This file is indexed.

/usr/include/trilinos/Kokkos_CrsMatrix_MP_Vector_Cuda.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef KOKKOS_CRSMATRIX_MP_VECTOR_CUDA_HPP
#define KOKKOS_CRSMATRIX_MP_VECTOR_CUDA_HPP

#if defined( __CUDACC__)

#include "Kokkos_CrsMatrix_MP_Vector.hpp"
#include "Kokkos_Core.hpp"
#include "Stokhos_Cuda_DeviceProp.hpp"

//----------------------------------------------------------------------------
// Specializations of Kokkos::CrsMatrix for Sacado::MP::Vector scalar type
// and Cuda device
//----------------------------------------------------------------------------

namespace Stokhos {

namespace details {

// We can make things slightly faster for the ensemble multiply kernel with
// NumPerThread == 1 by using at most 32 registers per thread for 100%
// occupancy, which we get with these launch bounds on Kepler.  For
// NumPerThread > 1 it is worse though due to too many spilled registers.
template <typename Kernel>
__global__ void
#if __CUDA_ARCH__ >= 300
__launch_bounds__(1024,2)
#endif
FullOccupancyKernelLaunch(Kernel kernel) {
  kernel();
}

// Kernel implementing y = A * x for Cuda device where
//   A == Kokkos::CrsMatrix< Sacado::MP::Vector<...>,...>,
//   x, y == Kokkos::View< Sacado::MP::Vector<...>*,...>,
//   x and y are rank 1
// We spell everything out here to make sure the ranks and devices match.
//
// This implementation uses the underlying 2-D view directly.
// Currently only works for statically sized MP::Vector
template <typename MatrixStorage,
          typename MatrixOrdinal,
          typename MatrixMemory,
          typename MatrixSize,
          typename InputStorage,
          typename ... InputP,
          typename OutputStorage,
          typename ... OutputP,
          typename Update>
class MPMultiply< Kokkos::CrsMatrix<Sacado::MP::Vector<MatrixStorage>,
                                    MatrixOrdinal,
                                    Kokkos::Cuda,
                                    MatrixMemory,
                                    MatrixSize>,
                  Kokkos::View< Sacado::MP::Vector<InputStorage>*,
                                InputP... >,
                  Kokkos::View< Sacado::MP::Vector<OutputStorage>*,
                                OutputP... >,
                  Update,
                  void
                >
{
public:

  typedef Sacado::MP::Vector<MatrixStorage> MatrixValue;
  typedef Sacado::MP::Vector<InputStorage> InputVectorValue;
  typedef Sacado::MP::Vector<OutputStorage> OutputVectorValue;

  typedef typename Kokkos::Cuda Device;
  typedef Device execution_space;
  typedef typename execution_space::size_type size_type;

  typedef Kokkos::CrsMatrix<MatrixValue,
                            MatrixOrdinal,
                            execution_space,
                            MatrixMemory,
                            MatrixSize> matrix_type;
  typedef typename matrix_type::values_type matrix_values_type;
  typedef typename matrix_type::StaticCrsGraphType matrix_graph_type;
  typedef Kokkos::View< InputVectorValue*,
                        InputP... > input_vector_type;
  typedef Kokkos::View< OutputVectorValue*,
                        OutputP... > output_vector_type;
  typedef Update update_type;

  // Multiply that uses shared memory for coalesced access of sparse
  // graph row offsets and column indices and Rank-1 vectors
  template <unsigned NumPerThread>
  struct Kernel {
    typedef typename output_vector_type::value_type output_vector_value;
    typedef typename output_vector_value::value_type scalar_type;

    const matrix_graph_type  m_Agraph;
    const matrix_values_type m_Avals;
    const input_vector_type  m_x;
    const output_vector_type m_y;
    const update_type m_update;
    const size_type m_row_count;

    Kernel( const matrix_type & A,
            const input_vector_type & x,
            const output_vector_type & y,
            const update_type& update )
      : m_Agraph( A.graph )
      , m_Avals( A.values )
      , m_x( x )
      , m_y( y )
      , m_update( update )
      , m_row_count( A.graph.row_map.dimension_0()-1 )
      {}

    __device__
    inline void operator()(void) const
    {
      volatile size_type * const sh_row =
        kokkos_impl_cuda_shared_memory<size_type>();
      volatile size_type * const sh_col = sh_row + blockDim.y+1;

      const size_type tid = blockDim.x*threadIdx.y + threadIdx.x;
      const size_type nid = blockDim.x*blockDim.y;

      const size_type block_row = blockDim.y*blockIdx.x;

      // Read blockDim.y+1 row offsets in coalesced manner
      const size_type num_row =
        block_row+blockDim.y+1 <= m_row_count+1 ? blockDim.y+1 :
        m_row_count+1 - block_row;
      for (size_type i=tid; i<num_row; i+=nid)
        sh_row[i] = m_Agraph.row_map[block_row+i];
      __syncthreads();

      const size_type iRow = block_row + threadIdx.y;
      if (iRow < m_row_count) {
        scalar_type sum[NumPerThread];
        const size_type iEntryBegin = sh_row[threadIdx.y];
        const size_type iEntryEnd =   sh_row[threadIdx.y+1];

        for (size_type e=0; e<NumPerThread; ++e)
          sum[e] = 0;

        for (size_type col_block=iEntryBegin; col_block<iEntryEnd;
             col_block+=blockDim.x) {
          const size_type num_col =
            col_block+blockDim.x <= iEntryEnd ?
              blockDim.x : iEntryEnd-col_block;

          // Read blockDim.x entries column indices at a time to maintain
          // coalesced accesses (don't need __syncthreads() assuming
          // blockDim.x <= warp_size
          // Note:  it might be a little faster if we ensured aligned access
          // to m_A.graph.entries() and m_A.values() below.
          if (threadIdx.x < num_col)
            sh_col[tid] = m_Agraph.entries(col_block+threadIdx.x);
          if (blockDim.x > Kokkos::Impl::CudaTraits::WarpSize)
            __syncthreads();

          for ( size_type col = 0; col < num_col; ++col ) {
            size_type iCol = sh_col[blockDim.x*threadIdx.y + col];

            for (size_type e=0, ee=threadIdx.x; e<NumPerThread;
                 ++e, ee+=blockDim.x) {
              sum[e] += m_Avals(col_block+col).fastAccessCoeff(ee) *
                        m_x(iCol).fastAccessCoeff(ee);
            }
          }

        }

        for (size_type e=0, ee=threadIdx.x; e<NumPerThread;
             ++e, ee+=blockDim.x) {
          m_update( m_y(iRow).fastAccessCoeff(ee), sum[e] );
        }
      }
    } // operator()
  };

  static void apply( const matrix_type & A,
                     const input_vector_type & x,
                     const output_vector_type & y,
                     const update_type & update )
  {
    // Compute CUDA block and grid sizes.
    //
    // For Kepler, the best block size appears to be 256 threads with
    // 16 threads per vector for double precision, yielding 16 rows per
    // block.  Due to register usage, this gives 64 or 48 warps per SM
    // and thus 8 or 6 blocks per SM.  We use these values by default if
    // the user-specified block dimensions are zero

    const size_type value_dimension = Kokkos::dimension_scalar(x);

    size_type threads_per_vector = A.dev_config.block_dim.x;
    if (threads_per_vector == 0)
      threads_per_vector = value_dimension ;
    size_type rows_per_block = A.dev_config.block_dim.y;
    if (rows_per_block == 0)
      rows_per_block = 256 / threads_per_vector;
    const size_type row_count = A.graph.row_map.dimension_0()-1;
    const size_type num_blocks = (row_count+rows_per_block-1)/rows_per_block;
    const dim3 block( threads_per_vector, rows_per_block, 1 );
    const dim3 grid( num_blocks, 1 );

    // Check threads_per_vector evenly divides number of vector entries
    size_type num_per_thread = value_dimension / threads_per_vector;
    TEUCHOS_TEST_FOR_EXCEPTION(
      num_per_thread * threads_per_vector != value_dimension, std::logic_error,
      "Entries/thread * threads/vector must equal number of vector entries");

    // Check threads_per_vector is not greater than warp size (kernels assume
    // this)
    const size_type warp_size = Kokkos::Impl::CudaTraits::WarpSize;
    TEUCHOS_TEST_FOR_EXCEPTION(
      threads_per_vector > warp_size, std::logic_error,
      "Threads/vector cannont exceed Cuda warp size");

    // Launch kernel based on static number of entries per thread
    if (num_per_thread == 1) {
      launch_impl<1>( A, x, y, update, block, grid );
    }
    else if (num_per_thread == 2) {
      launch_impl<2>( A, x, y, update, block, grid );
    }
    else if (num_per_thread == 3) {
      launch_impl<3>( A, x, y, update, block, grid );
    }
    else if (num_per_thread == 4) {
      launch_impl<4>( A, x, y, update, block, grid );
    }
    else
      TEUCHOS_TEST_FOR_EXCEPTION(
        true, std::logic_error, "Invalid num_per_thread == " << num_per_thread);
  }

private:

  // Function to launch our kernel, templated on number of entries per thread
  // and shared memory choice
  template <unsigned num_per_thread>
  static void launch_impl( const matrix_type & A,
                           const input_vector_type & x,
                           const output_vector_type & y,
                           const update_type & update,
                           dim3 block,
                           dim3 grid)
  {
    typedef Kernel<num_per_thread> Krnl;

    // Use this to check occupancy, 64 is 100% on Kepler
    const bool occupancy_check = false;
    if (occupancy_check) {
      DeviceProp device_prop;
      size_type warps_per_sm;
      if (num_per_thread == 1)
        warps_per_sm = device_prop.get_resident_warps_per_sm(
          FullOccupancyKernelLaunch<Krnl>);
      else
        warps_per_sm = device_prop.get_resident_warps_per_sm(
          Kokkos::Impl::cuda_parallel_launch_local_memory<Krnl>);
      std::cout << "warps_per_sm = " << warps_per_sm
                << " max_warps_per_sm = " << device_prop.max_warps_per_sm
                << std::endl;
    }

    const size_t shared = (block.y+1 + block.x*block.y)*sizeof(size_type);
    if (sizeof(size_type) <= 4)
      cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeFourByte);
    else
      cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeEightByte);

    // Launch
    if (num_per_thread == 1)
      FullOccupancyKernelLaunch<<< grid, block, shared >>>
        ( Krnl( A, x, y, update ) );
    else
      Kokkos::Impl::cuda_parallel_launch_local_memory<<< grid, block, shared >>>
        ( Krnl( A, x, y, update ) );
  }
};

// Kernel implementing y = A * x for Cuda device where
//   A == Kokkos::CrsMatrix< Sacado::MP::Vector<...>,...>,
//   x, y == Kokkos::View< Sacado::MP::Vector<...>**,...>,
//   x and y are rank 2
// We spell everything out here to make sure the ranks and devices match.
//
// This implementation uses the underlying 2-D view directly.
// Currently only works for statically sized MP::Vector
template <typename MatrixStorage,
          typename MatrixOrdinal,
          typename MatrixMemory,
          typename MatrixSize,
          typename InputStorage,
          typename ... InputP,
          typename OutputStorage,
          typename ... OutputP,
          typename Update>
class MPMultiply< Kokkos::CrsMatrix<Sacado::MP::Vector<MatrixStorage>,
                                    MatrixOrdinal,
                                    Kokkos::Cuda,
                                    MatrixMemory,
                                    MatrixSize>,
                  Kokkos::View< Sacado::MP::Vector<InputStorage>**,
                                InputP... >,
                  Kokkos::View< Sacado::MP::Vector<OutputStorage>**,
                                OutputP... >,
                  Update,
                  void
                >
{
public:

  typedef Sacado::MP::Vector<MatrixStorage> MatrixValue;
  typedef Sacado::MP::Vector<InputStorage> InputVectorValue;
  typedef Sacado::MP::Vector<OutputStorage> OutputVectorValue;

  typedef typename Kokkos::Cuda Device;
  typedef Device execution_space;
  typedef typename execution_space::size_type size_type;

  typedef Kokkos::CrsMatrix<MatrixValue,
                            MatrixOrdinal,
                            execution_space,
                            MatrixMemory,
                            MatrixSize> matrix_type;
  typedef typename matrix_type::values_type matrix_values_type;
  typedef typename matrix_type::StaticCrsGraphType matrix_graph_type;
  typedef Kokkos::View< InputVectorValue**,
                        InputP... > input_vector_type;
  typedef Kokkos::View< OutputVectorValue**,
                        OutputP... > output_vector_type;
  typedef Update update_type;

  // Specialization that uses shared memory for coalesced access of sparse
  // graph row offsets and column indices and Rank-2 vectors
  template <unsigned NumPerThread>
  struct Kernel {
    typedef typename output_vector_type::value_type output_vector_value;
    typedef typename output_vector_value::value_type scalar_type;

    const matrix_graph_type  m_Agraph;
    const matrix_values_type m_Avals;
    const input_vector_type  m_x;
    const output_vector_type m_y;
    const update_type m_update;
    const size_type m_row_count;
    const size_type m_num_vec_cols;

    Kernel( const matrix_type & A,
            const input_vector_type & x,
            const output_vector_type & y,
            const update_type& update )
      : m_Agraph( A.graph )
      , m_Avals( A.values )
      , m_x( x )
      , m_y( y )
      , m_update( update )
      , m_row_count( A.graph.row_map.dimension_0()-1 )
      , m_num_vec_cols( x.dimension_1() )
      {}

    __device__
    inline void operator()(void) const
    {
      volatile size_type * const sh_row =
        kokkos_impl_cuda_shared_memory<size_type>();
      volatile size_type * const sh_col = sh_row + blockDim.y+1;

      const size_type tid = blockDim.x*threadIdx.y + threadIdx.x;
      const size_type nid = blockDim.x*blockDim.y;

      const size_type block_row = blockDim.y*blockIdx.x;

      // Read blockDim.y+1 row offsets in coalesced manner
      const size_type num_row =
        block_row+blockDim.y+1 <= m_row_count+1 ? blockDim.y+1 :
        m_row_count+1 - block_row;
      for (size_type i=tid; i<num_row; i+=nid)
        sh_row[i] = m_Agraph.row_map[block_row+i];
      __syncthreads();

      const size_type iRow = block_row + threadIdx.y;
      if (iRow < m_row_count) {
        scalar_type sum[NumPerThread];
        const size_type iEntryBegin = sh_row[threadIdx.y];
        const size_type iEntryEnd =   sh_row[threadIdx.y+1];

        // We could potentially improve performance by putting this loop
        // inside the matrix column loop, however that would require storing
        // an array for sum over vector columns, which would require shared
        // memory.
        for (size_type vec_col=0; vec_col<m_num_vec_cols; vec_col++) {

          for (size_type e=0; e<NumPerThread; ++e)
            sum[e] = 0;

          for (size_type col_block=iEntryBegin; col_block<iEntryEnd;
               col_block+=blockDim.x) {
            const size_type num_col =
              col_block+blockDim.x <= iEntryEnd ?
                blockDim.x : iEntryEnd-col_block;

            // Read blockDim.x entries column indices at a time to maintain
            // coalesced accesses (don't need __syncthreads() assuming
            // blockDim.x <= warp_size
            // Note:  it might be a little faster if we ensured aligned access
            // to m_A.graph.entries() and m_A.values() below.
            if (threadIdx.x < num_col)
              sh_col[tid] = m_Agraph.entries(col_block+threadIdx.x);
            if (blockDim.x > Kokkos::Impl::CudaTraits::WarpSize)
              __syncthreads();

            for ( size_type col = 0; col < num_col; ++col ) {
              size_type iCol = sh_col[blockDim.x*threadIdx.y + col];

              for (size_type e=0, ee=threadIdx.x; e<NumPerThread;
                   ++e, ee+=blockDim.x) {
                sum[e] += m_Avals(col_block+col).fastAccessCoeff(ee) *
                          m_x(iCol, vec_col).fastAccessCoeff(ee);
              }
            }

          }

          for (size_type e=0, ee=threadIdx.x; e<NumPerThread;
               ++e, ee+=blockDim.x) {
            m_update( m_y(iRow, vec_col).fastAccessCoeff(ee), sum[e] );
          }

        }
      }
    } // operator()
  };

  static void apply( const matrix_type & A,
                     const input_vector_type & x,
                     const output_vector_type & y,
                     const update_type & update )
  {
    // Compute CUDA block and grid sizes.
    //
    // For Kepler, the best block size appears to be 256 threads with
    // 16 threads per vector for double precision, yielding 16 rows per
    // block.  Due to register usage, this gives 64 or 48 warps per SM
    // and thus 8 or 6 blocks per SM.  We use these values by default if
    // the user-specified block dimensions are zero

    const size_type value_dimension = dimension_scalar(x);

    size_type threads_per_vector = A.dev_config.block_dim.x;
    if (threads_per_vector == 0)
      threads_per_vector = value_dimension ;
    size_type rows_per_block = A.dev_config.block_dim.y;
    if (rows_per_block == 0)
      rows_per_block = 256 / threads_per_vector;
    const size_type row_count = A.graph.row_map.dimension_0()-1;
    const size_type num_blocks = (row_count+rows_per_block-1)/rows_per_block;
    const dim3 block( threads_per_vector, rows_per_block, 1 );
    const dim3 grid( num_blocks, 1 );

    // Check threads_per_vector evenly divides number of vector entries
    size_type num_per_thread = value_dimension / threads_per_vector;
    TEUCHOS_TEST_FOR_EXCEPTION(
      num_per_thread * threads_per_vector != value_dimension, std::logic_error,
      "Entries/thread * threads/vector must equal number of vector entries");

    // Launch kernel based on static number of entries per thread
    if (num_per_thread == 1) {
      launch_impl<1>( A, x, y, update, block, grid );
    }
    else if (num_per_thread == 2) {
      launch_impl<2>( A, x, y, update, block, grid );
    }
    else if (num_per_thread == 3) {
      launch_impl<3>( A, x, y, update, block, grid );
    }
    else if (num_per_thread == 4) {
      launch_impl<4>( A, x, y, update, block, grid );
    }
    else
      TEUCHOS_TEST_FOR_EXCEPTION(
        true, std::logic_error, "Invalid num_per_thread == " << num_per_thread);
  }

private:

  // Function to launch our kernel, templated on number of entries per thread
  // and shared memory choice
  template <unsigned num_per_thread>
  static void launch_impl( const matrix_type & A,
                           const input_vector_type & x,
                           const output_vector_type & y,
                           const update_type & update,
                           dim3 block,
                           dim3 grid)
  {
    typedef Kernel<num_per_thread> Krnl;

    // Use this to check occupancy, 64 is 100% on Kepler
    const bool occupancy_check = false;
    if (occupancy_check) {
      DeviceProp device_prop;
      size_type warps_per_sm;
      if (num_per_thread == 1)
        warps_per_sm = device_prop.get_resident_warps_per_sm(
          FullOccupancyKernelLaunch<Krnl>);
      else
        warps_per_sm = device_prop.get_resident_warps_per_sm(
          Kokkos::Impl::cuda_parallel_launch_local_memory<Krnl>);
      std::cout << "warps_per_sm = " << warps_per_sm
                << " max_warps_per_sm = " << device_prop.max_warps_per_sm
                << std::endl;
    }

    const size_t shared = (block.y+1 + block.x*block.y)*sizeof(size_type);
    if (sizeof(size_type) <= 4)
      cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeFourByte);
    else
      cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeEightByte);

    // Launch
    if (num_per_thread == 1)
      FullOccupancyKernelLaunch<<< grid, block, shared >>>
        ( Krnl( A, x, y, update ) );
    else
      Kokkos::Impl::cuda_parallel_launch_local_memory<<< grid, block, shared >>>
        ( Krnl( A, x, y, update ) );
  }
};

} // namespace details

} // namespace Stokhos

#endif /* #if defined( __CUDACC__) */

#endif /* #ifndef KOKKOS_CRSMATRIX_MP_VECTOR_CUDA_HPP */