This file is indexed.

/usr/include/trilinos/Amesos2_Solver_UQ_PCE.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef AMESOS2_SOLVER_UQ_PCE_HPP
#define AMESOS2_SOLVER_UQ_PCE_HPP

#include "Amesos2_Solver.hpp"
#include "Amesos2_Factory.hpp"
#include "Stokhos_Sacado_Kokkos_UQ_PCE.hpp"
#include "Stokhos_Tpetra_Utilities_UQ_PCE.hpp"

namespace Amesos2 {

#if defined(TPETRA_HAVE_KOKKOS_REFACTOR)
  template <class S, class LO, class GO, class D>
  typename Sacado::UQ::PCE<S>::cijk_type
  get_pce_cijk(
    const Teuchos::RCP<const Tpetra::CrsMatrix<Sacado::UQ::PCE<S>, LO, GO, Kokkos::Compat::KokkosDeviceWrapperNode<D> > >& A = Teuchos::null,
    const Teuchos::RCP<Tpetra::MultiVector<Sacado::UQ::PCE<S>, LO, GO, Kokkos::Compat::KokkosDeviceWrapperNode<D> > >& X = Teuchos::null,
    const Teuchos::RCP<const Tpetra::MultiVector<Sacado::UQ::PCE<S>, LO, GO, Kokkos::Compat::KokkosDeviceWrapperNode<D> > >& B = Teuchos::null)
  {
    if (A != Teuchos::null) {
      return Kokkos::cijk(A->getLocalValuesView());
    }
    else if (X != Teuchos::null) {
      return Kokkos::cijk(X->template getLocalView<D>());
    }
    else if (B != Teuchos::null) {
      return Kokkos::cijk(B->template getLocalView<D>());
    }
    return typename Sacado::UQ::PCE<S>::cijk_type();
  }

  /// \brief Amesos2 solver adapter for UQ::PCE scalar type
  ///
  /// This adapter enables Amesos2 solvers to work with Tpetra matrices
  /// and vectors of the Sacado::UQ::PCE scalar type by "flattening"
  /// these matrices and vectors into ones with a standard (e.g., double)
  /// scalar type.
  template <class Storage, class LocalOrdinal, class GlobalOrdinal,
            class Device, template<class,class> class ConcreteSolver>
  class PCESolverAdapter :
    public Solver< Tpetra::CrsMatrix<Sacado::UQ::PCE<Storage>,
                                     LocalOrdinal,
                                     GlobalOrdinal,
                                     Kokkos::Compat::KokkosDeviceWrapperNode<Device> >,
                   Tpetra::MultiVector<Sacado::UQ::PCE<Storage>,
                                       LocalOrdinal,
                                       GlobalOrdinal,
                                       Kokkos::Compat::KokkosDeviceWrapperNode<Device> >
                   >
  {
  public:

    typedef Sacado::UQ::PCE<Storage> Scalar;
    typedef Kokkos::Compat::KokkosDeviceWrapperNode<Device> Node;
    typedef Tpetra::CrsMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> Matrix;
    typedef Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> Vector;

    typedef typename Scalar::value_type BaseScalar;
    typedef Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> Map;
    typedef Tpetra::CrsGraph<LocalOrdinal,GlobalOrdinal,Node> FlatGraph;
    typedef Tpetra::CrsMatrix<BaseScalar,LocalOrdinal,GlobalOrdinal,Node> FlatMatrix;
    typedef Tpetra::MultiVector<BaseScalar,LocalOrdinal,GlobalOrdinal,Node> FlatVector;
    typedef ConcreteSolver<FlatMatrix,FlatVector> FlatConcreteSolver;
    typedef Solver<FlatMatrix,FlatVector> FlatSolver;

    typedef Solver<Matrix,Vector> solver_type;
    typedef typename solver_type::type type;
    typedef typename Scalar::cijk_type cijk_type;

    /// Constructor
    PCESolverAdapter(
      const Teuchos::RCP<const Matrix>& A_,
      const Teuchos::RCP<Vector>& X_,
      const Teuchos::RCP<const Vector>& B_) :
      A(A_), X(X_), B(B_) {
      cijk = get_pce_cijk(A, X, B);
      flat_graph =
        Stokhos::create_flat_pce_graph(*(A->getCrsGraph()),
                                       cijk,
                                       flat_X_map,
                                       flat_B_map,
                                       cijk_graph,
                                       Kokkos::dimension_scalar(A->getLocalMatrix().values));
      if (A != Teuchos::null)
        flat_A = Stokhos::create_flat_matrix(*A, flat_graph, cijk_graph, cijk);
      if (X != Teuchos::null)
        flat_X = Stokhos::create_flat_vector_view(*X, flat_X_map);
      if (B != Teuchos::null)
        flat_B = Stokhos::create_flat_vector_view(*B, flat_B_map);
      flat_solver =
        create_solver_with_supported_type<ConcreteSolver,FlatMatrix,FlatVector>::apply(flat_A, flat_X, flat_B);
    }

    /// \name Mathematical Functions
    //@{

    /** \brief Pre-orders the matrix.
     *
     * Uses the default solver option, unless a solver-specific
     * pre-ordering parameter is given.
     *
     * \sa setParameters
     */
    virtual type& preOrdering( void ) {
      flat_solver->preOrdering();
      return *this;
    }


    /** \brief Performs symbolic factorization on the matrix
     *
     * \pre
     *  - The matrix A must not be \c null
     */
    virtual type& symbolicFactorization( void ) {
      flat_solver->symbolicFactorization();
      return *this;
    }


    /** \brief Performs numeric factorization on the matrix
     *
     * numericFactorization checks first that symbolicFactorization
     * has successfully been called, and if not, calls it before
     * continuing.
     *
     * \pre
     *  - The matrix A must not be \c null
     *
     * \post
     *  - The factors L and U of A are computed
     */
    virtual type& numericFactorization( void ) {
      flat_solver->numericFactorization();
      return *this;
    }


    /** \brief Solves \f$ A X = B\f$ (or \f$ A^T X = B\f$ )
     *
     * solve checks first that numericFactorization has successfully
     * been called, and if not, calls it before continuing.
     *
     * \pre
     *  - The (multi)vectors \c X and \c B must not be \c null
     *
     * \post
     *  - The (multi)vector \c X (given at construction time) contains
     *    the solution to the system.
     */
    virtual void solve( void ) {
      flat_solver->solve();
    }


    /** \brief Solve \f$ A X = B\f$ using the given X and B vectors.
     *
     * This overload of solve uses the given X and B vectors when
     * solving.  This X and B are used in place of any X and B that
     * were given upon construction of the Amesos2 solver instance and
     * are used only for this solve.
     *
     * If a permanent change of X and B are required, see the setX()
     * and setB() methods.
     *
     * \post
     *  - The (multi)vector \c XX contains the solution to the system
     *  - The \c XX and \c BB given at construction time (if any) are unchanged.
     */
    virtual void solve(const Teuchos::Ptr<Vector>       XX,
                       const Teuchos::Ptr<const Vector> BB) const {
      flat_solver->solve(
        Stokhos::create_flat_vector_view(*XX, flat_X_map).get(),
        Stokhos::create_flat_vector_view(*BB, flat_B_map).get() );
    }


    /** \brief Solve \f$ A X = B\f$ using the given X and B vectors.
     *
     * This overload of solve uses the given X and B vectors when
     * solving.  This X and B are used in place of any X and B that
     * were given upon construction of the Amesos2 solver instance and
     * are used only for this solve.
     *
     * If a permanent change of X and B are required, see the setX()
     * and setB() methods.
     *
     * \post
     *  - The (multi)vector \c XX contains the solution to the system
     *  - The \c XX and \c BB given at construction time (if any) are unchanged.
     */
    virtual void solve(Vector* XX, const Vector* BB) const {
      flat_solver->solve(
        Stokhos::create_flat_vector_view(*XX, flat_X_map).get(),
        Stokhos::create_flat_vector_view(*BB, flat_B_map).get() );
    }

    //@} End Mathematical Functions


    /** \name Parameter Methods
     * @{
     */

    /** \brief Set/update internal variables and solver options.
     *
     * Expects that parameterList be named "Amesos2".  That list may
     * contain Amesos2-specific parameters.  In addition, it may
     * contain sublist for solver-specific parameters.  These sublists
     * should be named according to what is returned by the name()
     * function (i.e. The solver's name when enabling for Amesos2
     * during configuration).
     *
     * See each solver interface directly for a list of the supported
     * parameters for that solver.
     */
    virtual type& setParameters(
      const Teuchos::RCP<Teuchos::ParameterList> & parameterList ) {
      flat_solver->setParameters(parameterList);
      return *this;
    }


    /**
     * \brief Return a const parameter list of all of the valid parameters that
     * this->setParameterList(...)  will accept.
     */
    virtual Teuchos::RCP<const Teuchos::ParameterList>
    getValidParameters( void ) const {
      return flat_solver->getValidParameters();
    }

    /// @} End Parameter Methods


    /** \name Accessor Methods
     * @{
     */

    /** \brief Sets the matrix A of this solver
     *
     * \param [in] a          An RCP to a matrix will will be used for
     *                        future computation steps
     *
     * \param [in] keep_phase This parameter tells the solver what
     *                        state it should keep.  For example, you
     *                        may want to replace the matrix but keep
     *                        the symbolic factorization because you
     *                        know the structure of the new matrix is
     *                        the same as the structure of the old
     *                        matrix.  In this case you would pass
     *                        Amesos2::SYMBFACT as this parameter.
     *
     * The default value for the second parameter is Amesos2::CLEAN,
     * which means that the internal state of the solver will be
     * completely reset.  It will be as if no previous computational
     * steps were performed.
     */
    virtual void setA( const Teuchos::RCP<const Matrix> a,
                       EPhase keep_phase = CLEAN ) {
      A = a;

      // Rebuild flat matrix/graph
      cijk = get_pce_cijk(A);
      if (keep_phase <= CLEAN) {
        flat_X_map = Teuchos::null;
        flat_B_map = Teuchos::null;
        flat_graph = Teuchos::null;
        flat_graph =
          Stokhos::create_flat_pce_graph(*(A->getCrsGraph()),
                                         cijk,
                                         flat_X_map,
                                         flat_B_map,
                                         cijk_graph,
                                         Kokkos::dimension_scalar(A->getLocalMatrix().values));
      }
      if (keep_phase <= SYMBFACT) // should this by NUMFACT???
        flat_A = Stokhos::create_flat_matrix(*a, flat_graph, cijk_graph, cijk);

      flat_solver->setA(flat_A, keep_phase);
    }

    /** \brief Sets the matrix A of this solver
     *
     * \param [in] a          An raw C pointer to a matrix will will
     *                        be used for future computation steps.
     *
     * \param [in] keep_phase This parameter tells the solver what
     *                        state it should keep.  For example, you
     *                        may want to replace the matrix but keep
     *                        the symbolic factorization because you
     *                        know the structure of the new matrix is
     *                        the same as the structure of the old
     *                        matrix.  In this case you would pass
     *                        Amesos2::SYMBFACT as this parameter.
     *
     * The default value for the second parameter is Amesos2::CLEAN,
     * which means that the internal state of the solver will be
     * completely reset.  It will be as if no previous computational
     * steps were performed.
     */
    virtual void setA( const Matrix* a, EPhase keep_phase = CLEAN ) {
      this->setA(Teuchos::rcp(a,false), keep_phase);
    }


    /// Returns \c true if the solver can handle the matrix shape
    virtual bool matrixShapeOK( void ) {
      return flat_solver->matrixShapeOK();
    }


    /// Sets the LHS vector X
    virtual void setX( const Teuchos::RCP<Vector> x ) {
      X = x;
      if (x != Teuchos::null)
        flat_X = Stokhos::create_flat_vector_view(*x, flat_X_map);
      else
        flat_X = Teuchos::null;
      flat_solver->setX(flat_X);
    }


    /// Sets the LHS vector X using a raw pointer
    virtual void setX( Vector* x ) {
      if (x != 0) {
        X = Teuchos::rcp(x, false);
        flat_X = Stokhos::create_flat_vector_view(*x, flat_X_map);
      }
      else {
        X = Teuchos::null;
        flat_X = Teuchos::null;
      }
      flat_solver->setX(flat_X);
    }


    /// Returns the vector that is the LHS of the linear system
    virtual const Teuchos::RCP<Vector> getX( void ) {
      return X;
    }


    /// Returns a raw pointer to the LHS of the linear system
    virtual Vector* getXRaw( void ) {
      return X.get();
    }


    /// Sets the RHS vector B
    virtual void setB( const Teuchos::RCP<const Vector> b ) {
      B = b;
      if (b != Teuchos::null)
        flat_B = Stokhos::create_flat_vector_view(*b, flat_B_map);
      else
        flat_B = Teuchos::null;
      flat_solver->setB(flat_B);
    }


    /// Sets the RHS vector B using a raw pointer
    virtual void setB( const Vector* b ) {
      if (b != 0) {
        B = Teuchos::rcp(b, false);
        flat_B = Stokhos::create_flat_vector_view(*b, flat_B_map);
      }
      else {
        B = Teuchos::null;
        flat_B = Teuchos::null;
      }
      flat_solver->setB(flat_B);
    }


    /// Returns the vector that is the RHS of the linear system
    virtual const Teuchos::RCP<const Vector> getB( void ) {
      return B;
    }


    /// Returns a raw pointer to the RHS of the linear system
    virtual const Vector* getBRaw( void ) {
      return B.get();
    }


    /// Returns a pointer to the Teuchos::Comm communicator with this matrix
    virtual Teuchos::RCP<const Teuchos::Comm<int> > getComm( void ) const {
      return flat_solver->getComm();
    }


    /// Returns a reference to this solver's internal status object
    virtual Status& getStatus() const {
      return flat_solver->getStatus();
    }


    /// Return the name of this solver.
    virtual std::string name( void ) const {
      return flat_solver->name();
    }

    /// @} End Accessor Methods


    /** \name Methods implementing Describable
     * @{
     */

    /// Returns a short description of this Solver
    virtual std::string description( void ) const {
      return flat_solver->description();
    }


    /// Prints the status information about the current solver with some level
    /// of verbosity.
    virtual void describe( Teuchos::FancyOStream &out,
                           const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default ) const {
      flat_solver->describe(out, verbLevel);
    }

    /// @} End Methods implementing Describable


    /** \name Performance and Timing
     * @{
     */

    /// Prints timing information about the current solver.
    virtual void printTiming( Teuchos::FancyOStream &out,
                              const Teuchos::EVerbosityLevel verbLevel = Teuchos::Describable::verbLevel_default ) const{
      flat_solver->printTiming(out, verbLevel);
    }


    /**
     * \brief Extracts timing information from the current solver.
     *
     * Results are placed in the parameter list \c timingParameterList
     *
     * \param timingParameterList Accepts timing information from the
     * current solver
     */
    virtual void getTiming( Teuchos::ParameterList& timingParameterList ) const{
      flat_solver->getTiming(timingParameterList);
    }

    /// @} End Performance and Timing

  protected:

    Teuchos::RCP<const Matrix> A;
    Teuchos::RCP<Vector> X;
    Teuchos::RCP<const Vector> B;
    Teuchos::RCP<const Map> flat_X_map, flat_B_map;
    Teuchos::RCP<const FlatGraph> flat_graph, cijk_graph;
    Teuchos::RCP<const FlatMatrix> flat_A;
    Teuchos::RCP<FlatVector> flat_X;
    Teuchos::RCP<const FlatVector> flat_B;
    Teuchos::RCP<FlatSolver> flat_solver;
    cijk_type cijk;

  };

  // Specialization of create_solver_with_supported_type for
  // Sacado::UQ::PCE where we create PCESolverAdapter wrapping
  // each solver
  template < template <class,class> class ConcreteSolver,
             class ST, class LO, class GO, class D >
  struct create_solver_with_supported_type<
    ConcreteSolver,
    Tpetra::CrsMatrix<Sacado::UQ::PCE<ST>,LO,GO,Kokkos::Compat::KokkosDeviceWrapperNode<D> >,
    Tpetra::MultiVector<Sacado::UQ::PCE<ST>,LO,GO,Kokkos::Compat::KokkosDeviceWrapperNode<D> > > {
    typedef Sacado::UQ::PCE<ST> SC;
    typedef Kokkos::Compat::KokkosDeviceWrapperNode<D> NO;
    typedef Tpetra::CrsMatrix<SC,LO,GO,NO> Matrix;
    typedef Tpetra::MultiVector<SC,LO,GO,NO> Vector;
    static Teuchos::RCP<Solver<Matrix,Vector> >
    apply(Teuchos::RCP<const Matrix> A,
          Teuchos::RCP<Vector>       X,
          Teuchos::RCP<const Vector> B )
    {
      ctassert<
        Meta::is_same<
          typename MatrixTraits<Matrix>::scalar_t,
          typename MultiVecAdapter<Vector>::scalar_t
        >::value
      > same_scalar_assertion;
      (void)same_scalar_assertion; // This stops the compiler from warning about unused declared variables

      // If our assertion did not fail, then create and return a new solver
      return Teuchos::rcp( new PCESolverAdapter<ST,LO,GO,D,ConcreteSolver>(A, X, B) );
    }
  };

  // Specialization for solver_supports_scalar for Sacado::UQ::PCE<Storage>
  // value == true if and only if
  // solver_supprts_scalar<ConcreteSolver,Storage::value_type> == true
  template <template <class,class> class ConcreteSolver,
            typename Storage>
  struct solver_supports_scalar<ConcreteSolver, Sacado::UQ::PCE<Storage> > {
    typedef Sacado::UQ::PCE<Storage> Scalar;
    typedef typename Scalar::value_type BaseScalar;
    typedef typename solver_traits<ConcreteSolver>::supported_scalars supported_scalars;
    static const bool value =
      Meta::if_then_else<Meta::is_same<supported_scalars, Meta::nil_t>::value,
                         Meta::true_type,
                         Meta::type_list_contains<supported_scalars,
                                                  BaseScalar> >::type::value;
  };

#endif

} // namespace Amesos2

#endif // AMESOS2_SOLVER_UQ_PCE_HPP