use_intrinsics = true;
#elif defined(__MIC__)
  static const size_type host_vectorsize = 16;
  static const bool use_intrinsics = true;
#else
  static const size_type host_vectorsize = 2;
  static const bool use_intrinsics = false;
#endif
  static const size_type cuda_vectorsize = 32;
  static const bool is_cuda =
#if defined( KOKKOS_HAVE_CUDA )
    Kokkos::Impl::is_same<ExecutionSpace,Kokkos::Cuda>::value;
#else
    false ;
#endif
  static const size_type vectorsize = is_cuda ? cuda_vectorsize : host_vectorsize;

  // Alignment in terms of number of entries of CRS rows
  static const size_type tensor_align = vectorsize;

private:

  typedef Kokkos::View< value_type[], execution_space >  vec_type;
  typedef Kokkos::View< value_type[], execution_space > value_array_type;
  typedef Kokkos::View< size_type[], execution_space > coord_array_type;
  typedef Kokkos::View< size_type[][2], Kokkos::LayoutLeft, execution_space > coord2_array_type;
  typedef Kokkos::View< size_type*, execution_space > i_begin_type;
  typedef Kokkos::View< size_type*, execution_space > i_size_type;
  typedef Kokkos::View< size_type*, execution_space > num_j_type;
  typedef Kokkos::View< size_type**, execution_space > j_begin_type;
  typedef Kokkos::View< size_type**, execution_space > j_size_type;
  typedef Kokkos::View< size_type**, execution_space > num_k_type;
  typedef Kokkos::View< size_type***, execution_space > k_begin_type;
  typedef Kokkos::View< size_type***, execution_space > k_size_type;

  typedef Kokkos::View< size_type****,  Kokkos::LayoutRight, execution_space > row_map_type;
  typedef Kokkos::View< size_type****,  Kokkos::LayoutRight, execution_space > num_entry_type;

  value_array_type   m_value;
  coord_array_type   m_coord;
  coord2_array_type  m_coord2;
  i_begin_type       m_i_begin;
  i_size_type        m_i_size;
  num_j_type         m_num_j;
  j_begin_type       m_j_begin;
  j_size_type        m_j_size;
  num_k_type         m_num_k;
  k_begin_type       m_k_begin;
  k_size_type        m_k_size;
  row_map_type       m_row_map;
  num_entry_type     m_num_entry;
  size_type          m_dimension;
  size_type          m_max_i_tile_size;
  size_type          m_max_jk_tile_size;
  size_type          m_num_i;
  size_type          m_nnz;
  size_type          m_flops;

  struct Coord {
    size_type i, j, k;
    value_type cijk;
  };

  template <typename coord_t>
  struct Tile {
    size_type lower, upper;
    Teuchos::Array<coord_t> parts;
  };

  typedef Tile<Coord> KTile;
  typedef Tile<KTile> JTile;
  typedef Tile<JTile> ITile;

public:

  inline
  ~SimpleTiledCrsProductTensor() {}

  inline
  SimpleTiledCrsProductTensor() :
    m_value(),
    m_coord(),
    m_coord2(),
    m_i_begin(),
    m_i_size(),
    m_num_j(),
    m_j_begin(),
    m_j_size(),
    m_num_k(),
    m_k_begin(),
    m_k_size(),
    m_row_map(),
    m_num_entry(),
    m_dimension(0),
    m_max_i_tile_size(0),
    m_max_jk_tile_size(0),
    m_num_i(0),
    m_nnz(0),
    m_flops(0) {}

  inline
  SimpleTiledCrsProductTensor(const SimpleTiledCrsProductTensor & rhs) :
    m_value(rhs.m_value),
    m_coord(rhs.m_coord),
    m_coord2(rhs.m_coord2),
    m_i_begin(rhs.m_i_begin),
    m_i_size(rhs.m_i_size),
    m_num_j(rhs.m_num_j),
    m_j_begin(rhs.m_j_begin),
    m_j_size(rhs.m_j_size),
    m_num_k(rhs.m_num_k),
    m_k_begin(rhs.m_k_begin),
    m_k_size(rhs.m_k_size),
    m_row_map(rhs.m_row_map),
    m_num_entry(rhs.m_num_entry),
    m_dimension(rhs.m_dimension),
    m_max_i_tile_size(rhs.m_max_i_tile_size),
    m_max_jk_tile_size(rhs.m_max_jk_tile_size),
    m_num_i(rhs.m_num_i),
    m_nnz(rhs.m_nnz),
    m_flops(rhs.m_flops) {}

  inline
  SimpleTiledCrsProductTensor& operator=(
    const SimpleTiledCrsProductTensor & rhs)
  {
    m_value = rhs.m_value;
    m_coord = rhs.m_coord;
    m_coord2 = rhs.m_coord2;
    m_i_begin = rhs.m_i_begin;
    m_i_size = rhs.m_i_size;
    m_num_j = rhs.m_num_j;
    m_j_begin = rhs.m_j_begin;
    m_j_size = rhs.m_j_size;
    m_num_k = rhs.m_num_k;
    m_k_begin = rhs.m_k_begin;
    m_k_size = rhs.m_k_size;
    m_row_map = rhs.m_row_map;
    m_num_entry = rhs.m_num_entry;
    m_dimension = rhs.m_dimension;
    m_max_i_tile_size = rhs.m_max_i_tile_size;
    m_max_jk_tile_size = rhs.m_max_jk_tile_size;
    m_num_i = rhs.m_num_i;
    m_nnz = rhs.m_nnz;
    m_flops = rhs.m_flops;
    return *this;
  }

  /** \brief  Dimension of the tensor. */
  KOKKOS_INLINE_FUNCTION
  size_type dimension() const { return m_dimension; }

  /** \brief  Number of sparse entries. */
  KOKKOS_INLINE_FUNCTION
  size_type entry_count() const { return m_coord.dimension_0(); }

  /** \brief Number i-tiles */
  KOKKOS_INLINE_FUNCTION
  size_type num_i_tiles() const { return m_num_i; }

  /** \brief  Begin entries with for tile 'i' */
  KOKKOS_INLINE_FUNCTION
  size_type i_begin(const size_type i) const { return m_i_begin(i); }

  /** \brief  Number of entries with for tile 'i' */
  KOKKOS_INLINE_FUNCTION
  size_type i_size(const size_type i) const { return m_i_size(i); }

  /** \brief Number j-tiles */
  KOKKOS_INLINE_FUNCTION
  size_type num_j_tiles(const size_type i) const { return m_num_j(i); }

  /** \brief  Begin entries with for tile 'i,j' */
  KOKKOS_INLINE_FUNCTION
  size_type j_begin(const size_type i, const size_type j) const {
    return m_j_begin(i,j);
  }

  /** \brief  Number of entries with for tile 'i,j' */
  KOKKOS_INLINE_FUNCTION
  size_type j_size(const size_type i, const size_type j) const {
    return m_j_size(i,j);
  }

  /** \brief Number k-tiles */
  KOKKOS_INLINE_FUNCTION
  size_type num_k_tiles(const size_type i, const size_type j) const {
    return m_num_k(i,j); }

  /** \brief  Begin entries with for tile 'i,j,k' */
  KOKKOS_INLINE_FUNCTION
  size_type k_begin(const size_type i, const size_type j,
                    const size_type k) const {
    return m_k_begin(i,j,k);
  }

  /** \brief  Number of entries with for tile 'i,j' */
  KOKKOS_INLINE_FUNCTION
  size_type k_size(const size_type i, const size_type j,
                   const size_type k) const {
    return m_k_size(i,j,k);
  }

  /** \brief  Number of entries for tile (i,j,k) and row r */
  KOKKOS_INLINE_FUNCTION
  size_type num_entry(const size_type i, const size_type j,
                      const size_type k, const size_type r) const {
    return m_num_entry(i,j,k,r);
  }

  /** \brief  Begin entries for tile (i,j,k) and row r */
  KOKKOS_INLINE_FUNCTION
  size_type entry_begin(const size_type i, const size_type j,
                        const size_type k, const size_type r) const {
    return m_row_map(i,j,k,r);
  }

  /** \brief  End entries for tile (i,j,k) and row r */
  KOKKOS_INLINE_FUNCTION
  size_type entry_end(const size_type i, const size_type j,
                      const size_type k, const size_type r) const {
    return m_row_map(i,j,k,r) + m_num_entry(i,j,k,r);
  }

  /** \brief  Coordinates of an entry */
  KOKKOS_INLINE_FUNCTION
  const size_type& coord(const size_type entry, const size_type c) const {
    return m_coord2(entry, c);
  }

  /** \brief  Coordinates of an entry */
  KOKKOS_INLINE_FUNCTION
  const size_type& coord(const size_type entry) const {
    return m_coord(entry);
  }

  /** \brief  Value of an entry */
  KOKKOS_INLINE_FUNCTION
  const value_type & value(const size_type entry) const {
    return m_value(entry);
  }

  /** \brief Number of non-zero's */
  KOKKOS_INLINE_FUNCTION
  size_type num_non_zeros() const
  { return m_nnz; }

  /** \brief Number flop's per multiply-add */
  KOKKOS_INLINE_FUNCTION
  size_type num_flops() const
  { return m_flops; }

  /** \brief Max size of any i tile */
  KOKKOS_INLINE_FUNCTION
  size_type max_i_tile_size() const { return m_max_i_tile_size; }

  /** \brief Max size of any j/k tile */
  KOKKOS_INLINE_FUNCTION
  size_type max_jk_tile_size() const { return m_max_jk_tile_size; }

  template <typename OrdinalType>
  static SimpleTiledCrsProductTensor
  create(const Stokhos::ProductBasis<OrdinalType,ValueType>& basis,
          const Stokhos::Sparse3Tensor<OrdinalType,ValueType>& Cijk,
          const Teuchos::ParameterList& params)
  {
    using Teuchos::rcp;
    using Teuchos::RCP;
    using Teuchos::ParameterList;
    using Teuchos::Array;

    typedef Stokhos::Sparse3Tensor<OrdinalType,ValueType> Cijk_type;
    typedef typename Cijk_type::i_iterator i_iterator;
    typedef typename Cijk_type::ik_iterator ik_iterator;
    typedef typename Cijk_type::ikj_iterator ikj_iterator;

    const size_type i_tile_size = params.get<OrdinalType>("Tile Size");

    // Build 2-way symmetric Cijk tensor
    Cijk_type Cijk_sym;
    i_iterator i_begin = Cijk.i_begin();
    i_iterator i_end = Cijk.i_end();
    for (i_iterator i_it=i_begin; i_it!=i_end; ++i_it) {
      OrdinalType i = index(i_it);
      ik_iterator k_begin = Cijk.k_begin(i_it);
      ik_iterator k_end = Cijk.k_end(i_it);
      for (ik_iterator k_it = k_begin; k_it != k_end; ++k_it) {
        OrdinalType k = index(k_it);
        ikj_iterator j_begin = Cijk.j_begin(k_it);
        ikj_iterator j_end = Cijk.j_end(k_it);
        for (ikj_iterator j_it = j_begin; j_it != j_end; ++j_it) {
          OrdinalType j = index(j_it);
          if (k <= j) {
            ValueType c = Stokhos::value(j_it);
            Cijk_sym.add_term(i, j, k, c);
          }
        }
      }
    }
    Cijk_sym.fillComplete();

    // First partition based on i
    size_type j_tile_size = i_tile_size / 2;
    size_type basis_size = basis.size();
    size_type num_i_parts = (basis_size + i_tile_size-1) / i_tile_size;
    //size_type its = basis_size / num_i_parts;
    size_type its = i_tile_size;
    Array<ITile> i_tiles(num_i_parts);
    for (size_type i=0; i<num_i_parts; ++i) {
      i_tiles[i].lower = i*its;
      i_tiles[i].upper = std::min(basis_size, (i+1)*its);
      i_tiles[i].parts.resize(1);
      i_tiles[i].parts[0].lower = basis_size;
      i_tiles[i].parts[0].upper = 0;
    }

    // Next partition j
    size_type max_jk_tile_size = 0;
    for (i_iterator i_it=Cijk_sym.i_begin(); i_it!=Cijk_sym.i_end(); ++i_it) {
      OrdinalType i = index(i_it);

      // Find which part i belongs to
      size_type idx = 0;
      while (idx < num_i_parts && i >= i_tiles[idx].lower) ++idx;
      --idx;
      TEUCHOS_ASSERT(idx >= 0 && idx < num_i_parts);

      ik_iterator k_begin = Cijk_sym.k_begin(i_it);
      ik_iterator k_end = Cijk_sym.k_end(i_it);
      for (ik_iterator k_it = k_begin; k_it != k_end; ++k_it) {
        OrdinalType j = index(k_it);  // using symmetry to interchange j and k

        if (j < i_tiles[idx].parts[0].lower)
          i_tiles[idx].parts[0].lower = j;
        if (j > i_tiles[idx].parts[0].upper)
          i_tiles[idx].parts[0].upper = j;
      }
    }
    for (size_type idx=0; idx<num_i_parts; ++idx) {
      size_type lower = i_tiles[idx].parts[0].lower;
      size_type upper = i_tiles[idx].parts[0].upper;
      size_type range = upper - lower + 1;
      size_type num_j_parts = (range + j_tile_size-1) / j_tile_size;
      //size_type jts = range / num_j_parts;
      size_type jts = j_tile_size;
      max_jk_tile_size = std::max(max_jk_tile_size, jts);
      Array<JTile> j_tiles(num_j_parts);
      for (size_type j=0; j<num_j_parts; ++j) {
        j_tiles[j].lower = lower + j*jts;
        j_tiles[j].upper = std::min(upper+1, lower + (j+1)*jts);
        j_tiles[j].parts.resize(1);
        j_tiles[j].parts[0].lower = basis_size;
        j_tiles[j].parts[0].upper = 0;
      }
      i_tiles[idx].parts.swap(j_tiles);
    }

    // Now partition k
    for (i_iterator i_it=Cijk_sym.i_begin(); i_it!=Cijk_sym.i_end(); ++i_it) {
      OrdinalType i = index(i_it);

      // Find which part i belongs to
      size_type idx = 0;
      while (idx < num_i_parts && i >= i_tiles[idx].lower) ++idx;
      --idx;
      TEUCHOS_ASSERT(idx >= 0 && idx < num_i_parts);

      ik_iterator k_begin = Cijk_sym.k_begin(i_it);
      ik_iterator k_end = Cijk_sym.k_end(i_it);
      for (ik_iterator k_it = k_begin; k_it != k_end; ++k_it) {
        OrdinalType j = index(k_it);  // using symmetry to interchange j and k

        // Find which part j belongs to
        size_type num_j_parts = i_tiles[idx].parts.size();
        size_type jdx = 0;
        while (jdx < num_j_parts && j >= i_tiles[idx].parts[jdx].lower) ++jdx;
        --jdx;
        TEUCHOS_ASSERT(jdx >= 0 && jdx < num_j_parts);

        ikj_iterator j_begin = Cijk_sym.j_begin(k_it);
        ikj_iterator j_end = Cijk_sym.j_end(k_it);
        for (ikj_iterator j_it = j_begin; j_it != j_end; ++j_it) {
          OrdinalType k = index(j_it);  // using symmetry to interchange j and k
          ValueType cijk = Stokhos::value(j_it);
          if (k >= j) {
            Coord coord;
            coord.i = i; coord.j = j; coord.k = k; coord.cijk = cijk;
            i_tiles[idx].parts[jdx].parts[0].parts.push_back(coord);
            if (k < i_tiles[idx].parts[jdx].parts[0].lower)
              i_tiles[idx].parts[jdx].parts[0].lower = k;
            if (k > i_tiles[idx].parts[jdx].parts[0].upper)
              i_tiles[idx].parts[jdx].parts[0].upper = k;
          }
        }
      }
    }

    // Now need to divide up k-parts based on lower/upper bounds
    size_type num_coord = 0;
    for (size_type idx=0; idx<num_i_parts; ++idx) {
      size_type num_j_parts = i_tiles[idx].parts.size();
      for (size_type jdx=0; jdx<num_j_parts; ++jdx) {
        size_type lower = i_tiles[idx].parts[jdx].parts[0].lower;
        size_type upper = i_tiles[idx].parts[jdx].parts[0].upper;
        size_type range = upper - lower + 1;
        size_type num_k_parts = (range + j_tile_size-1) / j_tile_size;
        //size_type kts = range / num_k_parts;
        size_type kts = j_tile_size;
        max_jk_tile_size = std::max(max_jk_tile_size, kts);
        Array<KTile> k_tiles(num_k_parts);
        for (size_type k=0; k<num_k_parts; ++k) {
          k_tiles[k].lower = lower + k*kts;
          k_tiles[k].upper = std::min(upper+1, lower + (k+1)*kts);
        }
        size_type num_k = i_tiles[idx].parts[jdx].parts[0].parts.size();
        for (size_type l=0; l<num_k; ++l) {
          size_type i = i_tiles[idx].parts[jdx].parts[0].parts[l].i;
          size_type j = i_tiles[idx].parts[jdx].parts[0].parts[l].j;
          size_type k = i_tiles[idx].parts[jdx].parts[0].parts[l].k;
          value_type cijk = i_tiles[idx].parts[jdx].parts[0].parts[l].cijk;

          // Find which part k belongs to
          size_type kdx = 0;
          while (kdx < num_k_parts && k >= k_tiles[kdx].lower) ++kdx;
          --kdx;
          TEUCHOS_ASSERT(kdx >= 0 && kdx < num_k_parts);

          Coord coord;
          coord.i = i; coord.j = j; coord.k = k; coord.cijk = cijk;
          k_tiles[kdx].parts.push_back(coord);
          ++num_coord;
          if (j != k) ++num_coord;
        }

        // Eliminate parts with zero size
        Array<KTile> k_tiles2;
        for (size_type k=0; k<num_k_parts; ++k) {
          if (k_tiles[k].parts.size() > 0)
            k_tiles2.push_back(k_tiles[k]);
        }
        i_tiles[idx].parts[jdx].parts.swap(k_tiles2);
      }
    }
    TEUCHOS_ASSERT(num_coord == Cijk.num_entries());

    // Compute number of non-zeros for each row in each part
    size_type total_num_rows = 0, max_num_rows = 0, entry_count = 0;
    size_type max_num_j_parts = 0, max_num_k_parts = 0;
    Array< Array< Array< Array<size_type> > > > coord_work(num_i_parts);
    for (size_type idx=0; idx<num_i_parts; ++idx) {
      size_type num_j_parts = i_tiles[idx].parts.size();
      max_num_j_parts = std::max(max_num_j_parts, num_j_parts);
      coord_work[idx].resize(num_j_parts);
      for (size_type jdx=0; jdx<num_j_parts; ++jdx) {
        size_type num_k_parts = i_tiles[idx].parts[jdx].parts.size();
        max_num_k_parts = std::max(max_num_k_parts, num_k_parts);
        coord_work[idx][jdx].resize(num_k_parts);
        for (size_type kdx=0; kdx<num_k_parts; ++kdx) {
          size_type num_rows = i_tiles[idx].upper - i_tiles[idx].lower + 1;
          total_num_rows += num_rows;
          max_num_rows = std::max(max_num_rows, num_rows);
          coord_work[idx][jdx][kdx].resize(num_rows, 0);

          size_type nc = i_tiles[idx].parts[jdx].parts[kdx].parts.size();
          for (size_type c=0; c<nc; ++c) {
            size_type i = i_tiles[idx].parts[jdx].parts[kdx].parts[c].i;
            size_type i_begin = i_tiles[idx].lower;
            ++(coord_work[idx][jdx][kdx][i-i_begin]);
            ++entry_count;
          }
        }
      }
    }

    // Pad each row to have size divisible by alignment size
    for (size_type idx=0; idx<num_i_parts; ++idx) {
      size_type num_j_parts = i_tiles[idx].parts.size();
      for (size_type jdx=0; jdx<num_j_parts; ++jdx) {
        size_type num_k_parts = i_tiles[idx].parts[jdx].parts.size();
        for (size_type kdx=0; kdx<num_k_parts; ++kdx) {
          size_type sz = coord_work[idx][jdx][kdx].size();
          for (size_type i = 0; i < sz; ++i) {
            const size_t rem = coord_work[idx][jdx][kdx][i] % tensor_align;
            if (rem > 0) {
              const size_t pad = tensor_align - rem;
              coord_work[idx][jdx][kdx][i] += pad;
              entry_count += pad;
            }
          }
        }
      }
    }

    // Allocate tensor data
    SimpleTiledCrsProductTensor tensor;
    tensor.m_value = value_array_type("value", entry_count);
    tensor.m_coord = coord_array_type("coord", entry_count);
    tensor.m_coord2 = coord2_array_type("coord2", entry_count);
    tensor.m_i_begin = i_begin_type("i_begin", num_i_parts);
    tensor.m_i_size = i_size_type("i_size", num_i_parts);
    tensor.m_num_j = num_j_type("num_j", num_i_parts);
    tensor.m_j_begin = j_begin_type("j_begin", num_i_parts, max_num_j_parts);
    tensor.m_j_size = j_size_type("j_size", num_i_parts, max_num_j_parts);
    tensor.m_num_k = num_k_type("num_k", num_i_parts, max_num_j_parts);
    tensor.m_k_begin = k_begin_type("k_begin", num_i_parts, max_num_j_parts,
                                    max_num_k_parts);
    tensor.m_k_size = k_size_type("k_size", num_i_parts, max_num_j_parts,
                                  max_num_k_parts);
    tensor.m_row_map = row_map_type("row_map", num_i_parts,
                                    max_num_j_parts, max_num_k_parts,
                                    max_num_rows+1);
    tensor.m_num_entry = num_entry_type("num_entry", num_i_parts,
                                        max_num_j_parts, max_num_k_parts,
                                        max_num_rows);
    tensor.m_dimension = basis.size();
    tensor.m_max_i_tile_size = i_tile_size;
    tensor.m_max_jk_tile_size = max_jk_tile_size;
    tensor.m_num_i = num_i_parts;

    // Create mirror, is a view if is host memory
    typename value_array_type::HostMirror host_value =
      Kokkos::create_mirror_view(tensor.m_value);
    typename coord_array_type::HostMirror host_coord =
      Kokkos::create_mirror_view(tensor.m_coord);
    typename coord2_array_type::HostMirror host_coord2 =
      Kokkos::create_mirror_view(tensor.m_coord2);
    typename i_begin_type::HostMirror host_i_begin =
      Kokkos::create_mirror_view(tensor.m_i_begin);
    typename i_size_type::HostMirror host_i_size =
      Kokkos::create_mirror_view(tensor.m_i_size);
    typename num_j_type::HostMirror host_num_j =
      Kokkos::create_mirror_view(tensor.m_num_j);
    typename j_begin_type::HostMirror host_j_begin =
      Kokkos::create_mirror_view(tensor.m_j_begin);
    typename j_size_type::HostMirror host_j_size =
      Kokkos::create_mirror_view(tensor.m_j_size);
    typename num_k_type::HostMirror host_num_k =
      Kokkos::create_mirror_view(tensor.m_num_k);
    typename k_begin_type::HostMirror host_k_begin =
      Kokkos::create_mirror_view(tensor.m_k_begin);
    typename k_size_type::HostMirror host_k_size =
      Kokkos::create_mirror_view(tensor.m_k_size);
    typename row_map_type::HostMirror host_row_map =
      Kokkos::create_mirror_view(tensor.m_row_map);
    typename num_entry_type::HostMirror host_num_entry =
      Kokkos::create_mirror_view(tensor.m_num_entry);

    // Compute row map
    size_type sum = 0;
    for (size_type idx=0; idx<num_i_parts; ++idx) {
      size_type num_j_parts = i_tiles[idx].parts.size();
      for (size_type jdx=0; jdx<num_j_parts; ++jdx) {
        size_type num_k_parts = i_tiles[idx].parts[jdx].parts.size();
        for (size_type kdx=0; kdx<num_k_parts; ++kdx) {
          size_type nc = coord_work[idx][jdx][kdx].size();
          host_row_map(idx,jdx,kdx,0) = sum;
          for (size_type t=0; t<nc; ++t) {
            sum += coord_work[idx][jdx][kdx][t];
            host_row_map(idx,jdx,kdx,t+1) = sum;
            host_num_entry(idx,jdx,kdx,t) = 0;
          }
        }
      }
    }

    // Copy per part row offsets back into coord_work
    for (size_type idx=0; idx<num_i_parts; ++idx) {
      size_type num_j_parts = i_tiles[idx].parts.size();
      for (size_type jdx=0; jdx<num_j_parts; ++jdx) {
        size_type num_k_parts = i_tiles[idx].parts[jdx].parts.size();
        for (size_type kdx=0; kdx<num_k_parts; ++kdx) {
          size_type nc = coord_work[idx][jdx][kdx].size();
          for (size_type t=0; t<nc; ++t) {
            coord_work[idx][jdx][kdx][t] = host_row_map(idx,jdx,kdx,t);
          }
        }
      }
    }

    // Fill in coordinate and value arrays
    for (size_type idx=0; idx<num_i_parts; ++idx) {
      host_i_begin(idx) = i_tiles[idx].lower;
      host_i_size(idx) = i_tiles[idx].upper - i_tiles[idx].lower;
      TEUCHOS_ASSERT(host_i_size(idx) <= i_tile_size);
      size_type num_j_parts = i_tiles[idx].parts.size();
      host_num_j(idx) = num_j_parts;
      for (size_type jdx=0; jdx<num_j_parts; ++jdx) {
        host_j_begin(idx,jdx) = i_tiles[idx].parts[jdx].lower;
        host_j_size(idx,jdx) = i_tiles[idx].parts[jdx].upper -
          i_tiles[idx].parts[jdx].lower;
        TEUCHOS_ASSERT(host_j_size(idx,jdx) <= max_jk_tile_size);
        size_type num_k_parts = i_tiles[idx].parts[jdx].parts.size();
        host_num_k(idx,jdx) = num_k_parts;
        for (size_type kdx=0; kdx<num_k_parts; ++kdx) {
          host_k_begin(idx,jdx,kdx) = i_tiles[idx].parts[jdx].parts[kdx].lower;
          host_k_size(idx,jdx,kdx) = i_tiles[idx].parts[jdx].parts[kdx].upper -
            i_tiles[idx].parts[jdx].parts[kdx].lower;
          TEUCHOS_ASSERT(host_k_size(idx,jdx,kdx) <= max_jk_tile_size);

          size_type nc = i_tiles[idx].parts[jdx].parts[kdx].parts.size();
          for (size_type t=0; t<nc; ++t) {
            Coord s = i_tiles[idx].parts[jdx].parts[kdx].parts[t];
            const size_type i = s.i;
            const size_type j = s.j;
            const size_type k = s.k;
            const value_type c = s.cijk;

            const size_type row = i - host_i_begin(idx);
            const size_type n = coord_work[idx][jdx][kdx][row];
            ++coord_work[idx][jdx][kdx][row];

            host_value(n) = (j != k) ? c : 0.5*c;
            host_coord2(n,0) = j - host_j_begin(idx,jdx);
            host_coord2(n,1) = k - host_k_begin(idx,jdx,kdx);
            host_coord(n) = (host_coord2(n,1) << 16) | host_coord2(n,0);

            ++host_num_entry(idx,jdx,kdx,row);
            ++tensor.m_nnz;
          }
        }
      }
    }

    // Copy data to device if necessary
    Kokkos::deep_copy(tensor.m_value, host_value);
    Kokkos::deep_copy(tensor.m_coord, host_coord);
    Kokkos::deep_copy(tensor.m_coord2, host_coord2);
    Kokkos::deep_copy(tensor.m_i_begin, host_i_begin);
    Kokkos::deep_copy(tensor.m_i_size, host_i_size);
    Kokkos::deep_copy(tensor.m_num_j, host_num_j);
    Kokkos::deep_copy(tensor.m_j_begin, host_j_begin);
    Kokkos::deep_copy(tensor.m_j_size, host_j_size);
    Kokkos::deep_copy(tensor.m_num_k, host_num_k);
    Kokkos::deep_copy(tensor.m_k_begin, host_k_begin);
    Kokkos::deep_copy(tensor.m_k_size, host_k_size);
    Kokkos::deep_copy(tensor.m_row_map, host_row_map);
    Kokkos::deep_copy(tensor.m_num_entry, host_num_entry);

    tensor.m_flops = 0;
    for (size_type idx=0; idx<num_i_parts; ++idx) {
      size_type num_j_parts = i_tiles[idx].parts.size();
      for (size_type jdx=0; jdx<num_j_parts; ++jdx) {
        size_type num_k_parts = i_tiles[idx].parts[jdx].parts.size();
        for (size_type kdx=0; kdx<num_k_parts; ++kdx) {
          for (size_type i = 0; i < host_i_size(idx); ++i) {
            tensor.m_flops += 5*host_num_entry(idx,jdx,kdx,i) + 1;
          }
        }
      }
    }

    return tensor;
  }
};

template< class Device, typename OrdinalType, typename ValueType >
SimpleTiledCrsProductTensor<ValueType, Device>
create_simple_tiled_product_tensor(
  const Stokhos::ProductBasis<OrdinalType,ValueType>& basis,
  const Stokhos::Sparse3Tensor<OrdinalType,ValueType>& Cijk,
  const Teuchos::ParameterList& params)
{
  return SimpleTiledCrsProductTensor<ValueType, Device>::create(
    basis, Cijk, params);
}

template < typename ValueType, typename Device >
class BlockMultiply< SimpleTiledCrsProductTensor< ValueType , Device > >
{
public:

  typedef typename Device::size_type size_type ;
  typedef SimpleTiledCrsProductTensor< ValueType , Device > tensor_type ;

  template< typename MatrixValue , typename VectorValue >
  KOKKOS_INLINE_FUNCTION
  static void apply( const tensor_type & tensor ,
                     const MatrixValue * const a ,
                     const VectorValue * const x ,
                           VectorValue * const y )
  {
    const size_type block_size = 2;
    typedef TinyVec<ValueType,block_size,false> TV;

    const size_type n_i_tile = tensor.num_i_tiles();
    for (size_type i_tile = 0; i_tile<n_i_tile; ++i_tile) {
      const size_type i_begin = tensor.i_begin(i_tile);
      const size_type i_size  = tensor.i_size(i_tile);

      const size_type n_j_tile = tensor.num_j_tiles(i_tile);
      for (size_type j_tile = 0; j_tile<n_j_tile; ++j_tile) {
        const size_type j_begin = tensor.j_begin(i_tile, j_tile);
        //const size_type j_size  = tensor.j_size(i_tile, j_tile);

        const size_type n_k_tile = tensor.num_k_tiles(i_tile, j_tile);
        for (size_type k_tile = 0; k_tile<n_k_tile; ++k_tile) {
          const size_type k_begin = tensor.k_begin(i_tile, j_tile, k_tile);
          //const size_type k_size  = tensor.k_size(i_tile, j_tile, k_tile);

          for (size_type i=0; i<i_size; ++i) {

            const size_type nEntry =
              tensor.num_entry(i_tile,j_tile,k_tile,i);
            const size_type iEntryBeg =
              tensor.entry_begin(i_tile,j_tile,k_tile,i);
            const size_type iEntryEnd = iEntryBeg + nEntry;
            size_type iEntry = iEntryBeg;

            VectorValue ytmp = 0 ;

            // Do entries with a blocked loop of size block_size
            if (block_size > 1) {
              const size_type nBlock = nEntry / block_size;
              const size_type nEntryB = nBlock * block_size;
              const size_type iEnd = iEntryBeg + nEntryB;

              TV vy;
              vy.zero();
              int j[block_size], k[block_size];

              for ( ; iEntry < iEnd ; iEntry += block_size ) {

                for (size_type ii=0; ii<block_size; ++ii) {
                  j[ii] = tensor.coord(iEntry+ii,0) + j_begin;
                  k[ii] = tensor.coord(iEntry+ii,1) + k_begin;
                }
                TV aj(a, j), ak(a, k), xj(x, j), xk(x, k),
                  c(&(tensor.value(iEntry)));

                // vy += c * ( aj * xk + ak * xj)
                aj.times_equal(xk);
                ak.times_equal(xj);
                aj.plus_equal(ak);
                c.times_equal(aj);
                vy.plus_equal(c);

              }

              ytmp += vy.sum();
            }

            // Do remaining entries with a scalar loop
            for ( ; iEntry<iEntryEnd; ++iEntry) {
              const size_type j = tensor.coord(iEntry,0) + j_begin;
              const size_type k = tensor.coord(iEntry,1) + k_begin;

              ytmp += tensor.value(iEntry) * ( a[j] * x[k] + a[k] * x[j] );
            }

            y[i+i_begin] += ytmp;

          }
        }
      }
    }
  }

  KOKKOS_INLINE_FUNCTION
  static size_type matrix_size( const tensor_type & tensor )
  { return tensor.dimension(); }

  KOKKOS_INLINE_FUNCTION
  static size_type vector_size( const tensor_type & tensor )
  { return tensor.dimension(); }
};

} /* namespace Stokhos */

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

#endif /* #ifndef STOKHOS_SIMPLE_TILED_CRS_PRODUCT_TENSOR_HPP */