This file is indexed.

/usr/include/trilinos/Stokhos_ProductBasisUtils.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_PRODUCT_BASIS_UTILS_HPP
#define STOKHOS_PRODUCT_BASIS_UTILS_HPP

#include "Teuchos_Array.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_TimeMonitor.hpp"

#include "Stokhos_SDMUtils.hpp"
#include "Stokhos_Sparse3Tensor.hpp"
#include "Stokhos_GrowthRules.hpp"

namespace Stokhos {

  /*!
   * \brief Compute bionomial coefficient (n ; k) = n!/( k! (n-k)! )
   */
  template <typename ordinal_type>
  ordinal_type n_choose_k(const ordinal_type& n, const ordinal_type& k) {
    // Use formula
    // n!/(k!(n-k)!) = n(n-1)...(k+1) / ( (n-k)(n-k-1)...1 )  ( n-k terms )
    //               = n(n-1)...(n-k+1) / ( k(k-1)...1 )      ( k terms )
    // which ever has fewer terms
    if (k > n)
      return 0;
    ordinal_type num = 1;
    ordinal_type den = 1;
    ordinal_type l = std::min(n-k,k);
    for (ordinal_type i=0; i<l; i++) {
      num *= n-i;
      den *= i+1;
    }
    return num / den;
  }

  //! A multidimensional index
  template <typename ordinal_t>
  class MultiIndex {
  public:

    typedef ordinal_t ordinal_type;
    typedef ordinal_t element_type;

    //! Constructor
    MultiIndex() {}

    //! Constructor
    MultiIndex(ordinal_type dim, ordinal_type v = ordinal_type(0)) :
      index(dim,v) {}

    //! Destructor
    ~MultiIndex() {}

    //! Dimension
    ordinal_type dimension() const { return index.size(); }

    //! Size
    ordinal_type size() const { return index.size(); }

    //! Term access
    const ordinal_type& operator[] (ordinal_type i) const { return index[i]; }

    //! Term access
    ordinal_type& operator[] (ordinal_type i) { return index[i]; }

     //! Term access
    const Teuchos::Array<element_type>& getTerm() const { return index; }

    //! Term access
    Teuchos::Array<element_type>& getTerm() { return index; }

    //! Initialize
    void init(ordinal_type v) {
      for (ordinal_type i=0; i<dimension(); i++)
        index[i] = v;
    }

    //! Resize
    void resize(ordinal_type d, ordinal_type v = ordinal_type(0)) {
      index.resize(d,v);
    }

    //! Compute total order of index
    ordinal_type order() const {
      ordinal_type my_order = 0;
      for (ordinal_type i=0; i<dimension(); ++i) my_order += index[i];
      return my_order;
    }

    //! Compare equality
    bool operator==(const MultiIndex& idx) const {
      if (dimension() != idx.dimension())
        return false;
      for (ordinal_type i=0; i<dimension(); i++) {
        if (index[i] != idx.index[i])
          return false;
       }
       return true;
    }

    //! Compare equality
    bool operator!=(const MultiIndex& idx) const { return !(*this == idx); }

    //! Compare term-wise less-than or equal-to
    bool termWiseLEQ(const MultiIndex& idx) const {
      for (ordinal_type i=0; i<dimension(); i++) {
        if (index[i] > idx.index[i])
          return false;
       }
       return true;
    }

    //! Print multiindex
    std::ostream& print(std::ostream& os) const {
      os << "[ ";
      for (ordinal_type i=0; i<dimension(); i++)
        os << index[i] << " ";
      os << "]";
      return os;
    }

    //! Replace multiindex with min of this and other multiindex
    MultiIndex& termWiseMin(const MultiIndex& idx) {
      for (ordinal_type i=0; i<dimension(); i++)
        index[i] = index[i] <= idx[i] ? index[i] : idx[i];
      return *this;
    }

    //! Replace multiindex with min of this and given value
    MultiIndex& termWiseMin(const ordinal_type idx) {
      for (ordinal_type i=0; i<dimension(); i++)
        index[i] = index[i] <= idx ? index[i] : idx;
      return *this;
    }

    //! Replace multiindex with max of this and other multiindex
    MultiIndex& termWiseMax(const MultiIndex& idx) {
      for (ordinal_type i=0; i<dimension(); i++)
        index[i] = index[i] >= idx[i] ? index[i] : idx[i];
      return *this;
    }

    //! Replace multiindex with max of this and given value
    MultiIndex& termWiseMax(const ordinal_type idx) {
      for (ordinal_type i=0; i<dimension(); i++)
        index[i] = index[i] >= idx ? index[i] : idx;
      return *this;
    }

  protected:

    //! index terms
    Teuchos::Array<ordinal_type> index;

  };

  template <typename ordinal_type>
  std::ostream& operator << (std::ostream& os,
                             const MultiIndex<ordinal_type>& m) {
    return m.print(os);
  }

  //! An isotropic total order index set
  /*!
   * Represents the set l <= |i| <= u given upper and lower bounds
   * l and u, and |i| = i_1 + ... + i_d where d is the dimension of the
   * index.
   *
   * Currently this class only really provides an input iterator for
   * iterating over the elements of the index set.  One should not make
   * any assumption on the order of these elements.
   */
  template <typename ordinal_t>
  class TotalOrderIndexSet {
  public:

    // Forward declaration of our iterator
    class Iterator;

    typedef ordinal_t ordinal_type;
    typedef MultiIndex<ordinal_type> multiindex_type;
    typedef Iterator iterator;
    typedef Iterator const_iterator;

    //! Constructor
    /*!
     * \c dim_ is the dimension of the index set, \c lower_ is the lower
     * bound of the index set, and \c upper_ is the upper bound (inclusive)
     */
    TotalOrderIndexSet(ordinal_type dim_,
                       ordinal_type lower_,
                       ordinal_type upper_) :
      dim(dim_), lower(lower_), upper(upper_) {}

    //! Constructor
    /*!
     * \c dim_ is the dimension of the index set, the lower bound is zero,
     * and \c upper_ is the upper bound (inclusive)
     */
    TotalOrderIndexSet(ordinal_type dim_,
                       ordinal_type upper_) :
      dim(dim_), lower(0), upper(upper_) {}

    //! Return dimension
    ordinal_type dimension() const { return dim; }

    //! Return maximum order for each dimension
    multiindex_type max_orders() const {
      return multiindex_type(dim, upper);
    }

    //! Return iterator for first element in the set
    const_iterator begin() const {
      multiindex_type index(dim);
      index[0] = lower;
      return Iterator(upper, index);
    }

    //! Return iterator for end of the index set
    const_iterator end() const {
      multiindex_type index(dim);
      index[dim-1] = upper+1;
      return Iterator(upper, index);
    }

  protected:

    //! Dimension
    ordinal_type dim;

    //! Lower order of index set
    ordinal_type lower;

    //! Upper order of index set
    ordinal_type upper;

  public:

    //! Iterator class for iterating over elements of the index set
    class Iterator : public std::iterator<std::input_iterator_tag,
                                          multiindex_type> {
    public:

      typedef std::iterator<std::input_iterator_tag,multiindex_type> base_type;
      typedef typename base_type::iterator_category iterator_category;
      typedef typename base_type::value_type value_type;
      typedef typename base_type::difference_type difference_type;
      typedef typename base_type::reference reference;
      typedef typename base_type::pointer pointer;

      typedef const multiindex_type& const_reference;
      typedef const multiindex_type* const_pointer;

      //! Constructor
      /*!
       * \c max_order_ is the maximum order of the set (inclusive) and
       * \c index_ is the starting multi-index.
       */
      Iterator(ordinal_type max_order_, const multiindex_type& index_) :
        max_order(max_order_), index(index_), dim(index.dimension()),
        orders(dim) {
        orders[dim-1] = max_order;
        for (ordinal_type i=dim-2; i>=0; --i)
          orders[i] = orders[i+1] - index[i+1];
      }

      //! Compare equality of iterators
      bool operator==(const Iterator& it) const { return index == it.index; }

      //! Compare inequality of iterators
      bool operator!=(const Iterator& it) const { return index != it.index; }

      //! Dereference
      const_reference operator*() const { return index; }

      //! Dereference
      const_pointer operator->() const { return &index; }

      //! Prefix increment, i.e., ++iterator
      /*!
       * No particular ordering of the indices is guaranteed.  The current
       * implementation produces multi-indices sorted lexographically
       * backwards among the elements, e.g.,
       * [0 0], [1 0], [2 0], ... [0 1], [1 1], [2 1], ...
       * but one shouldn't assume that.  To obtain a specific
       * ordering, one should implement a "less" functional and put the
       * indices in a sorted container such as std::map<>.
       */
      Iterator& operator++() {
        ++index[0];
        ordinal_type i=0;
        while (i<dim-1 && index[i] > orders[i]) {
          index[i] = 0;
          ++i;
          ++index[i];
        }
        for (ordinal_type ii=dim-2; ii>=0; --ii)
          orders[ii] = orders[ii+1] - index[ii+1];

        return *this;
      }

      //! Postfix increment, i.e., iterator++
      Iterator& operator++(int) {
        Iterator tmp(*this);
        ++(*this);
        return tmp;
      }

    protected:

      //! Maximum order of iterator
      ordinal_type max_order;

      //! Current value of iterator
      multiindex_type index;

      //! Dimension
      ordinal_type dim;

      //! Maximum orders for each term to determine how to increment
      Teuchos::Array<ordinal_type> orders;
    };
  };

  //! An anisotropic total order index set
  /*!
   * Represents the set l <= |i| <= u and i_j <= u_j given upper and
   * lower order bounds l and u, upper component bounds u_j,
   * and |i| = i_1 + ... + i_d where d is the dimension of the index.
   *
   * Currently this class only really provides an input iterator for
   * iterating over the elements of the index set.  One should not make
   * any assumption on the order of these elements.
   */
  template <typename ordinal_t>
  class AnisotropicTotalOrderIndexSet {
  public:

    // Forward declaration of our iterator
    class Iterator;

    typedef ordinal_t ordinal_type;
    typedef MultiIndex<ordinal_type> multiindex_type;
    typedef Iterator iterator;
    typedef Iterator const_iterator;

    //! Constructor
    /*!
     * \c dim_ is the dimension of the index set, \c lower_ is the lower
     * bound of the index set, and \c upper_ is the upper bound (inclusive)
     */
    AnisotropicTotalOrderIndexSet(ordinal_type upper_order_,
                                  const multiindex_type& lower_,
                                  const multiindex_type& upper_) :
      dim(lower_.dimension()),
      upper_order(upper_order_),
      lower(lower_),
      upper(upper_) {}

    //! Constructor
    /*!
     * \c dim_ is the dimension of the index set, the lower bound is zero,
     * and \c upper_ is the upper bound (inclusive)
     */
    AnisotropicTotalOrderIndexSet(ordinal_type upper_order_,
                                  const multiindex_type& upper_) :
      dim(upper_.dimension()),
      upper_order(upper_order_),
      lower(dim,0),
      upper(upper_) {}

    //! Return dimension
    ordinal_type dimension() const { return dim; }

    //! Return maximum order for each dimension
    multiindex_type max_orders() const { return upper; }

    //! Return iterator for first element in the set
    const_iterator begin() const {
      return Iterator(upper_order, upper, lower);
    }

    //! Return iterator for end of the index set
    const_iterator end() const {
      multiindex_type index(dim);
      index[dim-1] = std::min(upper_order, upper[dim-1]) + 1;
      return Iterator(upper_order, upper, index);
    }

  protected:

    //! Dimension
    ordinal_type dim;

    //! Lower order of index set
    ordinal_type lower_order;

    //! Upper order of index set
    ordinal_type upper_order;

    //! Component-wise lower bounds
    multiindex_type lower;

    //! Component-wise upper bounds
    multiindex_type upper;

  public:

    //! Iterator class for iterating over elements of the index set
    class Iterator : public std::iterator<std::input_iterator_tag,
                                          multiindex_type> {
    public:

      typedef std::iterator<std::input_iterator_tag,multiindex_type> base_type;
      typedef typename base_type::iterator_category iterator_category;
      typedef typename base_type::value_type value_type;
      typedef typename base_type::difference_type difference_type;
      typedef typename base_type::reference reference;
      typedef typename base_type::pointer pointer;

      typedef const multiindex_type& const_reference;
      typedef const multiindex_type* const_pointer;

      //! Constructor
      /*!
       * \c max_order_ is the maximum order of the set (inclusive) and
       * \c index_ is the starting multi-index.
       */
      Iterator(ordinal_type max_order_,
               const multiindex_type& component_max_order_,
               const multiindex_type& index_) :
        max_order(max_order_),
        component_max_order(component_max_order_),
        index(index_),
        dim(index.dimension()),
        orders(dim)
      {
        orders[dim-1] = max_order;
        for (ordinal_type i=dim-2; i>=0; --i)
          orders[i] = orders[i+1] - index[i+1];
      }

      //! Compare equality of iterators
      bool operator==(const Iterator& it) const { return index == it.index; }

      //! Compare inequality of iterators
      bool operator!=(const Iterator& it) const { return index != it.index; }

      //! Dereference
      const_reference operator*() const { return index; }

      //! Dereference
      const_pointer operator->() const { return &index; }

      //! Prefix increment, i.e., ++iterator
      /*!
       * No particular ordering of the indices is guaranteed.  The current
       * implementation produces multi-indices sorted lexographically
       * backwards among the elements, e.g.,
       * [0 0], [1 0], [2 0], ... [0 1], [1 1], [2 1], ...
       * but one shouldn't assume that.  To obtain a specific
       * ordering, one should implement a "less" functional and put the
       * indices in a sorted container such as std::map<>.
       */
      Iterator& operator++() {
        ++index[0];
        ordinal_type i=0;
        while (i<dim-1 && (index[i] > orders[i] || index[i] > component_max_order[i])) {
          index[i] = 0;
          ++i;
          ++index[i];
        }
        for (ordinal_type ii=dim-2; ii>=0; --ii)
          orders[ii] = orders[ii+1] - index[ii+1];

        return *this;
      }

      //! Postfix increment, i.e., iterator++
      Iterator& operator++(int) {
        Iterator tmp(*this);
        ++(*this);
        return tmp;
      }

    protected:

      //! Maximum order of iterator
      ordinal_type max_order;

      //! Maximum order for each component
      multiindex_type component_max_order;

      //! Current value of iterator
      multiindex_type index;

      //! Dimension
      ordinal_type dim;

      //! Maximum orders for each term to determine how to increment
      Teuchos::Array<ordinal_type> orders;
    };
  };

  //! A tensor product index set
  /*!
   * Represents the set l_j <= i_j <= u_j given upper and lower bounds
   * l_j and u_j, for j = 1,...,d where d is the dimension of the
   * index.
   *
   * Currently this class only really provides an input iterator for
   * iterating over the elements of the index set.  One should not make
   * any assumption on the order of these elements.
   */
  template <typename ordinal_t>
  class TensorProductIndexSet {
  public:

    // Forward declaration of our iterator
    class Iterator;

    typedef ordinal_t ordinal_type;
    typedef MultiIndex<ordinal_type> multiindex_type;
    typedef Iterator iterator;
    typedef Iterator const_iterator;

    //! Constructor
    /*!
     * \c dim_ is the dimension of the index set, \c lower_ is the lower
     * bound of the index set, and \c upper_ is the upper bound (inclusive)
     */
    TensorProductIndexSet(ordinal_type dim_,
                          ordinal_type lower_,
                          ordinal_type upper_) :
      dim(dim_), lower(dim_,lower_), upper(dim_,upper_) {}

    //! Constructor
    /*!
     * \c dim_ is the dimension of the index set, the lower bound is zero,
     * and \c upper_ is the upper bound (inclusive)
     */
    TensorProductIndexSet(ordinal_type dim_,
                          ordinal_type upper_) :
      dim(dim_), lower(dim_,ordinal_type(0)), upper(dim_,upper_) {}

    //! Constructor
    /*!
     * \c dim_ is the dimension of the index set, \c lower_ is the lower
     * bound of the index set, and \c upper_ is the upper bound (inclusive)
     */
    TensorProductIndexSet(const multiindex_type& lower_,
                          const multiindex_type& upper_) :
      dim(lower_.dimension()), lower(lower_), upper(upper_) {}

    //! Constructor
    /*!
     * \c dim_ is the dimension of the index set, the lower bound is zero,
     * and \c upper_ is the upper bound (inclusive)
     */
    TensorProductIndexSet(const multiindex_type& upper_) :
      dim(upper_.dimension()), lower(dim,ordinal_type(0)), upper(upper_) {}

    //! Return dimension
    ordinal_type dimension() const { return dim; }

    //! Return maximum order for each dimension
    multiindex_type max_orders() const {
      return upper;
    }

    //! Return iterator for first element in the set
    const_iterator begin() const {
      return Iterator(upper, lower);
    }

    //! Return iterator for end of the index set
    const_iterator end() const {
      multiindex_type index(dim);
      index[dim-1] = upper[dim-1]+1;
      return Iterator(upper, index);
    }

  protected:

    //! Dimension
    ordinal_type dim;

    //! Lower bound of index set
    multiindex_type lower;

    //! Upper bound of index set
    multiindex_type upper;

  public:

    //! Iterator class for iterating over elements of the index set
    class Iterator : public std::iterator<std::input_iterator_tag,
                                          multiindex_type> {
    public:

      typedef std::iterator<std::input_iterator_tag,multiindex_type> base_type;
      typedef typename base_type::iterator_category iterator_category;
      typedef typename base_type::value_type value_type;
      typedef typename base_type::difference_type difference_type;
      typedef typename base_type::reference reference;
      typedef typename base_type::pointer pointer;

      typedef const multiindex_type& const_reference;
      typedef const multiindex_type* const_pointer;

      //! Constructor
      /*!
       * \c upper_ is the upper bound of the set (inclusive) and
       * \c index_ is the starting multi-index.
       */
      Iterator(const multiindex_type& upper_, const multiindex_type& index_) :
        upper(upper_), index(index_), dim(index.dimension()) {}

      //! Compare equality of iterators
      bool operator==(const Iterator& it) const { return index == it.index; }

      //! Compare inequality of iterators
      bool operator!=(const Iterator& it) const { return index != it.index; }

      //! Dereference
      const_reference operator*() const { return index; }

      //! Dereference
      const_pointer operator->() const { return &index; }

      //! Prefix increment, i.e., ++iterator
      /*!
       * No particular ordering of the indices is guaranteed.  The current
       * implementation produces multi-indices sorted lexographically
       * backwards among the elements, e.g.,
       * [0 0], [1 0], [2 0], ... [0 1], [1 1], [2 1], ...
       * but one shouldn't assume that.  To obtain a specific
       * ordering, one should implement a "less" functional and put the
       * indices in a sorted container such as std::map<>.
       */
      Iterator& operator++() {
        ++index[0];
        ordinal_type i=0;
        while (i<dim-1 && index[i] > upper[i]) {
          index[i] = 0;
          ++i;
          ++index[i];
        }
        return *this;
      }

      //! Postfix increment, i.e., iterator++
      Iterator& operator++(int) {
        Iterator tmp(*this);
        ++(*this);
        return tmp;
      }

    protected:

      //! Upper bound of iterator
      multiindex_type upper;

      //! Current value of iterator
      multiindex_type index;

      //! Dimension
      ordinal_type dim;

    };
  };

  //! Container storing a term in a generalized tensor product
  template <typename ordinal_t, typename element_t>
  class TensorProductElement {
  public:

    typedef ordinal_t ordinal_type;
    typedef element_t element_type;

    //! Default constructor
    TensorProductElement() {}

    //! Constructor
    TensorProductElement(ordinal_type dim,
                         const element_type& val = element_type(0)) :
      term(dim,val) {}

    //! Destructor
    ~TensorProductElement() {};

    //! Return dimension
    ordinal_type dimension() const { return term.size(); }

     //! Return dimension
    ordinal_type size() const { return term.size(); }

    //! Term access
    const element_type& operator[] (ordinal_type i) const { return term[i]; }

    //! Term access
    element_type& operator[] (ordinal_type i) { return term[i]; }

    //! Term access
    const Teuchos::Array<element_type>& getTerm() const { return term; }

    //! Term access
    Teuchos::Array<element_type>& getTerm() { return term; }

    //! Convert to ArrayView
    operator Teuchos::ArrayView<element_type>() { return term; }

    //! Convert to ArrayView
    operator Teuchos::ArrayView<const element_type>() const { return term; }

    //! Compute total order of tensor product element
    element_type order() const {
      element_type my_order = 0;
      for (ordinal_type i=0; i<dimension(); ++i) my_order += term[i];
      return my_order;
    }

    //! Print multiindex
    std::ostream& print(std::ostream& os) const {
      os << "[ ";
      for (ordinal_type i=0; i<dimension(); i++)
        os << term[i] << " ";
      os << "]";
      return os;
    }

  protected:

    //! Array storing term elements
    Teuchos::Array<element_type> term;

  };

  template <typename ordinal_type, typename element_type>
  std::ostream& operator << (
    std::ostream& os,
    const TensorProductElement<ordinal_type,element_type>& m) {
    return m.print(os);
  }

  /*!
   * \brief A comparison functor implementing a strict weak ordering based
   * lexographic ordering
   */
  /*
   * Objects of type \c term_type must implement \c dimension() and
   * \c operator[] methods, as well as contain ordinal_type and element_type
   * nested types.
   */
  template <typename term_type,
            typename compare_type = std::less<typename term_type::element_type> >
  class LexographicLess {
  public:

    typedef term_type product_element_type;
    typedef typename term_type::ordinal_type ordinal_type;
    typedef typename term_type::element_type element_type;

    //! Constructor
    LexographicLess(const compare_type& cmp_ = compare_type()) : cmp(cmp_) {}

    //! Determine if \c a is less than \c b
    bool operator()(const term_type& a, const term_type& b) const {
      ordinal_type i=0;
      while(i < a.dimension() && i < b.dimension() && equal(a[i],b[i])) i++;

      // if a is shorter than b and the first a.dimension() elements agree
      // then a is always less than b
      if (i == a.dimension()) return i != b.dimension();

      // if a is longer than b and the first b.dimension() elements agree
      // then b is always less than a
      if (i == b.dimension()) return false;

      // a and b different at element i, a is less than b if a[i] < b[i]
      return cmp(a[i],b[i]);
    }

  protected:

    //! Element comparison functor
    compare_type cmp;

    //! Determine if two elements \c a and \c b are equal
    bool equal(const element_type& a, const element_type& b) const {
      return !(cmp(a,b) || cmp(b,a));
    }

  };

  /*!
   * \brief A comparison functor implementing a strict weak ordering based
   * total-order ordering, recursive on the dimension.
   */
  /*
   * Objects of type \c term_type must implement \c dimension(), \c order, and
   * \c operator[] methods, as well as contain ordinal_type and element_type
   * nested types.
   */
  template <typename term_type,
            typename compare_type = std::less<typename term_type::element_type> >
  class TotalOrderLess {
  public:

    typedef term_type product_element_type;
    typedef typename term_type::ordinal_type ordinal_type;
    typedef typename term_type::element_type element_type;

    //! Constructor
    TotalOrderLess(const compare_type& cmp_ = compare_type()) : cmp(cmp_) {}

    bool operator()(const term_type& a, const term_type& b) const {
      element_type a_order = a.order();
      element_type b_order = b.order();
      ordinal_type i=0;
      while (i < a.dimension() && i < b.dimension() && equal(a_order,b_order)) {
        a_order -= a[i];
        b_order -= b[i];
        ++i;
      }
      return cmp(a_order,b_order);
    }

  protected:

    //! Element comparison functor
    compare_type cmp;

    //! Determine if two elements \c a and \c b are equal
    bool equal(const element_type& a, const element_type& b) const {
      return !(cmp(a,b) || cmp(b,a));
    }

  };

  /*!
   * \brief A comparison functor implementing a strict weak ordering based
   * Morton Z-ordering.
   */
  /*
   * A Morton Z-ordering is based on thinking of terms of dimension d as
   * coordinates in a d-dimensional space, and forming a linear ordering of
   * the points in that space by interleaving the bits from each coordinate.
   * As implemented, this ordering only works with integral types and
   * directly uses <.  The code was taken from here:
   *
   * http://en.wikipedia.org/wiki/Z-order_curve
   *
   * With the idea behind it published here:
   *
   * Chan, T. (2002), "Closest-point problems simplified on the RAM",
   * ACM-SIAM Symposium on Discrete Algorithms.
   */
  template <typename term_type>
  class MortonZLess {
  public:

    typedef term_type product_element_type;
    typedef typename term_type::ordinal_type ordinal_type;
    typedef typename term_type::element_type element_type;

    //! Constructor
    MortonZLess() {}

    bool operator()(const term_type& a, const term_type& b) const {
      ordinal_type d = a.dimension();
      ordinal_type j = ordinal_type(0);
      //ordinal_type k = ordinal_type(0); // causes shadowing warning
      element_type x = element_type(0);
      for (ordinal_type k=0; k<d; ++k) {
        element_type y = a[k] ^ b[k];
        if ( (x < y) && (x < (x^y)) ) {
          j = k;
          x = y;
        }
      }
      return a[j] < b[j];
    }

  };

  //! A functor for comparing floating-point numbers to some tolerance
  /*!
   * The difference between this and standard < is that if |a-b| < tol,
   * then this always returns false as a and b are treated as equal.
   */
  template <typename value_type>
  class FloatingPointLess {
  public:

    //! Constructor
    FloatingPointLess(const value_type& tol_ = 1.0e-12) : tol(tol_) {}

    //! Destructor
    ~FloatingPointLess() {}

    //! Compare if a < b
    bool operator() (const value_type& a, const value_type& b) const {
      return a < b - tol;
    }

  protected:

    //! Tolerance
    value_type tol;

  };

  //! Predicate functor for building sparse triple products
  template <typename ordinal_type>
  struct TensorProductPredicate {
    typedef MultiIndex<ordinal_type> coeff_type;
    coeff_type orders;

    TensorProductPredicate(const coeff_type& orders_) : orders(orders_) {}

    bool operator() (const coeff_type& term) const {
      return term.termWiseLEQ(orders);
    }

  };

  //! Predicate functor for building sparse triple products based on total order
  template <typename ordinal_type>
  struct TotalOrderPredicate {
    typedef MultiIndex<ordinal_type> coeff_type;
    ordinal_type max_order;
    coeff_type orders;

    TotalOrderPredicate(ordinal_type max_order_, const coeff_type& orders_)
      : max_order(max_order_), orders(orders_) {}

    bool operator() (const coeff_type& term) const {
      return term.termWiseLEQ(orders) && term.order() <= max_order;
    }

  };

  // Compute global index from a total-order-sorted multi-index
  /*
   * The strategy is based on the fact we can compute the number of terms
   * of a total order expansion for any given order and dimension.  Thus
   * starting from the last dimension of the multi-index:
   *     -- compute the order p of the multi-index from the current dimension
   *        dim-d to the last
   *     -- compute the number of terms in an order p-1 expansion of dimension
   *        d
   *     -- add this number of terms to the global index
   * The logic here is independent of the values of the multi-index and
   * requires exactly 8*d + (3/2)*d*(d+1) integer operations and comparisons
   */
  template <typename ordinal_type>
  ordinal_type
  totalOrderMapping(const Stokhos::MultiIndex<ordinal_type>& index) {
    ordinal_type dim = index.dimension();
    ordinal_type idx = ordinal_type(0);
    ordinal_type p = ordinal_type(0);
    ordinal_type den = ordinal_type(1);
    for (ordinal_type d=1; d<=dim; ++d) {
      p += index[dim-d];

      // offset = n_choose_k(p-1+d,d) = (p-1+d)! / ( (p-1)!*d! ) =
      //          ( p*(p+1)*...*(p+d-1) )/( 1*2*...*d )
      den *= d;
      ordinal_type num = 1;
      for (ordinal_type i=p; i<p+d; ++i)
        num *= i;

      idx += num / den;
    }
    return idx;
  }

  // Compute global index from a lexicographic-sorted multi-index
  /*
   * For a given dimension d, let p be the sum of the orders for dimensions
   * <= d.  Then the number of terms that agree with the first d entries
   * is (max_order-p+dim-d)!/(max_order-p)!*(dim-d)! where max_order is
   * the maximum order of the multi-index and dim is the dimension.  Thus
   * we loop over each dimension d and compute the number of terms that come
   * before that term that agree with the first d dimensions.
   */
  template <typename ordinal_type>
  ordinal_type
  lexicographicMapping(const Stokhos::MultiIndex<ordinal_type>& index,
                       ordinal_type max_order) {
    ordinal_type dim = index.dimension();
    ordinal_type idx = ordinal_type(0);
    for (ordinal_type d=1; d<=dim; ++d) {
      ordinal_type p = index[d-1];

      ordinal_type offset = ordinal_type(0);
      for (ordinal_type pp=0; pp<p; ++pp)
        offset += Stokhos::n_choose_k(max_order-pp+dim-d,dim-d);

      idx += offset;
      max_order -= p;
    }
    return idx;
  }

  /*!
   * \brief Utilities for indexing a multi-variate complete polynomial basis
   */
  /*!
   * This version allows specification of a growth rule for each dimension
   * allowing the coefficient order to be a function of the corresponding
   * index.
   */
  class ProductBasisUtils {
  public:

    /*!
     * \brief Generate a product basis from an index set.
     */
    template <typename index_set_type,
              typename growth_rule_type,
              typename basis_set_type,
              typename basis_map_type>
    static void
    buildProductBasis(const index_set_type& index_set,
                      const growth_rule_type& growth_rule,
                      basis_set_type& basis_set,
                      basis_map_type& basis_map) {

      typedef typename index_set_type::ordinal_type ordinal_type;
      typedef typename index_set_type::iterator index_iterator_type;
      typedef typename basis_set_type::iterator basis_iterator_type;
      typedef typename basis_set_type::key_type coeff_type;

      ordinal_type dim = index_set.dimension();

      // Iterator over elements of index set
      index_iterator_type index_iterator = index_set.begin();
      index_iterator_type index_iterator_end = index_set.end();
      for (; index_iterator != index_iterator_end; ++index_iterator) {

        // Generate product coefficient
        coeff_type coeff(dim);
        for (ordinal_type i=0; i<dim; i++)
          coeff[i] = growth_rule[i]((*index_iterator)[i]);

        // Insert coefficient into set
        basis_set[coeff] = ordinal_type(0);
      }

      // Generate linear ordering of basis_set elements
      basis_map.resize(basis_set.size());
      ordinal_type idx = 0;
      basis_iterator_type basis_iterator = basis_set.begin();
      basis_iterator_type basis_iterator_end = basis_set.end();
      for (; basis_iterator != basis_iterator_end; ++basis_iterator) {
        basis_iterator->second = idx;
        basis_map[idx] = basis_iterator->first;
        ++idx;
      }
    }

    /*!
     * \brief Generate a product basis from an index set.
     */

    template <typename index_set_type,
              typename basis_set_type,
              typename basis_map_type>
    static void
    buildProductBasis(const index_set_type& index_set,
                      basis_set_type& basis_set,
                      basis_map_type& basis_map) {
      typedef typename index_set_type::ordinal_type ordinal_type;
      ordinal_type dim = index_set.dimension();
      Teuchos::Array< IdentityGrowthRule<ordinal_type> > growth_rule(dim);
      buildProductBasis(index_set, growth_rule, basis_set, basis_map);
    }

    template <typename ordinal_type,
              typename value_type,
              typename basis_set_type,
              typename basis_map_type,
              typename coeff_predicate_type,
              typename k_coeff_predicate_type>
    static Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
    computeTripleProductTensor(
      const Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > >& bases,
      const basis_set_type& basis_set,
      const basis_map_type& basis_map,
      const coeff_predicate_type& coeff_pred,
      const k_coeff_predicate_type& k_coeff_pred,
      const value_type sparse_tol = 1.0e-12)
      {
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
        TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Time");
#endif
        typedef typename basis_map_type::value_type coeff_type;
        ordinal_type d = bases.size();

        // The algorithm for computing Cijk = < \Psi_i \Psi_j \Psi_k > here
        // works by factoring
        // < \Psi_i \Psi_j \Psi_k > =
        //    < \psi^1_{i_1}\psi^1_{j_1}\psi^1_{k_1} >_1 x ... x
        //    < \psi^d_{i_d}\psi^d_{j_d}\psi^d_{k_d} >_d
        // We compute the sparse triple product < \psi^l_i\psi^l_j\psi^l_k >_l
        // for each dimension l, and then compute all non-zero products of these
        // terms.  The complexity arises from iterating through all possible
        // combinations, throwing out terms that aren't in the basis and are
        // beyond the k-order limit provided
        Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> > Cijk =
          Teuchos::rcp(new Sparse3Tensor<ordinal_type, value_type>);

        // Create 1-D triple products
        Teuchos::Array< Teuchos::RCP<Sparse3Tensor<ordinal_type,value_type> > > Cijk_1d(d);
        for (ordinal_type i=0; i<d; i++) {
          Cijk_1d[i] =
            bases[i]->computeSparseTripleProductTensor(bases[i]->order()+1);
        }

        // Create i, j, k iterators for each dimension
        // Note:  we have to supply an initializer in the arrays of iterators
        // to avoid checked-stl errors about singular iterators
        typedef Sparse3Tensor<ordinal_type,value_type> Cijk_type;
        typedef typename Cijk_type::k_iterator k_iterator;
        typedef typename Cijk_type::kj_iterator kj_iterator;
        typedef typename Cijk_type::kji_iterator kji_iterator;
        Teuchos::Array<k_iterator> k_iterators(d, Cijk_1d[0]->k_begin());
        Teuchos::Array<kj_iterator > j_iterators(d, Cijk_1d[0]->j_begin(k_iterators[0]));
        Teuchos::Array<kji_iterator > i_iterators(d, Cijk_1d[0]->i_begin(j_iterators[0]));
        coeff_type terms_i(d), terms_j(d), terms_k(d);
        for (ordinal_type dim=0; dim<d; dim++) {
          k_iterators[dim] = Cijk_1d[dim]->k_begin();
          j_iterators[dim] = Cijk_1d[dim]->j_begin(k_iterators[dim]);
          i_iterators[dim] = Cijk_1d[dim]->i_begin(j_iterators[dim]);
          terms_i[dim] = index(i_iterators[dim]);
          terms_j[dim] = index(j_iterators[dim]);
          terms_k[dim] = index(k_iterators[dim]);
        }

        ordinal_type I = 0;
        ordinal_type J = 0;
        ordinal_type K = 0;
        bool valid_i = coeff_pred(terms_i);
        bool valid_j = coeff_pred(terms_j);
        bool valid_k = k_coeff_pred(terms_k);
        bool inc_i = true;
        bool inc_j = true;
        bool inc_k = true;
        bool stop = false;
        ordinal_type cnt = 0;
        while (!stop) {

          // Add term if it is in the basis
          if (valid_i && valid_j && valid_k) {
            if (inc_k) {
              typename basis_set_type::const_iterator k =
                basis_set.find(terms_k);
              K = k->second;
            }
            if (inc_i) {
              typename basis_set_type::const_iterator i =
                basis_set.find(terms_i);
              I = i->second;
            }
            if (inc_j) {
              typename basis_set_type::const_iterator j =
                basis_set.find(terms_j);
              J = j->second;
            }
            value_type c = value_type(1.0);
            value_type nrm = value_type(1.0);
            for (ordinal_type dim=0; dim<d; dim++) {
              c *= value(i_iterators[dim]);
              nrm *= bases[dim]->norm_squared(terms_i[dim]);
            }
            if (std::abs(c/nrm) > sparse_tol)
              Cijk->add_term(I,J,K,c);
          }

          // Increment iterators to the next valid term
          ordinal_type cdim = 0;
          bool inc = true;
          inc_i = false;
          inc_j = false;
          inc_k = false;
          while (inc && cdim < d) {
            ordinal_type cur_dim = cdim;
            ++i_iterators[cdim];
            inc_i = true;
            if (i_iterators[cdim] != Cijk_1d[cdim]->i_end(j_iterators[cdim])) {
              terms_i[cdim] = index(i_iterators[cdim]);
              valid_i = coeff_pred(terms_i);
            }
            if (i_iterators[cdim] == Cijk_1d[cdim]->i_end(j_iterators[cdim]) ||
                !valid_i) {
              ++j_iterators[cdim];
              inc_j = true;
              if (j_iterators[cdim] != Cijk_1d[cdim]->j_end(k_iterators[cdim])) {
                terms_j[cdim] = index(j_iterators[cdim]);
                valid_j = coeff_pred(terms_j);
              }
              if (j_iterators[cdim] == Cijk_1d[cdim]->j_end(k_iterators[cdim]) ||
                  !valid_j) {
                ++k_iterators[cdim];
                inc_k = true;
                if (k_iterators[cdim] != Cijk_1d[cdim]->k_end()) {
                  terms_k[cdim] = index(k_iterators[cdim]);
                  valid_k = k_coeff_pred(terms_k);
                }
                if (k_iterators[cdim] == Cijk_1d[cdim]->k_end() || !valid_k) {
                  k_iterators[cdim] = Cijk_1d[cdim]->k_begin();
                  ++cdim;
                  terms_k[cur_dim] = index(k_iterators[cur_dim]);
                  valid_k = k_coeff_pred(terms_k);
                }
                else
                  inc = false;
                j_iterators[cur_dim] =
                  Cijk_1d[cur_dim]->j_begin(k_iterators[cur_dim]);
                terms_j[cur_dim] = index(j_iterators[cur_dim]);
                valid_j = coeff_pred(terms_j);
              }
              else
                inc = false;
              i_iterators[cur_dim] =
                Cijk_1d[cur_dim]->i_begin(j_iterators[cur_dim]);
              terms_i[cur_dim] = index(i_iterators[cur_dim]);
              valid_i = coeff_pred(terms_i);
            }
            else
              inc = false;

            if (!valid_i || !valid_j || !valid_k)
              inc = true;
          }

          if (cdim == d)
            stop = true;

          cnt++;
        }

        Cijk->fillComplete();

        return Cijk;
      }

    template <typename ordinal_type>
    struct Cijk_1D_Iterator {
      ordinal_type i_order, j_order, k_order;
      bool symmetric;
      ordinal_type i, j, k;

      Cijk_1D_Iterator(ordinal_type p = 0, bool sym = false) :
        i_order(p), j_order(p), k_order(p),
        symmetric(sym),
        i(0), j(0), k(0) {}

      Cijk_1D_Iterator(ordinal_type p_i, ordinal_type p_j, ordinal_type p_k,
                       bool sym) :
        i_order(p_i), j_order(p_j), k_order(p_k),
        symmetric(sym),
        i(0), j(0), k(0) {}

      // Reset i,j,k to first non-zero
      void reset() { i = 0; j = 0; k = 0; }

      // Increment i,j,k to next non-zero with constraint i >= j >= k
      // Return false if no more non-zeros
      bool increment() {
        bool zero = true;

        // Increment terms to next non-zero
        while (zero) {
          bool more = increment_once();
          if (!more) return false;
          zero = is_zero();
        }

        return true;
      }

      // Increment i,j,k to next non-zero with constraint i >= j >= k
      // Return false if no more non-zeros
      bool increment(ordinal_type& delta_i,
                     ordinal_type& delta_j,
                     ordinal_type& delta_k) {
        bool zero = true;
        bool more = true;
        ordinal_type i0 = i;
        ordinal_type j0 = j;
        ordinal_type k0 = k;

        // Increment terms to next non-zero
        while (more && zero) {
          more = increment_once();
          if (more)
            zero = is_zero();
        }

        delta_i = i-i0;
        delta_j = j-j0;
        delta_k = k-k0;

        if (!more)
          return false;

        return true;
      }

    private:

      // Increment i,j,k to next term with constraint i >= j >= k
      // If no more terms, reset to first term and return false
      bool increment_once() {
        ++i;
        if (i > i_order) {
          ++j;
          if (j > j_order) {
            ++k;
            if (k > k_order) {
              i = 0;
              j = 0;
              k = 0;
              return false;
            }
            j = 0;
          }
          i = 0;
        }
        return true;
      }

      // Determine if term is zero
      bool is_zero() const {
        if (k+j < i || i+j < k || i+k < j) return true;
        if (symmetric && ((k+j) % 2) != (i % 2) ) return true;
        return false;
      }
    };

    template <typename ordinal_type,
              typename value_type,
              typename basis_set_type,
              typename basis_map_type,
              typename coeff_predicate_type,
              typename k_coeff_predicate_type>
    static Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
    computeTripleProductTensorNew(
      const Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > >& bases,
      const basis_set_type& basis_set,
      const basis_map_type& basis_map,
      const coeff_predicate_type& coeff_pred,
      const k_coeff_predicate_type& k_coeff_pred,
      bool symmetric = false,
      const value_type sparse_tol = 1.0e-12) {
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
      TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Time");
#endif
      typedef typename basis_map_type::value_type coeff_type;
      ordinal_type d = bases.size();

      // The algorithm for computing Cijk = < \Psi_i \Psi_j \Psi_k > here
      // works by factoring
      // < \Psi_i \Psi_j \Psi_k > =
      //    < \psi^1_{i_1}\psi^1_{j_1}\psi^1_{k_1} >_1 x ... x
      //    < \psi^d_{i_d}\psi^d_{j_d}\psi^d_{k_d} >_d
      // We compute the sparse triple product < \psi^l_i\psi^l_j\psi^l_k >_l
      // for each dimension l, and then compute all non-zero products of these
      // terms.  The complexity arises from iterating through all possible
      // combinations, throwing out terms that aren't in the basis and are
      // beyond the k-order limit provided
      Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> > Cijk =
        Teuchos::rcp(new Sparse3Tensor<ordinal_type, value_type>);

      // Create 1-D triple products
      Teuchos::Array< Teuchos::RCP<Sparse3Tensor<ordinal_type,value_type> > > Cijk_1d(d);
      for (ordinal_type i=0; i<d; i++) {
        Cijk_1d[i] =
          bases[i]->computeSparseTripleProductTensor(bases[i]->order()+1);
      }

      // Create i, j, k iterators for each dimension
      typedef Cijk_1D_Iterator<ordinal_type> Cijk_Iterator;
      Teuchos::Array< Cijk_1D_Iterator<ordinal_type> > Cijk_1d_iterators(d);
      coeff_type terms_i(d), terms_j(d), terms_k(d);
      for (ordinal_type dim=0; dim<d; dim++) {
        Cijk_1d_iterators[dim] = Cijk_Iterator(bases[dim]->order(), symmetric);
        terms_i[dim] = 0;
        terms_j[dim] = 0;
        terms_k[dim] = 0;
      }

      ordinal_type I = 0;
      ordinal_type J = 0;
      ordinal_type K = 0;
      bool valid_i = coeff_pred(terms_i);
      bool valid_j = coeff_pred(terms_j);
      bool valid_k = k_coeff_pred(terms_k);
      bool stop = !valid_i || !valid_j || !valid_k;
      ordinal_type cnt = 0;
      while (!stop) {

        typename basis_set_type::const_iterator k = basis_set.find(terms_k);
        typename basis_set_type::const_iterator i = basis_set.find(terms_i);
        typename basis_set_type::const_iterator j = basis_set.find(terms_j);
        K = k->second;
        I = i->second;
        J = j->second;

        value_type c = value_type(1.0);
        for (ordinal_type dim=0; dim<d; dim++) {
          c *= Cijk_1d[dim]->getValue(terms_i[dim], terms_j[dim], terms_k[dim]);
        }
        if (std::abs(c) > sparse_tol) {
          Cijk->add_term(I,J,K,c);
          // Cijk->add_term(I,K,J,c);
          // Cijk->add_term(J,I,K,c);
          // Cijk->add_term(J,K,I,c);
          // Cijk->add_term(K,I,J,c);
          // Cijk->add_term(K,J,I,c);
        }

        // Increment iterators to the next valid term
        // We keep i >= j >= k for each dimension
        ordinal_type cdim = 0;
        bool inc = true;
        while (inc && cdim < d) {
          bool more = Cijk_1d_iterators[cdim].increment();
          terms_i[cdim] = Cijk_1d_iterators[cdim].i;
          terms_j[cdim] = Cijk_1d_iterators[cdim].j;
          terms_k[cdim] = Cijk_1d_iterators[cdim].k;
          if (!more) {
            ++cdim;
          }
          else {
            valid_i = coeff_pred(terms_i);
            valid_j = coeff_pred(terms_j);
            valid_k = k_coeff_pred(terms_k);

            if (valid_i && valid_j && valid_k)
              inc = false;
          }
        }

        if (cdim == d)
          stop = true;

        cnt++;
      }

      Cijk->fillComplete();

      return Cijk;
    }
  };

  /*!
   * \brief Utilities for indexing a multi-variate complete polynomial basis
   */
  template <typename ordinal_type, typename value_type>
  class CompletePolynomialBasisUtils {
  public:

    /*!
     * \brief Compute the 2-D array of basis terms which maps a basis index
     * into the orders for each basis dimension.
     */
    /*
     * Returns expansion total order.
     * This version is for an isotropic expansion of total order \c p in
     * \c d dimensions.
     */
    static ordinal_type
    compute_terms(ordinal_type p, ordinal_type d,
                  ordinal_type& sz,
                  Teuchos::Array< MultiIndex<ordinal_type> >& terms,
                  Teuchos::Array<ordinal_type>& num_terms);

    /*!
     * \brief Compute the 2-D array of basis terms which maps a basis index
     * into the orders for each basis dimension
     */
    /*
     * Returns expansion total order.
     * This version allows for anisotropy in the maximum order in each
     * dimension.
     */
    static ordinal_type
    compute_terms(const Teuchos::Array<ordinal_type>& basis_orders,
                  ordinal_type& sz,
                  Teuchos::Array< MultiIndex<ordinal_type> >& terms,
                  Teuchos::Array<ordinal_type>& num_terms);

    /*!
     * \brief Compute basis index given the orders for each basis
     * dimension.
     */
    static ordinal_type
    compute_index(const MultiIndex<ordinal_type>& term,
                  const Teuchos::Array< MultiIndex<ordinal_type> >& terms,
                  const Teuchos::Array<ordinal_type>& num_terms,
                  ordinal_type max_p);

  };

}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::CompletePolynomialBasisUtils<ordinal_type, value_type>::
compute_terms(ordinal_type p, ordinal_type d,
              ordinal_type& sz,
              Teuchos::Array< Stokhos::MultiIndex<ordinal_type> >& terms,
              Teuchos::Array<ordinal_type>& num_terms)
{
  Teuchos::Array<ordinal_type> basis_orders(d, p);
  return compute_terms(basis_orders, sz, terms, num_terms);
}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::CompletePolynomialBasisUtils<ordinal_type, value_type>::
compute_terms(const Teuchos::Array<ordinal_type>& basis_orders,
              ordinal_type& sz,
              Teuchos::Array< Stokhos::MultiIndex<ordinal_type> >& terms,
              Teuchos::Array<ordinal_type>& num_terms)
{
  // The approach here for ordering the terms is inductive on the total
  // order p.  We get the terms of total order p from the terms of total
  // order p-1 by incrementing the orders of the first dimension by 1.
  // We then increment the orders of the second dimension by 1 for all of the
  // terms whose first dimension order is 0.  We then repeat for the third
  // dimension whose first and second dimension orders are 0, and so on.
  // How this is done is most easily illustrated by an example of dimension 3:
  //
  // Order  terms   cnt  Order  terms   cnt
  //   0    0 0 0          4    4 0 0  15 5 1
  //                            3 1 0
  //   1    1 0 0  3 2 1        3 0 1
  //        0 1 0               2 2 0
  //        0 0 1               2 1 1
  //                            2 0 2
  //   2    2 0 0  6 3 1        1 3 0
  //        1 1 0               1 2 1
  //        1 0 1               1 1 2
  //        0 2 0               1 0 3
  //        0 1 1               0 4 0
  //        0 0 2               0 3 1
  //                            0 2 2
  //   3    3 0 0  10 4 1       0 1 3
  //        2 1 0               0 0 4
  //        2 0 1
  //        1 2 0
  //        1 1 1
  //        1 0 2
  //        0 3 0
  //        0 2 1
  //        0 1 2
  //        0 0 3

  // Compute total order
  ordinal_type d = basis_orders.size();
  ordinal_type p = 0;
  for (ordinal_type i=0; i<d; i++) {
    if (basis_orders[i] > p)
      p = basis_orders[i];
  }

  // Temporary array of terms grouped in terms of same order
  Teuchos::Array< Teuchos::Array< MultiIndex<ordinal_type> > > terms_order(p+1);

  // Store number of terms up to each order
  num_terms.resize(p+2, ordinal_type(0));

  // Set order 0
  terms_order[0].resize(1);
  terms_order[0][0].resize(d, ordinal_type(0));
  num_terms[0] = 1;

  // The array "cnt" stores the number of terms we need to increment for each
  // dimension.
  Teuchos::Array<ordinal_type> cnt(d), cnt_next(d);
  MultiIndex<ordinal_type> term(d);
  for (ordinal_type j=0; j<d; j++) {
    if (basis_orders[j] >= 1)
      cnt[j] = 1;
    else
      cnt[j] = 0;
    cnt_next[j] = 0;
  }

  sz = 1;
  // Loop over orders
  for (ordinal_type k=1; k<=p; k++) {

    num_terms[k] = num_terms[k-1];

    // Stores the index of the term we copying
    ordinal_type prev = 0;

    // Loop over dimensions
    for (ordinal_type j=0; j<d; j++) {

      // Increment orders of cnt[j] terms for dimension j
      for (ordinal_type i=0; i<cnt[j]; i++) {
        if (terms_order[k-1][prev+i][j] < basis_orders[j]) {
          term = terms_order[k-1][prev+i];
          ++term[j];
          terms_order[k].push_back(term);
          ++sz;
          num_terms[k]++;
          for (ordinal_type l=0; l<=j; l++)
            ++cnt_next[l];
        }
      }

      // Move forward to where all orders for dimension j are 0
      if (j < d-1)
        prev += cnt[j] - cnt[j+1];

    }

    // Update the number of terms we must increment for the new order
    for (ordinal_type j=0; j<d; j++) {
      cnt[j] = cnt_next[j];
      cnt_next[j] = 0;
    }

  }

  num_terms[p+1] = sz;

  // Copy into final terms array
  terms.resize(sz);
  ordinal_type i = 0;
  for (ordinal_type k=0; k<=p; k++) {
    ordinal_type num_k = terms_order[k].size();
    for (ordinal_type j=0; j<num_k; j++)
      terms[i++] = terms_order[k][j];
  }

  return p;
}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::CompletePolynomialBasisUtils<ordinal_type, value_type>::
compute_index(const Stokhos::MultiIndex<ordinal_type>& term,
              const Teuchos::Array< Stokhos::MultiIndex<ordinal_type> >& terms,
              const Teuchos::Array<ordinal_type>& num_terms,
              ordinal_type max_p)
{
  // The approach here for computing the index is to find the order block
  // corresponding to this term by adding up the component orders.  We then
  // do a linear search through the terms_order array for this order

  // First compute order of term
  ordinal_type d = term.dimension();
  ordinal_type ord = 0;
  for (ordinal_type i=0; i<d; i++)
    ord += term[i];
  TEUCHOS_TEST_FOR_EXCEPTION(ord < 0 || ord > max_p, std::logic_error,
                     "Stokhos::CompletePolynomialBasis::compute_index(): " <<
                     "Term has invalid order " << ord);

  // Now search through terms of that order to find a match
  ordinal_type k;
  if (ord == 0)
    k = 0;
  else
    k = num_terms[ord-1];
  ordinal_type k_max=num_terms[ord];
  bool found = false;
  while (k < k_max && !found) {
    bool found_term = true;
    for (ordinal_type j=0; j<d; j++) {
      found_term = found_term && (term[j] == terms[k][j]);
      if (!found_term)
        break;
    }
    found = found_term;
    ++k;
  }
  TEUCHOS_TEST_FOR_EXCEPTION(k >= k_max && !found, std::logic_error,
                     "Stokhos::CompletePolynomialBasis::compute_index(): " <<
                     "Could not find specified term.");

  return k-1;
}

#endif