This file is indexed.

/usr/include/trilinos/Kokkos_CrsMatrix_UQ_PCE_Cuda.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef KOKKOS_CRSMATRIX_UQ_PCE_CUDA_HPP
#define KOKKOS_CRSMATRIX_UQ_PCE_CUDA_HPP

#if defined( __CUDACC__)

#include "Sacado_UQ_PCE.hpp"
#include "Kokkos_View_UQ_PCE.hpp"
#include "Kokkos_InnerProductSpaceTraits_UQ_PCE.hpp"
#include "Kokkos_CrsMatrix.hpp"
#include "Kokkos_MV.hpp" // for some utilities

#include "Stokhos_Multiply.hpp"
#include "Stokhos_CrsProductTensor.hpp"

#include "Kokkos_Core.hpp"

#include "Stokhos_Cuda_DeviceProp.hpp"
//#include "Stokhos_Cuda_WarpShuffle.hpp"

#include "Teuchos_TestForException.hpp"

//#include "cuda_profiler_api.h"

#ifdef __CUDA_ARCH__
#  if (__CUDA_ARCH__ >= 300)
#    define HAVE_CUDA_SHUFFLE 1
#  else
#    define HAVE_CUDA_SHUFFLE 0
#  endif
#else
#  define HAVE_CUDA_SHUFFLE 0
#endif

namespace Stokhos {

//----------------------------------------------------------------------------
// Specialization of Kokkos CrsMatrix math functions
//----------------------------------------------------------------------------

// Kernel implementing y = A * x where
//   A == Kokkos::CrsMatrix< Sacado::UQ::PCE<...>,...>,
//   x, y == Kokkos::View< Sacado::UQ::PCE<...>*,...>,
//   x and y are rank 1
template <typename MatrixStorage,
          typename MatrixOrdinal,
          typename MatrixMemory,
          typename MatrixSize,
          typename InputStorage,
          typename ... InputP,
          typename OutputStorage,
          typename ... OutputP>
class Multiply< Kokkos::CrsMatrix< Sacado::UQ::PCE<MatrixStorage>,
                                   MatrixOrdinal,
                                   Kokkos::Cuda,
                                   MatrixMemory,
                                   MatrixSize>,
                Kokkos::View< Sacado::UQ::PCE<InputStorage>*,
                              InputP... >,
                Kokkos::View< Sacado::UQ::PCE<OutputStorage>*,
                              OutputP... >
                >
{
public:
  typedef Sacado::UQ::PCE<MatrixStorage> MatrixValue;
  typedef Sacado::UQ::PCE<InputStorage> InputVectorValue;
  typedef Sacado::UQ::PCE<OutputStorage> OutputVectorValue;

  typedef Kokkos::Cuda MatrixDevice;
  typedef MatrixDevice execution_space;
  typedef execution_space::size_type size_type;

  typedef Kokkos::CrsMatrix< MatrixValue,
                             MatrixOrdinal,
                             MatrixDevice,
                             MatrixMemory,
                             MatrixSize> matrix_type;
  typedef typename matrix_type::values_type matrix_values_type;
  typedef typename Kokkos::CijkType<matrix_values_type>::type tensor_type;
  typedef Kokkos::View< InputVectorValue*,
                        InputP... > input_vector_type;
  typedef Kokkos::View< OutputVectorValue*,
                        OutputP... > output_vector_type;

private:

  typedef typename matrix_type::StaticCrsGraphType matrix_graph_type;
  typedef typename matrix_values_type::array_type matrix_array_type;
  typedef typename input_vector_type::array_type input_array_type;
  typedef typename output_vector_type::array_type output_array_type;

  typedef typename MatrixValue::value_type matrix_scalar;
  typedef typename InputVectorValue::value_type input_scalar;
  typedef typename OutputVectorValue::value_type output_scalar;
  typedef typename tensor_type::value_type tensor_scalar;

  const matrix_array_type   m_A_values ;
  const matrix_graph_type   m_A_graph ;
  const input_array_type    m_x ;
  const output_array_type   m_y ;
  const tensor_type         m_tensor ;
  const input_scalar        m_a ;
  const output_scalar       m_b ;
  const size_type           BlockSize;

  Multiply( const matrix_type &        A ,
            const input_vector_type &  x ,
            const output_vector_type & y ,
            const input_scalar & a ,
            const output_scalar & b ,
            const size_type block_size )
  : m_A_values( A.values )
  , m_A_graph( A.graph )
  , m_x( x )
  , m_y( y )
  , m_tensor( Kokkos::cijk(A.values) )
  , m_a( a )
  , m_b( b )
  , BlockSize(block_size)
  {}

public:

  __device__ void operator()(void) const
  {
    // Number of bases in the stochastic system:
    const size_type dim = m_tensor.dimension();

    // Get shared memory for loading x, A, and y
    volatile input_scalar * const sh_x =
      kokkos_impl_cuda_shared_memory<input_scalar>();
    volatile matrix_scalar * const sh_A = sh_x + BlockSize*dim;
    volatile output_scalar * const sh_y = sh_A + BlockSize*dim;
#if !HAVE_CUDA_SHUFFLE
    volatile output_scalar * const sh_t = sh_y + dim;
#endif

    const size_type nid = blockDim.x * blockDim.y;
    const size_type tid = threadIdx.x + blockDim.x * threadIdx.y;

    // Zero y
    for ( size_type i = tid; i < dim; i += nid ) {
      sh_y[i] = 0.0;
    }

    // Loop over columns in the discrete (finite element) system.
    // blockIdx.x == row in the deterministic (finite element) system
    const size_type iBlockEntryBeg = m_A_graph.row_map[ blockIdx.x ];
    const size_type iBlockEntryEnd = m_A_graph.row_map[ blockIdx.x + 1 ];
    for (size_type iBlockEntry=iBlockEntryBeg; iBlockEntry<iBlockEntryEnd;
         iBlockEntry += BlockSize) {
      const size_type block_size =
        (iBlockEntryEnd-iBlockEntry < BlockSize) ?
        iBlockEntryEnd-iBlockEntry : BlockSize;

      // Wait for X and A to be used in the previous iteration
      // before reading new values.
      __syncthreads();

      // Coalesced read blocks of X and A into shared memory
      for ( size_type col = 0; col < block_size; ++col ) {

        const size_type iBlockColumn = m_A_graph.entries( iBlockEntry + col );
        const input_scalar * const x =  & m_x(        0, iBlockColumn );
        const matrix_scalar * const A = & m_A_values( iBlockEntry + col, 0 );

        // Coalesced read by the whole block from global memory:
        for ( size_type i = tid; i < dim; i += nid ) {
          sh_x[col + i * BlockSize] = x[i]; // m_x(        i, iBlockColumn );
          sh_A[col + i * BlockSize] = A[i]; // m_A_values( iBlockEntry , i );
        }

      }

      __syncthreads(); // wait for X and A to be read before using them

      // This cuda block is responsible for computing all values of 'y'
      for ( size_type i = threadIdx.y; i < dim; i += blockDim.y ) {
        output_scalar y = 0;

        // Product tensor entries which this warp will iterate:
        const size_type lBeg = m_tensor.entry_begin( i );
        const size_type lEnd = m_tensor.entry_end(   i );

        // Loop through sparse tensor contributions with coalesced reads.
        for ( size_type l = lBeg+threadIdx.x; l < lEnd; l += blockDim.x ) {

          // Read 'blockDim.x' entries from the tensor (coalesced)
          const size_type kj    = m_tensor.coord( l );
          const tensor_scalar v = m_tensor.value( l );
          const size_type j     = ( kj & 0x0ffff ) * BlockSize ;
          const size_type k     = ( kj >> 16     ) * BlockSize ;

          for ( size_type col = 0; col < block_size; ++col ) {
            y += v * ( sh_A[col+j] * sh_x[col+k] +
                       sh_A[col+k] * sh_x[col+j] );
          }

        }

        // Reduction of 'y' within 'blockDim.x'
#if HAVE_CUDA_SHUFFLE
        if (blockDim.x >= 2)  y += Kokkos::shfl_down(y, 1,  blockDim.x);
        if (blockDim.x >= 4)  y += Kokkos::shfl_down(y, 2,  blockDim.x);
        if (blockDim.x >= 8)  y += Kokkos::shfl_down(y, 4,  blockDim.x);
        if (blockDim.x >= 16) y += Kokkos::shfl_down(y, 8,  blockDim.x);
        if (blockDim.x >= 32) y += Kokkos::shfl_down(y, 16, blockDim.x);
        if ( threadIdx.x == 0 ) sh_y[i] += y;
#else
        sh_t[ tid ] = y;
        if (threadIdx.x+16 < blockDim.x) sh_t[tid] += sh_t[tid+16];
        if (threadIdx.x+ 8 < blockDim.x) sh_t[tid] += sh_t[tid+ 8];
        if (threadIdx.x+ 4 < blockDim.x) sh_t[tid] += sh_t[tid+ 4];
        if (threadIdx.x+ 2 < blockDim.x) sh_t[tid] += sh_t[tid+ 2];
        if (threadIdx.x+ 1 < blockDim.x) sh_t[tid] += sh_t[tid+ 1];
        if (threadIdx.x == 0) sh_y[i] += sh_t[tid];
#endif

      }

    }

    // Wait for all contributions of y to be completed
    __syncthreads();

    // Store result back in global memory
    if ( m_b == output_scalar(0) )
      for ( size_type i = tid; i < dim; i += nid )
        m_y( i, blockIdx.x ) = m_a * sh_y[ i ];
    else
      for ( size_type i = tid; i < dim; i += nid )
        m_y( i, blockIdx.x ) = m_a * sh_y[ i ] + m_b * m_y( i, blockIdx.x );
  }

  struct TensorReadEntry {
    size_type block_size, shmem, num_blocks, num_warp;
    double reads;
  };

  static void apply( const matrix_type & A ,
                     const input_vector_type & x ,
                     const output_vector_type & y ,
                     const input_scalar & a = input_scalar(1) ,
                     const output_scalar & b = output_scalar(0) )
  {
    const tensor_type tensor = Kokkos::cijk(A.values);
    const size_type row_count = A.graph.row_map.dimension_0() - 1;
    const size_type tensor_dimension = tensor.dimension();
    const size_type tensor_align = tensor_dimension;
    const size_type avg_tensor_entries_per_row = tensor.avg_entries_per_row();

    // Should compute this from FEM graph
    const size_type fem_nnz_per_row = 27;

    // Get device properties we need for whatever device is currently selected
    DeviceProp device_prop;
    const size_type shcap = device_prop.shared_memory_capacity;
    const size_type sh_granularity = device_prop.shared_memory_granularity;
    const size_type max_shmem_per_block = device_prop.max_shmem_per_block;
    const size_type max_blocks_per_sm = device_prop.max_blocks_per_sm;
    const size_type warp_size = device_prop.warp_size;
    const size_type warp_granularity = device_prop.warp_granularity;
    const size_type max_warps_per_block =
      std::min(device_prop.max_threads_per_block / warp_size,
               device_prop.max_warps_per_sm);
    const size_type min_warps_per_block = 1;
    const size_type max_regs_per_sm = device_prop.max_regs_per_sm;
    const size_type max_regs_per_block = device_prop.max_regs_per_block;
    const size_type reg_bank_size = device_prop.reg_bank_size;

    // Compute number of warps we can fit on each SM based on register limits
    // Use Cuda introspection to determine number of registers per thread
    //const size_type regs_per_thread = 46;
    const size_type regs_per_thread =
      device_prop.get_kernel_registers(
        Kokkos::Impl::cuda_parallel_launch_local_memory<Multiply>);
    const size_type regs_per_warp =
      (warp_size*regs_per_thread + reg_bank_size-1) & ~(reg_bank_size-1);
    const size_type warps_per_sm =
      (max_regs_per_sm/regs_per_warp) & ~(warp_granularity-1);
    const size_type warps_per_block =
      (max_regs_per_block/regs_per_warp) & ~(warp_granularity-1);

    // Compute number of threads per stochastic row based on number of
    // nonzero entries per row.
    // For double, 16 threads/row is still coalesced, but not for float.
    // We should reorder the tensor values for a given vector width to
    // maintain coalesced reads.  This would help smaller problems too by
    // allowing fewer threads/row.
    const size_type threads_per_row =
      avg_tensor_entries_per_row >= 88 ? 32 : 16;
    const size_type rows_per_warp = warp_size / threads_per_row;

    const size_type in_vec_scalar_size = sizeof(input_scalar);
    const size_type out_vec_scalar_size = sizeof(output_scalar);
    const size_type mat_scalar_size = sizeof(matrix_scalar);

#define USE_FIXED_BLOCKSIZE 0

#if USE_FIXED_BLOCKSIZE

    const size_type num_blocks = 3;
    size_type nw = warps_per_sm / num_blocks;
    while (nw > 1 && num_blocks*nw % warp_granularity) --nw;
    const size_type num_warp = nw;
    const size_type sh_per_block = shcap / num_blocks;
    const size_type sr =
      device_prop.has_shuffle ? 0 : in_vec_scalar_size*warp_size*num_warp;
    size_type bs = ((sh_per_block - sr) / tensor_align - out_vec_scalar_size) /
      (in_vec_scalar_size+mat_scalar_size);
    if (bs % 2 == 0) --bs;
    const size_type block_size_max = 31;
    const size_type block_size = std::min(bs, block_size_max);
    //const size_type block_size = 7;
    const size_type shmem =
      ( ((in_vec_scalar_size+mat_scalar_size)*block_size+out_vec_scalar_size)*tensor_align + sr + sh_granularity-1 ) & ~(sh_granularity-1);

#else

    // We want to maximize the number of blocks per SM (to maximize throughput)
    // as well as the block_size (to minimize tensor reads), subject to
    // shared memory and register constraints.  Here we try to do this computing
    // the number of tensor reads per block per thread for each choice of
    // block_size, and then choose the configuration with the smallest value.
    // This isn't perfect, but seems to generally work OK.  It could be
    // improved with a better model of:
    //   * Number of blocks versus warps per block (to minimize synchronization)
    //   * Thread efficiency for small numbers of rows per thread
    const size_type block_size_min = 3;
    const size_type half_nnz_per_row = fem_nnz_per_row / 2 + 1;
    const size_type block_size_max =
      half_nnz_per_row % 2 ? half_nnz_per_row + 1 : half_nnz_per_row;
    Teuchos::Array<TensorReadEntry> reads_per_thread;
    for (size_type bs = block_size_min; bs<=block_size_max; bs+=2) {
      // We don't know the number of warps yet, so we just have to bound
      // sr by the maximum number possible (which is all warps in 1 block)
      const size_type sr =
        device_prop.has_shuffle ? 0 : in_vec_scalar_size*warp_size*warps_per_block;
      size_type shmem =
        ((in_vec_scalar_size+mat_scalar_size)*bs+out_vec_scalar_size)*tensor_align+sr;
      shmem = (shmem + sh_granularity-1) & ~(sh_granularity-1);
      if (shmem <= max_shmem_per_block) {
        size_type num_blocks = std::min(shcap / shmem, max_blocks_per_sm);
        size_type tensor_reads = (fem_nnz_per_row+bs-1) / bs;
        size_type num_warp =
          std::min(std::max(std::min(warps_per_sm/num_blocks, warps_per_block),
                            min_warps_per_block),
                   max_warps_per_block);
        while (num_warp > 1 && num_blocks*num_warp % warp_granularity)
          --num_warp;
        TensorReadEntry entry;
        entry.block_size = bs;
        entry.shmem = shmem;
        entry.num_blocks = num_blocks;
        entry.num_warp = num_warp;

        // Prefer at least 3 blocks
        size_type factor = std::min(num_blocks,3u);
        entry.reads = (static_cast<double>(tensor_reads) /
                       static_cast<double>(factor*num_blocks*num_warp));
        reads_per_thread.push_back(entry);
      }
    }
    TEUCHOS_TEST_FOR_EXCEPTION(
      reads_per_thread.size() == 0, std::logic_error,
      "Stochastic problem dimension is too large to fit in shared memory");
    size_type idx = 0;
    double min_reads = reads_per_thread[0].reads;
    for (int i=1; i<reads_per_thread.size(); ++i) {
      if (reads_per_thread[i].reads < min_reads) {
        idx = i;
        min_reads = reads_per_thread[i].reads;
      }
    }

    const size_type block_size = reads_per_thread[idx].block_size;
    const size_type shmem = reads_per_thread[idx].shmem;
    const size_type num_blocks = reads_per_thread[idx].num_blocks;
    const size_type num_warp = reads_per_thread[idx].num_warp;

#endif

    // Setup thread blocks and grid
    const dim3 dBlock( threads_per_row , rows_per_warp*num_warp , 1 );
    const dim3 dGrid( row_count, 1, 1 );

#if 0
    std::cout << "block_size = " << block_size
              << " tensor reads = " << (fem_nnz_per_row+block_size-1)/block_size
              << " regs_per_thread = " << regs_per_thread
              << " num blocks = " << num_blocks
              << " num warps = " << num_warp
              << " num rows = " << tensor_dimension
              << " rows/warp = " << tensor_dimension / (num_warp*rows_per_warp)
              << " avg entries/row = " <<  avg_tensor_entries_per_row
              << std::endl;
#endif

    // Finally launch our kernel
    //cudaProfilerStart();
    Kokkos::Impl::cuda_parallel_launch_local_memory<<< dGrid, dBlock, shmem >>>
      ( Multiply( A, x, y, a, b, block_size ) );
    //cudaProfilerStop();
  }
};

// Kernel implementing y = A * x where
//   A == Kokkos::CrsMatrix< Sacado::UQ::PCE<...>,...>,
//   x, y == Kokkos::View< Sacado::UQ::PCE<...>**,...>,
//   x and y are rank 2
//
// Note:  Unlike the rank-1 version, this version has not been
// optimized, and doesn't even include the block-column implementation
template <typename MatrixStorage,
          typename MatrixOrdinal,
          typename MatrixMemory,
          typename MatrixSize,
          typename InputStorage,
          typename ... InputP,
          typename OutputStorage,
          typename ... OutputP>
class Multiply< Kokkos::CrsMatrix< Sacado::UQ::PCE<MatrixStorage>,
                                   MatrixOrdinal,
                                   Kokkos::Cuda,
                                   MatrixMemory,
                                   MatrixSize>,
                Kokkos::View< Sacado::UQ::PCE<InputStorage>**,
                              InputP... >,
                Kokkos::View< Sacado::UQ::PCE<OutputStorage>**,
                              OutputP... >
                >
{
public:
  typedef Sacado::UQ::PCE<MatrixStorage> MatrixValue;
  typedef Sacado::UQ::PCE<InputStorage> InputVectorValue;
  typedef Sacado::UQ::PCE<OutputStorage> OutputVectorValue;

  typedef Kokkos::Cuda MatrixDevice;
  typedef MatrixDevice execution_space;
  typedef execution_space::size_type size_type;

  typedef Kokkos::CrsMatrix< MatrixValue,
                             MatrixOrdinal,
                             MatrixDevice,
                             MatrixMemory,
                             MatrixSize> matrix_type;
  typedef Kokkos::View< InputVectorValue**,
                        InputP... > input_vector_type;
  typedef Kokkos::View< OutputVectorValue**,
                        OutputP... > output_vector_type;
  typedef typename InputVectorValue::value_type input_scalar;
  typedef typename OutputVectorValue::value_type output_scalar;

public:

  static void apply( const matrix_type & A ,
                     const input_vector_type & x ,
                     const output_vector_type & y ,
                     const input_scalar & a = input_scalar(1) ,
                     const output_scalar & b = output_scalar(0) )
  {
    typedef Kokkos::View< InputVectorValue*, InputP... > input_vector_type_1D;
    typedef Kokkos::View< OutputVectorValue*, OutputP... > output_vector_type_1D;
    typedef Multiply< matrix_type, input_vector_type_1D,
      output_vector_type_1D > multiply_type_1D;

    const size_type num_col = y.dimension_1();
    for (size_type col=0; col<num_col; ++col)

      multiply_type_1D::apply(
        A,
        Kokkos::subview( x, Kokkos::ALL(), col),
        Kokkos::subview(y, Kokkos::ALL(), col),
        a, b );
  }
};

template <typename Kernel>
__global__ void
#if __CUDA_ARCH__ >= 300
__launch_bounds__(1024,2)
#endif
MeanFullOccupancyKernelLaunch(Kernel kernel) {
  kernel();
}

// Kernel implementing y = A * x where PCE size of A is 1
//   A == Kokkos::CrsMatrix< Sacado::UQ::PCE<...>,...>, with A.values.sacado_size() == 1
//   x, y == Kokkos::View< Sacado::UQ::PCE<...>*,...>,
//   x and y are rank 1
template <typename MatrixStorage,
          typename MatrixOrdinal,
          typename MatrixMemory,
          typename MatrixSize,
          typename InputStorage,
          typename ... InputP,
          typename OutputStorage,
          typename ... OutputP>
class MeanMultiply< Kokkos::CrsMatrix< Sacado::UQ::PCE<MatrixStorage>,
                                       MatrixOrdinal,
                                       Kokkos::Cuda,
                                       MatrixMemory,
                                       MatrixSize >,
                    Kokkos::View< Sacado::UQ::PCE<InputStorage>*,
                                  InputP... >,
                    Kokkos::View< Sacado::UQ::PCE<OutputStorage>*,
                                  OutputP... >,
                    >
{
public:
  typedef Sacado::UQ::PCE<MatrixStorage> MatrixValue;
  typedef Sacado::UQ::PCE<InputStorage> InputVectorValue;
  typedef Sacado::UQ::PCE<OutputStorage> OutputVectorValue;

  typedef Kokkos::Cuda MatrixDevice;
  typedef MatrixDevice execution_space;
  typedef Kokkos::CrsMatrix< MatrixValue,
                             MatrixOrdinal,
                             MatrixDevice,
                             MatrixMemory,
                             MatrixSize> matrix_type;
  typedef typename matrix_type::values_type matrix_values_type;
  typedef typename MatrixValue::ordinal_type size_type;
  typedef Kokkos::View< InputVectorValue*,
                        InputP... > input_vector_type;
  typedef Kokkos::View< OutputVectorValue*,
                        OutputP... > output_vector_type;

  typedef typename matrix_type::StaticCrsGraphType matrix_graph_type;
  typedef typename MatrixValue::value_type matrix_scalar;
  typedef typename InputVectorValue::value_type input_scalar;
  typedef typename OutputVectorValue::value_type output_scalar;

  template <int BlockSize>
  struct Kernel {
    typedef MatrixDevice execution_space;
    typedef typename Kokkos::FlatArrayType<matrix_values_type>::type matrix_array_type;
    typedef typename input_vector_type::array_type input_array_type;
    typedef typename output_vector_type::array_type output_array_type;

    const matrix_array_type   m_A_values ;
    const matrix_graph_type   m_A_graph ;
    const output_array_type   v_y ;
    const input_array_type    v_x ;
    const input_scalar        m_a ;
    const output_scalar       m_b ;
    const size_type           m_row_count;
    const size_type           dim ;

    Kernel( const matrix_type &        A ,
            const input_vector_type &  x ,
            const output_vector_type & y ,
            const input_scalar & a ,
            const output_scalar & b )
      : m_A_values( A.values )
      , m_A_graph( A.graph )
      , v_y( y )
      , v_x( x )
      , m_a( a )
      , m_b( b )
      , m_row_count( A.graph.row_map.dimension_0()-1 )
      , dim( dimension_scalar(x) )
      {}

    __device__ void operator()(void) const
    {
      // Store matrix values and column indices in shared memory
      // to reduce global memory reads
      volatile matrix_scalar * const sh_A =
        kokkos_impl_cuda_shared_memory<matrix_scalar>();
      volatile size_type * const sh_col =
        reinterpret_cast<volatile size_type*>(sh_A + BlockSize*blockDim.y);

      // Check for valid row
      const size_type iBlockRow = blockDim.y*blockIdx.x + threadIdx.y;
      if (iBlockRow < m_row_count) {

        const size_type iEntryBegin = m_A_graph.row_map[ iBlockRow ];
        const size_type iEntryEnd   = m_A_graph.row_map[ iBlockRow + 1 ];

        // Initialize result
        if (m_b == output_scalar(0))
          for ( size_type pce = threadIdx.x; pce < dim ; pce+=blockDim.x )
            v_y(pce, iBlockRow) = 0.0;
        else
          for ( size_type pce = threadIdx.x; pce < dim ; pce+=blockDim.x )
            v_y(pce, iBlockRow) = m_b*v_y(pce, iBlockRow);

        // Loop over columns in chunks of size BlockSize
        for (size_type col_block=iEntryBegin; col_block<iEntryEnd;
             col_block+=BlockSize) {
          const size_type num_col = col_block+BlockSize <= iEntryEnd ?
            BlockSize : iEntryEnd-col_block;

          // Read BlockSize entries column indices at a time to maintain
          // coalesced accesses
          for (size_type col=threadIdx.x; col<num_col; col+=blockDim.x) {
            sh_col[col*blockDim.y+threadIdx.y] =
              m_A_graph.entries(col_block+col);
            sh_A[col*blockDim.y+threadIdx.y] =
              m_A_values(col_block+col);
          }
          if (blockDim.x > Kokkos::Impl::CudaTraits::WarpSize)
            __syncthreads();

          // Do portion mat-vec for each PCE coefficient and for columns
          // within this block
          for ( size_type pce = threadIdx.x; pce < dim ; pce+=blockDim.x ) {
            output_scalar s = 0.0;
            for ( size_type col = 0; col < num_col; ++col ) {
              const size_type iCol = sh_col[col*blockDim.y+threadIdx.y];
              const matrix_scalar aA = m_a*sh_A[col*blockDim.y+threadIdx.y];
              s += aA*v_x(pce, iCol);
            }
            v_y(pce, iBlockRow) += s;
          }
        }
      }
    }
  };

  static void apply( const matrix_type & A ,
                     const input_vector_type & x ,
                     const output_vector_type & y ,
                     const input_scalar & a = input_scalar(1) ,
                     const output_scalar & b = output_scalar(0) )
  {
    const size_t row_count = A.graph.row_map.dimension_0() - 1;
    const size_type dim = dimension_scalar(x);

    // Compute number of threads for PCE coefficients and number of
    // matrix rows processed by each CUDA block.  A total of 256 threads
    // gives best occupancy
    size_type threads_per_row;
    size_type rows_per_block;
    if (dim >= 32) {
      threads_per_row = 32;
      rows_per_block = 8;
    }
    else {
      threads_per_row = 16;
      rows_per_block = 16;
    }
    const size_type num_blocks =
      (row_count + rows_per_block -1 ) / rows_per_block;

    // Setup thread blocks and grid
    const dim3 dBlock( threads_per_row , rows_per_block , 1 );
    const dim3 dGrid( num_blocks, 1, 1 );

    // Setup shared memory for storing matrix values and column indices
    // Number of columns we process at a time -- making this bigger
    // requires more shared memory and reduces occupancy
    const int BlockSize = 32;
    if (sizeof(matrix_scalar) > 4)
      cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeEightByte);
    else
      cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeFourByte);
    const size_t shared =
      (BlockSize*dBlock.y) * (sizeof(size_type) + sizeof(matrix_scalar));

    // Launch kernel
    MeanFullOccupancyKernelLaunch<<<dGrid, dBlock, shared >>>
      ( Kernel<BlockSize>( A, x, y, a, b ) );
  }
};

/*
 * Disable this specialization as it is actually slower than the default
 * implementation of launching the single column kernel, one column at at time.
 * It looks like it uses a few more registers which is reducing occupancy.

// Kernel implementing y = A * x where PCE size of A is 1
//   A == Kokkos::CrsMatrix< Sacado::UQ::PCE<...>,...>, with A.values.sacado_size() == 1
//   x, y == Kokkos::View< Sacado::UQ::PCE<...>*,...>,
//   x and y are rank 2
template <typename MatrixStorage,
          typename MatrixOrdinal,
          typename MatrixMemory,
          typename MatrixSize,
          typename InputStorage,
          typename ... InputP,
          typename OutputStorage,
          typename ... OutputP>
class MeanMultiply< Kokkos::CrsMatrix< Sacado::UQ::PCE<MatrixStorage>,
                                       MatrixOrdinal,
                                       Kokkos::Cuda,
                                       MatrixMemory,
                                       MatrixSize >,
                    Kokkos::View< Sacado::UQ::PCE<InputStorage>**,
                                  InputP... >,
                    Kokkos::View< Sacado::UQ::PCE<OutputStorage>**,
                                  OutputP... >,
                    >
{
public:
  typedef Sacado::UQ::PCE<MatrixStorage> MatrixValue;
  typedef Sacado::UQ::PCE<InputStorage> InputVectorValue;
  typedef Sacado::UQ::PCE<OutputStorage> OutputVectorValue;

  typedef Kokkos::Cuda MatrixDevice;
  typedef MatrixDevice execution_space;
  typedef Kokkos::CrsMatrix< MatrixValue,
                             MatrixOrdinal,
                             MatrixDevice,
                             MatrixMemory,
                             MatrixSize> matrix_type;
  typedef typename matrix_type::values_type matrix_values_type;
  typedef typename MatrixValue::ordinal_type size_type;
  typedef Kokkos::View< InputVectorValue**,
                        InputP... > input_vector_type;
  typedef Kokkos::View< OutputVectorValue**,
                        OutputP... > output_vector_type;

  typedef typename matrix_type::StaticCrsGraphType matrix_graph_type;
  typedef typename MatrixValue::value_type matrix_scalar;
  typedef typename InputVectorValue::value_type input_scalar;
  typedef typename OutputVectorValue::value_type output_scalar;

  template <int BlockSize>
  struct Kernel {
    typedef Device execution_space;
    typedef typename Kokkos::FlatArrayType<matrix_values_type>::type matrix_array_type;
    typedef typename input_vector_type::array_type input_array_type;
    typedef typename output_vector_type::array_type output_array_type;

    const matrix_array_type   m_A_values ;
    const matrix_graph_type   m_A_graph ;
    const output_array_type   v_y ;
    const input_array_type    v_x ;
    const input_scalar        m_a ;
    const output_scalar       m_b ;
    const size_type           m_row_count;
    const size_type           m_num_col;
    const size_type           dim ;

    Kernel( const matrix_type &        A ,
            const input_vector_type &  x ,
            const output_vector_type & y ,
            const input_scalar & a ,
            const output_scalar & b )
      : m_A_values( A.values )
      , m_A_graph( A.graph )
      , v_y( y )
      , v_x( x )
      , m_a( a )
      , m_b( b )
      , m_row_count( A.graph.row_map.dimension_0()-1 )
      , m_num_col( x.dimension_1() )
      , dim( dimension_scalar(x) )
      {}

    __device__ void operator()(void) const
    {
      // Store matrix values and column indices in shared memory
      // to reduce global memory reads
      volatile matrix_scalar * const sh_A =
        kokkos_impl_cuda_shared_memory<matrix_scalar>();
      volatile size_type * const sh_col =
        reinterpret_cast<volatile size_type*>(sh_A + BlockSize*blockDim.y);

      // Check for valid row
      const size_type iBlockRow = blockDim.y*blockIdx.x + threadIdx.y;
      if (iBlockRow < m_row_count) {

        const size_type iEntryBegin = m_A_graph.row_map[ iBlockRow ];
        const size_type iEntryEnd   = m_A_graph.row_map[ iBlockRow + 1 ];

        // Initialize result
        if (m_b == output_scalar(0))
          for ( size_type xcol = 0; xcol < m_num_col; xcol++)
            for ( size_type pce = threadIdx.x; pce < dim ; pce+=blockDim.x )
              v_y(pce, iBlockRow, xcol) = 0.0;
        else
          for ( size_type xcol = 0; xcol < m_num_col; xcol++)
            for ( size_type pce = threadIdx.x; pce < dim ; pce+=blockDim.x )
              v_y(pce, iBlockRow, xcol) = m_b*v_y(pce, iBlockRow, xcol);

        // Loop over columns in chunks of size BlockSize
        for (size_type col_block=iEntryBegin; col_block<iEntryEnd;
             col_block+=BlockSize) {
          const size_type num_col = col_block+BlockSize <= iEntryEnd ?
            BlockSize : iEntryEnd-col_block;

          // Read BlockSize entries column indices at a time to maintain
          // coalesced accesses
          for (size_type col=threadIdx.x; col<num_col; col+=blockDim.x) {
            sh_col[col*blockDim.y+threadIdx.y] =
              m_A_graph.entries(col_block+col);
            sh_A[col*blockDim.y+threadIdx.y] =
              m_A_values(col_block+col);
          }
          if (blockDim.x > Kokkos::Impl::CudaTraits::WarpSize)
            __syncthreads();

          // Do portion mat-vec for each PCE coefficient and for columns
          // within this block
          for ( size_type xcol = 0; xcol < m_num_col; xcol++) {
            for ( size_type pce = threadIdx.x; pce < dim ; pce+=blockDim.x ) {
              output_scalar s = 0.0;
              for ( size_type col = 0; col < num_col; ++col ) {
                const size_type iCol = sh_col[col*blockDim.y+threadIdx.y];
                const matrix_scalar aA = m_a*sh_A[col*blockDim.y+threadIdx.y];
                s += aA*v_x(pce, iCol, xcol);
              }
              v_y(pce, iBlockRow, xcol) += s;
            }
          }
        }
      }
    }
  };

  static void apply( const matrix_type & A ,
                     const input_vector_type & x ,
                     const output_vector_type & y ,
                     const input_scalar & a = input_scalar(1) ,
                     const output_scalar & b = output_scalar(0) )
  {
    const size_t row_count = A.graph.row_map.dimension_0() - 1;
    const size_type dim = dimension_scalar(x);

    // Compute number of threads for PCE coefficients and number of
    // matrix rows processed by each CUDA block.  A total of 256 threads
    // gives best occupancy
    size_type threads_per_row;
    size_type rows_per_block;
    if (dim >= 32) {
      threads_per_row = 32;
      rows_per_block = 6;
    }
    else {
      threads_per_row = 16;
      rows_per_block = 12;
    }
    const size_type num_blocks =
      (row_count + rows_per_block -1 ) / rows_per_block;

    // Setup thread blocks and grid
    const dim3 dBlock( threads_per_row , rows_per_block , 1 );
    const dim3 dGrid( num_blocks, 1, 1 );

    // Setup shared memory for storing matrix values and column indices
    // Number of columns we process at a time -- making this bigger
    // requires more shared memory and reduces occupancy
    const int BlockSize = 32;
    if (sizeof(matrix_scalar) > 4)
      cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeEightByte);
    else
      cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeFourByte);
    const size_t shared =
      (BlockSize*dBlock.y) * (sizeof(size_type) + sizeof(matrix_scalar));

    // Launch kernel
    // MeanFullOccupancyKernelLaunch<<<dGrid, dBlock, shared >>>
    //   ( Kernel<BlockSize>( A, x, y, a, b ) );

    Kokkos::Impl::cuda_parallel_launch_local_memory<<<dGrid, dBlock, shared >>>
      ( Kernel<BlockSize>( A, x, y, a, b ) );
  }
};
*/

} // namespace Stokhos

#endif /* #if defined( __CUDACC__) */

#endif /* #ifndef KOKKOS_CRSMATRIX_UQ_PCE_CUDA_HPP */