This file is indexed.

/usr/include/trilinos/ROL_Zakharov.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

/** \file
    \brief  Contains definitions for the Zakharov function as evaluated using only the 
            ROL::Vector interface.
    \details This is a nice example not only because the gradient, Hessian, and inverse Hessian
             are easy to derive, but because they only require dot products, meaning this
             code can be used with any class that inherits from ROL::Vector.

    Objective function: 
    \f[f(\mathbf{x}) = \mathbf{x}^\top\mathbf{x} + \frac{1}{4}(\mathbf{k}^\top \mathbf{x})^2 +
                                                   \frac{1}{16}(\mathbf{k}^\top \mathbf{x})^4 \f]
    Where \f$\mathbf{k}=(1,\cdots,n)\f$
 
    Gradient:
    \f[
    g=\nabla f(\mathbf{x}) = 2\mathbf{x} + 
                           \frac{1}{4}\left(2(\mathbf{k}^\top\mathbf{x})+(\mathbf{k}^\top\mathbf{x})^3\right)\mathbf{k} 
    \f]

    Hessian: 
    \f[
    H=\nabla^2 f(\mathbf{x}) = 2 I + \frac{1}{4}[2+3(\mathbf{k}^\top\mathbf{x})^2]\mathbf{kk}^\top
    \f]
 
    The Hessian is a multiple of the identity plus a rank one symmetric 
    matrix, therefore the action of the inverse Hessian can be 
    performed using the Sherman-Morrison formula.

    \f[
    H^{-1}\mathbf{v} = \frac{1}{2}\mathbf{v}-\frac{(\mathbf{k}^\top\mathbf{v})}
                                             {\frac{16}{2+3(\mathbf{k}^\top\mathbf{x})^2}+2\mathbf{k^\top}\mathbf{k}}\mathbf{k}
    \f]

    \author Created by G. von Winckel
**/

#ifndef USE_HESSVEC 
#define USE_HESSVEC 1
#endif

#ifndef ROL_ZAKHAROV_HPP
#define ROL_ZAKHAROV_HPP

#include "ROL_Objective.hpp"
#include "ROL_StdVector.hpp"


namespace ROL {
namespace ZOO {

/** \brief Zakharov function.
 */
template<class Real>
class Objective_Zakharov : public Objective<Real> {
private:
    Teuchos::RCP<Vector<Real> > k_;  

public:
  
  // Create using a ROL::Vector containing 1,2,3,...,n
  Objective_Zakharov(const Teuchos::RCP<Vector<Real> > k) : k_(k) {}

  Real value( const Vector<Real> &x, Real &tol ) {

      Real xdotx = x.dot(x); 
      Real kdotx = x.dot(*k_); 

      Real val = xdotx + pow(kdotx,2)/4.0 + pow(kdotx,4)/16.0;

      return val;
  }

  void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {

      Real kdotx = x.dot(*k_);
      Real coeff = 0.25*(2.0*kdotx+pow(kdotx,3.0));

      g.set(x);
      g.scale(2.0);
      g.axpy(coeff,*k_);
  }

  Real dirDeriv( const Vector<Real> &x, const Vector<Real> &d, Real &tol ) {

      Real kdotd = d.dot(*k_);
      Real kdotx = x.dot(*k_);
      Real xdotd = x.dot(d);
      
      Real coeff = 0.25*(2.0*kdotx+pow(kdotx,3.0));

      Real deriv = 2*xdotd + coeff*kdotd;

      return deriv;

  }

#if USE_HESSVEC
  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {

      Real kdotx = x.dot(*k_);
      Real kdotv = v.dot(*k_);
      Real coeff = 0.25*(2.0+3.0*pow(kdotx,2.0))*kdotv;

      hv.set(v);
      hv.scale(2.0);
      hv.axpy(coeff,*k_);
  }
#endif
  void invHessVec( Vector<Real> &ihv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {
  
      Real kdotv = v.dot(*k_);
      Real kdotx = x.dot(*k_);
      Real kdotk = (*k_).dot(*k_);
      Real coeff = -kdotv/(2.0*kdotk+16.0/(2.0+3.0*pow(kdotx,2.0)));
      
      ihv.set(v);
      ihv.scale(0.5);
      ihv.axpy(coeff,*k_); 
  }
};



template<class Real>
void getZakharov( Teuchos::RCP<Objective<Real> > &obj,
                  Teuchos::RCP<Vector<Real> >    &x0,
                  Teuchos::RCP<Vector<Real> >    &x ) {

  // Problem dimension
  int n = 10;

  // Get Initial Guess
  Teuchos::RCP<std::vector<Real> > x0p = Teuchos::rcp(new std::vector<Real>(n,3.0));
  x0 = Teuchos::rcp(new StdVector<Real>(x0p));

  // Get Solution
  Teuchos::RCP<std::vector<Real> > xp = Teuchos::rcp(new std::vector<Real>(n,0.0));
  x = Teuchos::rcp(new StdVector<Real>(xp));

  // Instantiate Objective Function
  Teuchos::RCP<std::vector<Real> > k_rcp = Teuchos::rcp(new std::vector<Real>(n,0.0));
  for ( int i = 0; i < n; i++ ) {
    (*k_rcp)[i] = i+1.0;
  }
  Teuchos::RCP<Vector<Real> > k = Teuchos::rcp(new StdVector<Real>(k_rcp));
  obj = Teuchos::rcp(new Objective_Zakharov<Real>(k));
}


}// End ZOO Namespace
}// End ROL Namespace

#endif